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TWISTING COCHAINS AND HIGHER TORSION
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(communicated by James Stasheff)

Abstract
This paper gives a short summary of the central role

played by Ed Brown’s “twisting cochains” in higher Franz-
Reidemeister (FR) torsion and higher analytic torsion. Briefly,
any fiber bundle gives a twisting cochain which is unique up
to fiberwise homotopy equivalence. However, when they are
based, the difference between two of them is a higher algebraic
K-theory class measured by higher FR torsion. Flat supercon-
nections are also equivalent to twisting cochains.

This paper is dedicated to Edgar Brown.
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Introduction

About 50 years ago Ed Brown [Bro59] constructed a small chain complex giving
the homology of the total space E of a fiber bundle

F → E → B

whose base B and fiber F are finite cell complexes. It is given by the tensor product
of chain complexes for F and B with the usual tensor product boundary map
modified by a “twisting cochain.” There are many ways to understand the meaning
of the twisting cochain.

1. It is the difference between two A∞ functors.

2. It is a combinatorial flat Z-graded superconnection.

3. It is a family of chain complexes homotopy equivalent to F and parametrized
by B.

If F → E → B is a smooth bundle with compact manifold fiber and simply con-
nected base then we get another twisting cochain given by fiberwise Morse theory.
Comparison of these two twisting cochains gives an algebraic K-theory invariant of
the bundle called the higher Franz-Reidemeister (FR) torsion. Higher FR-torsion
distinguishes different smooth structures on the same topological manifold bundle.
Therefore, this construction is a strictly differentiable phenomenon.

The purpose of this paper is to explain some of the basic properties of these
constructions and unify them using a simplified version of Ed Brown’s construction.
A longer exposition can be found in [Igu05] which, in turn, gives a summary of the
contents of [Igu02].

We summarize the contents of this paper. In Section 1 we review the definition
of an A∞ functor. A∞ structures were first constructed by Stasheff [Sta63] and
A∞ categories first appeared in [Fuk93]. But here we take A∞ functors only from
ordinary categories to the category of Z-graded projective modules over a ring R.
The definition in this restricted case is given by a formula (Equation 2) due to
Sugawara[Sug60]. We use an old construction of Eilenberg and MacLane[EM53]
to make homology into an A∞ functor when it is projective (Equation 3).

In Section 2 we define twisting cochains. We begin with the classical definition
of Brown and we also review Brown’s construction of the twisted tensor product

C∗(B)⊗ϕ C∗(F )

whose homology is equal to the homology of the total space of a fiber bundle F →
E → B. Brown defined this to be the usual tensor product with boundary map ∂ϕ

twisted by ϕ (Equation 4). We give a variation of Brown’s definitions which arises
from certain A∞ functors. When there is an underlying functor on the category X
whose induced maps are all isomorphisms we get a coefficient sheaf F (X,Y ) over X
and the higher homotopies in the A∞ functor are cochains on X with values in F .
Our twisting cochain is denoted ψ to distinguish it from the classical one of Brown.
We use the twisted tensor product to construct a total complex (2.6) which is an
actual functor approximating the A∞ functor.
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Section 3 describes Volodin K-theory[Vol71] and its relationship to twisting
cochains. We construct the Volodin category Vb(R) and a generalization which
we call the Whitehead category (3.4). This is a category of acyclic based free chain
complexes over a given ring. This category carries a universal twisting cochain of a
certain kind and this twisting cochain defines a cohomology class on the classifying
space of the Whitehead category:

τ2k ∈ H4k(Whh
•(Q, 1);R).

Higher Franz-Reidemeister torsion is in Section 4. We show that, under the right
conditions, a smooth fiber bundle with compact manifold fiber M → E → B gives
two canonical twisting cochains, the topologically defined twisting cochain of Ed
Brown and a smoothly defined twisting cochain obtained by fiberwise Morse theory.
The fiberwise mapping cone of the comparison map is fiberwise contractible. It gives
a mapping of the base B into the Whitehead category provided that we have a basis
for the topological twisting cochain. (The Morse theoretic twisting cochain has a
basis coming from the critical points.) Such a basis can be chosen in the special case
when π1B acts trivially on the rational homology of M . This based free twisting
cochain is classified by a map

B → |Whh
•(Q, 1)|

and we can pull back the universal FR torsion class τ2k to B to obtain the higher FR
torsion invariant for the bundle. This invariant has been computed in many cases
but here we give only one example: the case when the fiber is a closed oriented even
dimensional manifold (Theorem 4.6).

The rest of the paper contains an elementary discussion of flat Z-grade supercon-
nections. The aim is to show that they are equivalent to twisting cochains. Section 5
derives a definition of an infinitesimal twisting cochain. This is basically a twisting
cochain on very small simplices expressed in terms of differential forms. The prefix
“super” refers to a Z/2Z grading. However, a superconnection on a Z-graded vector
bundle will automatically obtain a Z-grading. The Bismut-Lott definition of such
a superconnection [BL95] also requires that this Z-graded superconnection have
total degree 1.

In Section 6, we view the endomorphism valued differential forms as operators
on the vector bundle in the standard way to obtain flat superconnections. In the
last section 8 we show that a flat superconnection is the differential in a cochain
complex which is dual to Brown’s twisted tensor product. Going backwards, the
second to last section 7 explains how superconnections can be integrated over 1
and 2 simplices using Chen’s iterated integrals to give the beginning of a simplicial
twisting cochain. Complete details for integration of superconnections over arbitrary
simplices can be found in [Igu09].

1. A∞ functors

In this paper we consider the differential graded category C(R) of chain complexes
of projective R-modules over an associative ring R and Gr(R), the underlying graded
category of Z-graded projective R-modules. All R-modules will be right R-modules.
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Both categories C(R),Gr(R) have graded hom sets given by

HOM(C∗, D∗) =
⊕

HOMn(C∗, D∗) =
⊕

n

∏

k

HomR(Ck, Dn+k).

But C(R) has a differential m1 : HOMn(C∗, D∗) → HOMn−1(C∗, D∗) given by

m1(f) = df − (−1)nfd.

We will be considering functors from an ordinary category X into the differential
graded category C(R), but we view these as functors X → Gr(R) with additional
structure. Usually we assume that the functor takes values in the full subcategory of
Gr(R) consisting either of nonnegatively graded R-modules with additional struc-
ture given by a degree −1 differential or nonpositively graded modules with degree
1 differential.

To fix a problem which arises in the notation we will use the nerve N•X op of the
opposite category. Thus a p-simplex in X (an element of NpX op) will be a sequence
of morphisms of the form:

X0
f1←− X1

f2←− · · · fp←− Xp (1)

To clarify the notation, the composition Xp → X0 is a morphism in X which is also
a morphism X0 → Xp in X op. Note that a 0-simplex consists of one object X0 with
no maps. The main purpose of this is to make the domain Xj of the front j-face of
a j + k simplex equal to the range of the back k-face.

The following definition of A∞ functors, in particular Equation (2), in the re-
stricted case when the domain is an ordinary category is due to Sugawara [Sug60].

Definition 1.1. An A∞ functor

Φ = (Φ,Φ0, Φ1, Φ2, · · · ) : X → Gr(R)

on an ordinary category X is an operation which assigns to each object X ∈ X a
Z-graded projective R-module ΦX and to each sequence of composable morphisms
(1) a morphism

Φp(f1, f2, · · · , fp) : ΦXp → ΦX0

of degree p− 1 and satisfies the following cocycle condition for p > 0.

p∑

i=0

(−1)iΦi(f1, · · · , fi)Φp−i(fi+1, · · · , fp)

=
p−1∑

i=1

(−1)iΦp−1(f1, · · · , fifi+1, · · · , fp) (2)

For p > 1 this can be written as follows where m1(f) = Φ0f − (−1)deg ffΦ0 and
m2(f, g) = f ◦ g.

m1(Φp) +
p−1∑

i=1

(−1)im2(Φi, Φp−i) =
p−1∑

i=1

(−1)iΦp−1(1i−1, m2, 1p−i−1).
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For p = 0, 1, 2, 3 this equation has the following interpretation.

(p = 0) Φ0Φ0 = 0, i.e., (ΦX, Φ0) is a chain complex.

(p = 1) Φ0Φ1(f) = Φ1(f)Φ0, i.e.,

Φ1(f) : (ΦX1, Φ0) → (ΦX0, Φ0)

is a chain map.

(p = 2) Φ0Φ2(f1, f2) + Φ2(f1, f2)Φ0 = Φ1(f1)Φ1(f2)− Φ1(f1f2), i.e.,

Φ2(f1, f2) : Φ1(f1f2) ' Φ1(f1)Φ1(f2)

is a chain homotopy.

(p = 3) Φ0Φ3(f1, f2, f3)− Φ3(f1, f2, f3)Φ0 =

Φ2(f1, f2f3)− Φ2(f1, f2)Φ1(f3) + Φ1(f1)Φ2(f2, f3)− Φ2(f1f2, f3).

In other words, Φ3 is a null homotopy of the coboundary of Φ2.

Proposition 1.2. Suppose that Φ2 = 0 and Φ1 takes isomorphisms to isomor-
phisms. Then (Φ, Φ0, Φ1) is a functor from the category X to the category of pro-
jective R-complexes and degree 0 chain maps and (Φ, Φ1) is a functor from X to
the category of Z-graded projective R-modules and degree 0 maps.

Proof. If Φ2 = 0 then Φ1(f) is a chain map (ΦX1,Φ0) → (ΦX0, Φ0) with the
property that Φ1(fg) = Φ1(f)Φ1(g). This implies Φ1(idX) is a projection operator.
If Φ1 takes isomorphisms to isomorphisms this must be the identity map on ΦX.

A natural transformation of A∞ functors is an A∞ functor on the product cat-
egory X × I where I is the category with two objects 0, 1 and one nonidentity
morphism 0 → 1. This is a family of chain maps (ΦX, Φ0) → (Φ′X, Φ0) which are
natural only up to a system of higher homotopies. If these chain maps are homo-
topy equivalences we say that Φ,Φ′ are A∞ homotopy equivalent or fiber homotopy
equivalent. (We view an A∞ functor as a family of chain complexes over the nerve
of X op.)

One way to construct an A∞ functor on X is to start with an actual functor C
from X to the category of projective R-complexes, then replace each C(X) with
a homotopy equivalent projective R-complex ΦX with differential Φ0. Following
Eilenberg and MacLane [EM53], the higher homotopies are given by

Φp(f1, · · · , fp) = q0C(f1)η1C(f2)η2 · · · ηp−1C(fp)jp (3)

where ji : ΦXi → C(Xi) and qi : C(Xi) → ΦXi are homotopy inverse chain maps
and ηi : C(Xi) → C(Xi) is a chain homotopy id ' ji ◦ qi.

In the special case when the homology of C(X) is projective (e.g., if R is a field)
and C(X) is either nonnegatively or nonpositively graded, the homology complex

ΦX = H∗(C(X))

(with zero boundary map) gives an example of a homotopy equivalent chain com-
plex. Using the construction above, we obtain the A∞ homology functor.
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Suppose that p : E → B is a fiber bundle where the base B is (the geometric
realization of) a simplicial complex. Then for each simplex σ in B the inverse image
E|σ = p−1(σ) is homeomorphic to F ×σ and thus homotopy equivalent to the fiber
F . Taking either a cellular chain complex or the total singular complex, we get a
functor from the category simp B of simplices in B, with inclusions as morphisms, to
the category of augmented chain complexes. When the homology of F is projective,
the construction above gives an A∞ homology functor on simpB.

We will see that this A∞ functor gives a twisting cochain on B which, by Ed
Brown’s twisted tensor product construction, gives a chain complex for the homol-
ogy of E. But first we want to point out that the dual of an A∞ functor is also an
A∞ functor.

Suppose that R = K is a field. Then we have the degree-wise duality functor on
Gr(K) sending V =

⊕
Vn to V ∗ where

V ∗
n = Hom(V−n,K).

Then morphisms of degree q are sent to morphisms of degree q and the order of
composition is reversed. So we get a functor Gr(K) → Gr(K)op. Given an A∞
functor Φ : X → Gr(K) we can compose with this duality functor:

X → Gr(K) → Gr(K)op

This is the same as a functor Φ∗ : X op → Gr(K).

Proposition 1.3. The composition of an A∞ functor Φ : X → Gr(K) with the
degree-wise duality functor on Gr(K) gives an A∞ functor Φ∗ on X op.

Proof. This is very straightforward. The interesting point is that there is no change
in signs. Apply duality to Equation (2) and reverse the order of the morphisms f∗i
(since they are begin composed in the opposite order in X op). We get:

p∑

i=0

(−1)iΦ∗p−i(f
∗
p , · · · , f∗i+1)Φ

∗
i (f

∗
i , · · · , f∗1 ) =

p−1∑

i=1

(−1)iΦ∗p−1(f
∗
p , · · · , f∗i+1f

∗
i , · · · , f∗1 )

Now multiply both sides by (−1)p, replace i by p− i and make the notation change:
gi = f∗p−i+1 to see that Φ∗ satisfies the definition of an A∞ functor.

2. Twisting cochains

First we review Ed Brown’s original construction [Bro59]. Suppose that Λ is
a commutative ring, K is a nonnegatively graded Λ-coalgebra and A is a graded
Λ-algebra. Then Brown defined a twisting cochain to be a sum ϕ =

∑
p>0 ϕp of

Λ-linear maps ϕp : Kp → Ap−1, so that

1. ϕ0 = 0

2. ∂ϕp = ϕp−1∂ −
∑

16i6p−1 ϕi ∪′ ϕp−i where

ϕi ∪′ ϕp−i = µ(ϕi ⊗ ϕp−i)∆
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where µ is the multiplication in A and ∆ is the comultiplication of K. When
this expression is evaluated, a sign of (−1)i is produced by the Koszul sign
rule. (See Definition 2.1 below.)

Brown also assumed that A has an augmentation, which we do not require.
Given a differential graded A-module M , Brown defined the twisted tensor prod-

uct

K ⊗ϕ M

to be the standard graded tensor product over Λ with differential ∂ϕ given by

∂ϕ(x⊗ y) = ∂x⊗ y + (−1)deg xx⊗ ∂y −
∑

(x)

(−1)deg x(1)x(1) ⊗ ϕ(x(2))y (4)

where we use Sweedler notation ∆x =
∑

(x) x(1) ⊗ x(2) [Swe69].

Brown then showed that the total singular complex S∗(E) (with coefficients in
Λ) of the total space of a fiber bundle F → E → B over a path connected space is
homotopy equivalent to the twisted tensor product

S′∗(B)⊗ϕ C∗(F )

where K = S′∗(B) is the subcomplex of the total singular complex of B consisting
of singular simplices in B with all its vertices at the base point of B, M = C∗(F ) is
any free Λ-complex homotopy equivalent to the total singular complex of F and A
is the differential graded algebra A = HOM(M,M). (Brown took A to be the total
singular complex of the loop space of B which acts on S∗(F ).)

The cochains ϕp, p > 1 are given as follows. Each 1-simplex σ of B is a loop in B
which induces a holonomy F → F . Then ϕ1 := σ∗−1 where σ∗ : C∗(F ) → C∗(F ) is
the induced chain map. Any 2-simplex σ : ∆2 → B gives a homotopy between one
loop and the composition of the other two loops: ∂0σ∂2σ ' ∂1σ. We take ϕ2(σ) to
be the corresponding chain homotopy ∂0σ∗ ◦ ∂2σ∗ ' ∂1σ∗. The construction of ϕp

for p > 3 is similar and is a special case of the construction given below.
We now consider twisting cochains ψ =

∑
p>0 ψp arising from A∞ functors. In

the case of a fiber bundle p : E → B, the idea is that we take simplices in the base
B with distinct vertices. For each vertex v, ψ0 is the boundary map of the complex
C∗(Fv). Each 1-simplex gives, not an endomorphism of a single complex M =
C∗(F ), but morphisms between complexes associated to vertices of the simplex.
Thus HOM(M, M) is replaced by a category of graded R-modules. We also work
over an associative ring R. This simply means that the tensor product S∗(B)⊗ϕ M
is replaced by a direct sum of (shifted) copies of (various) M , one for each free
generator of S∗(B). (See Definition 2.6 below).

Suppose that (Φ,Φ1) : X → Gr(R) is a functor so that Φ1(f) is a degree 0
isomorphism for all f : X → Y . In that case, the graded bifunctor

F (X,Y ) = HOM(ΦX, ΦY ) (5)

gives a locally trivial coefficient system on the category X .
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Since we are using the nerve of the opposite category, a p-cochain on X with
coefficients in a bifunctor F is a mapping ψ which assigns to each p-simplex

X∗ = (X0
f1←− X1

f2←− · · · fp←− Xp)

in X an element ψ(X∗) ∈ F (Xp, X0). The coboundary of ψ is the p + 1 cochain
given by

δψ(X0, · · · , Xp+1) = (f1)∗ψ(X1, · · · , Xp+1)

+
p∑

i=1

(−1)iψ(X0, · · · , X̂i, · · · , Xp+1) + (−1)p(fp+1)∗ψ(X0, · · · , Xp). (6)

Definition 2.1. Given a functor (Φ, Φ1) : X → Gr(R) as above, a twisting cochain
ψ on X with coefficients in (Φ, Φ1) is a sum of cochains ψ =

∑
p>0 ψp where ψp is

a p-cochain on X with coefficients in the degree p− 1 part Fp−1 of the HOM(Φ, Φ)
bifunctor F of (5) so that the following condition is satisfied.

δψ = ψ ∪′ ψ.

Here ∪′ is the cup product using the Koszul sign rule:

ψp ∪′ ψq(X0, · · · , Xp+q) = (−1)pψp(X0, · · · , Xp)ψq(Xp, · · · , Xp+q)

since ψq has total odd degree.

To obtain a classical twisting cochain ϕ, we restrict to the case where X has
a single object X, Φ1(f) is the identity map on ΦX for all morphisms f and R
is a commutative ring. We take K to be the free R-complex of the nerve of X op.
This is the differential grade R-coalgebra K = C∗(N•X op) which in degree p is freely
generated by the set of p simplices X0 ← · · · ← Xp in X . We let M be the projective
R-complex M = (ΦX, ψ0). Then A = HOM(M, M) is a differential graded R-
complex. The functor F is trivial and δf = f∂. So, the equation δψ = ψ ∪′ ψ
becomes:

ψp−1∂ = ψ0 ∪′ ψp + ψp ∪′ ψ0 +
p−1∑

i=1

ψi ∪′ ψp−i

Since ψ0 = ∂M , we have

ψ0 ∪′ ψp + ψp ∪′ ψ0 = ∂Mψp + (−1)pψp∂
M = ∂Aψp

Therefore, ϕ0 = 0 and ϕp = ψp for all p > 1 gives a twisting cochain in the sense
of Brown. The referee has pointed out that, if Φ1(f) is not always the identity map
on ΦX, we can still get a classical twisting cochain by letting ϕ0 = 0, ϕp = ψp for
p > 2 and

ϕ1 = ψ1 + Φ1 − idM .

By comparison of definitions we have the following.

Proposition 2.2. ψ is a twisting cochain on X with coefficients in (Φ,Φ1) if and
only if

(Φ, ψ0,Φ1 + ψ1, ψ2, ψ3, · · · )
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is an A∞ functor.

Consider again the A∞ homology functor

σ 7→ H∗(Eσ)

of a fiber bundle E → B over a triangulated space B. Suppose that the fiber F has
projective homology. In this case ψ0 and ψ1 are both zero and the higher homotopies
ψp for p > 2 are unique up to simplicial homotopy (over B × I). In this case Ed
Brown showed that in his twisted tensor product S′∗(B) ⊗ψ S∗(F ), S∗(F ) can be
replaced with H∗(F ) and ψ is given by the A∞ homology functor constructed above.

An easy spectral sequence comparison argument shows that we may replace
S′∗(B) with any homotopy equivalent differential graded coalgebra. We take the
cellular complex C∗(B) given by a triangulation of B. Then the twisted tensor
product C∗(B)⊗ψ H∗(F ) is the total complex of the usual bicomplex Cp(B; Hq(F ))
with boundary map modified by the twisting cochain ψ as follows:

∂ψ(x⊗ y) = ∂x⊗ y −
∑

p+q=deg x

(−1)pfp(x)⊗ ψq(bq(x))(y). (7)

Here x = (x0 ⊇ x1 ⊇ · · · ⊇ xn) is a simplex in the first barycentric subdivision of
B, fp(x) = (x0 ⊇ · · · ⊇ xp) is the front p-face of x and bq(x) = (xp ⊇ · · · ⊇ xn) is
the back q-face.

Theorem 2.3 (Brown[Bro59]). Assuming that F has projective homology, the
twisted tensor product gives the homology of the total space:

H∗(C∗(B)⊗ψ H∗(F )) ∼= H∗(E).

Remark 2.4. The mapping fp ⊗ ψqbq in (7) has bidegree (−q, q − 1). It gives the
corresponding boundary map in the Serre spectral sequence for E which is given by
filtering the twisted tensor product by reverse filtration of H∗(F ) (by subcomplexes
H∗>n(F )) [Igu02].

Corollary 2.5. When E → B is an oriented n−1 sphere bundle, the degree n part
ψn of the twisting cochain ψ is a cocycle representing the Euler class of E:

[ψn] = eE ∈ Hn(B;R).

Proof. Since HOM(H∗(Sn−1), H∗(Sn−1)) has elements only in degrees 0, n − 1,
ψk = 0 for k 6= n. By definition of a twisting cochain we have

δψn = (ψ ∪′ ψ)n = 0.

Therefore, ψn is an n − 1 cocycle on B. Since it gives the differential in the Serre
spectral sequence, it must represent the Euler class.

In the present setting, Ed Brown’s twisted tensor product is equivalent to the
following construction.

Definition 2.6. The total complex E(ψ; Φ) of the twisting cochain ψ with coeffi-
cients in the functor (Φ, Φ1) is given by

E(ψ; Φ) =
⊕

k>0

⊕

(X0←···←Xk)

(X∗)⊗ ΦXk
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with boundary map ∂ψ given by (7).

Remark 2.7. Note that every simplex X∗ = (X0 ← · · · ← Xk) gives a subcomplex
of the total complex E(ψ; Φ) by:

E(X∗) =
⊕

j>0

⊕

a:[j]→[k]

a∗(X∗)⊗ ΦXa(j).

This is also the total complex of the A∞ functor on [k] (considered as a category
with objects 0, 1, · · · , k and morphisms k → k− 1 → · · · → 1 → 0) given by pulling
back ψ along the functor X∗ : [k] → X .

Note that this gives a functor from the category of simplices in X to the category
of subcomplexes of the total complex with morphisms being inclusion maps. Thus,
just as the A∞ homology functor constructs an A∞ functor out of an actual functor,
the total complex construction gives an actual functor on simpN•X op from an A∞
functor on X .

Using the total complex, a twisting cochain on X can be viewed as a family of
chain complexes parametrized by the nerve of X op. With some extra structure, this
gives a map from the geometric realization of X to the Volodin K-theory space of
R.

3. Volodin K-theory

Algebraic K-theory is related to twisting cochains in the following way. When
two based, upper triangular twisting cochains are homotopy equivalent, there is an
algebraic K-theory obstruction to deforming one into the other. Formally, we take
the pointwise mapping cone. This gives a based free acyclic upper triangular twisting
cochain on the category X . This is equivalent to a mapping from the geometric
realization |X | of X to a fancy version of the Volodin K-theory space of the ring
R. To avoid confusion, we assume that R has the property that the rank of a free
R-module is well defined, i.e., that Rn ∼= Rm implies n = m.

When the basis is only well-defined up to permutation and multiplication by
elements of a subgroup G of the group of units of R, an acyclic twisting cochain on
X defines a mapping from |X | into the fiber Whh

•(R,G) of the mapping

Ω∞Σ∞(BG+) → BGL(R)+ × Z.

The well-known basic case is the Whitehead group

Wh1(G) = π0Whh
•(Z[G], G)

which is the obstruction to G-collapse of a contractible f.g. based free R-complex.
In this section we discuss the different versions of the Volodin construction, show
how they are related to twisting cochains and identify the homotopy type of two of
them.

The basic definition is sometimes called the “one index” case. It is a space of
invertible matrices locally varying by upper triangular column operations. When
this definition is expressed as a twisting cochain, the construction seems artificial,
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with only one term ψ1 in the twisting cochain ψ. However, when the missing higher
terms ψp are inserted we recover the general Volodin space.

Definition 3.1. For every n > 2 the Volodin category Vn(R) is the category whose
objects are pairs (A, σ) consisting of an invertible n×n matrix A ∈ GL(n,R) and a
partial ordering σ of {1, 2, · · · , n}. A morphism (A, σ) → (B, τ) is an n× n matrix
T with coefficients in R so that

1. σ ⊆ τ , i.e., τ is a refinement of σ.
2. AT = B. (So the morphism T = A−1B is unique if it exists.)
3. T = (tij) is τ -upper triangular in the sense that

(a) tii = 1 for i = 1, · · · , n
(b) tij = 0 unless i 6 j in the partial ordering τ (i 6 j ⇔ (i, j) ∈ τ).

Note that composition is reverse matrix multiplication:

S ◦ T = TS.

There is a simplicial Volodin space V n
• (R) without explicit partial orderings. A

p-simplex g ∈ V n
p (R) consists of a p + 1 tuple of invertible n× n matrices

g = (g0, g1, · · · , gp)

so that for some partial ordering σ of {1, · · · , n} the matrices g−1
i gj are all σ-upper

triangular. There is a simplicial map

N•Vn(R) → V n
• (R) (8)

from the nerve of the Volodin category Vn(R) to the simplicial set V n
• (R) given

by forgetting the partial orderings. However, the collection of admissible partial
orderings on any g ∈ V n

p (R) has a unique minimal element and therefore forms a
contractible category. Consequently, (8) induces a homotopy equivalence

|Vn(R)| ' |V n
• (R)|

If we stabilize matrices in the usual way by adding a 1 in the lower right corner
we get the stable Volodin category

V(R) = lim
→
Vn(R)

and the stable Volodin space V∞
• (R) = lim

→
V n
• (R) which are related to Quillen K-

theory by the following well-known theorem due to Vasserstein and Wagoner but
best explained by Suslin [Sus81].

Theorem 3.2. |V(R)| ' |V∞
• (R)| ' ΩBGL(R)+ where ΩBGL(R)+ is the loop

space of the plus construction on the classifying space of GL(R) = GL(∞, R).

The Volodin category Vn(R) has a canonical twisting cochain. It comes from
the realization that an invertible matrix is the same as a based contractible chain
complex with two terms.

Definition 3.3. The canonical twisting cochain on Vn(R) is given as follows.



Journal of Homotopy and Related Structures, vol. 6(2), 2011 224

1. Let Φ(A, σ) = C∗ be the based free graded R-module with C0 = C1 = Rn for
every object (A, σ) of Vn(R).

2. Φ1 = (id, id) is the identity chain map C∗ → C∗ for every morphism.

3. ψ0(A, σ) = A : Rn → Rn.

4. ψ1(T ) = (0, T − I). So I + ψ1(T ) = (I, T ) gives a chain isomorphism:

Rn T−−−−→ Rn

B

y
yA

Rn I−−−−→ Rn

The higher homotopies ψp, p > 2, are all zero for Vn(R). However, there is
a fancier version of the Volodin category with higher homotopies. We call it the
“Whitehead category.” This is very similar to the original definition of Volodin
[Vol71]

Definition 3.4. If G is a subgroup of the group of units of a ring R then the
Whitehead category Wh•(R,G) is defined to be the simplicial category whose sim-
plicial set of objects consists of pairs (P, ψ) where ψ is an upper-triangular twisting
cochain on the category [k] (as in Remark 2.7) with coefficients in the fixed graded
based R-module:

RP :=
⊕

RPi

where P =
∐

Pi is a graded poset (a poset with a grading not necessarily related to
the ordering). By upper-triangular we mean that ψ(σ)(x) is a linear combination of
y < x ∈ P for all simplices σ in [k]. As in the Volodin category, Φ1 is the identity
mapping on RP .

A morphism (P,ψ) → (Q, ϕ) in Whk(R, G) consists of a graded order preserving
monomorphism going the other way:

f : Q → P

so that S = P −f(Q) is a disjoint union of expansion pairs which are, by definition,
pairs x+ > x− otherwise unrelated to every other element of P so that ψ0(x+) =
x−g for some g ∈ G, together with a function γ : Q → G so that ϕ differs from
ψ ◦ f only by multiplication by γ, i.e., f∗(ϕp(σ)(x)) = ψp(σ)(f(x))γ(x).

The following theorem, due to J. Klein and the author, is proved in [Igu02],
Section 5.6.

Theorem 3.5 (Igusa-Klein). There is a homotopy fiber sequence

|Whh
•(R,G)| → Ω∞Σ∞(BG+) → Z×BGL(R)+

where Whh
•(R,G) is the simplicial full subcategory of Wh•(R, G) consisting of (P, ψ)

so that each chain complex (RP , ψ0) is contractible (i.e., has the homology of the
empty set) and BG+ = BG

∐
pt.
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Remark 3.6. If we take G to be a finite group then Ω∞S∞(BG+) is rationally
trivial above degree 0 so Whh

•(R,G) has the rational homotopy type of the Volodin
space:

|Whh
•(R,G)| 'Q |V(R)| ' ΩBGL(R)+.

In particular, if R = Q, we get [Bor74]

|Whh
•(Q, 1)| 'Q ΩBGL(Q)+ 'Q BO.

Using the Borel regulator maps

K4k+1Q→ R

given by continuous cohomology classes in H2k(BGL(C);R) we get the universal
real higher Franz-Reidemeister torsion invariants

τ2k ∈ H4k(Whh
•(Q, 1);R).

These give characteristic classes for smooth bundles under certain conditions.

4. Higher FR torsion

We will discuss the circumstances under which we obtain well defined algebraic
K-theory classes for a fiber bundle. If we have a smooth bundle p : E → B where
E, B and the fiber Mb = p−1(b) are compact connected smooth manifolds and R
is a commutative ring so that the fiber homology H∗(Mb; R) is projective then we
obtain two canonical twisting cochains on B.

The first is Brown’s twisting cochain ψ with coefficients in the fiberwise homology
bundle

Φ(b) = H∗(Mb; R).

Recall that this requires the fiber homology to be projective.
The second is the fiberwise cellular chain complex C∗(fb) associated to a fiberwise

generalized Morse function (GMF) f : E → R. These are defined to be smooth
functions which, on each fiber Mb, have only Morse and birth-death singularities
(cubic in one variable plus nondegenerate quadratic in the others). The fiberwise
GMF is not well-defined up to homotopy. However, there is a canonical choice called
a “framed function” ([Igu87], [Igu02], [Igu05]) which exists stably and is unique
up to framed fiber homotopy. This gives the following.

Theorem 4.1. Any compact smooth manifold bundle E → B gives a mapping

C(f) : B → |Wh•(Z[π1E], π1E)|
which is well-defined up to homotopy and fiber homotopy equivalent to the fiberwise
total singular complex of E with coefficients in Z[π1E].

Remark 4.2. The fiberwise total singular complex of E is the functor which assigns
to each simplex σ : ∆k → B, the total singular complex of E|σ. The fiberwise framed
function f is defined on a product space E ×DN .
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In order to compare the two constructions we need a representation

ρ : π1E → U(R)

of π1E into the group of units of R with respect to which the fiber homology
H∗(Mb;R) is projective over R. By the functorial properties of the Whitehead cat-
egory we get a mapping

B → |Wh•(R, G)|
where G ⊆ U(R) is the image of ρ. By Theorem 4.1, this will be fiberwise homotopy
equivalent to the A∞ fiberwise homology functor Φ1 + ψ. The fiberwise mapping
cone will be fiberwise contractible but it will not give a mapping to Whh

•(R, G)
unless the fiberwise homology has a basis. This gives the following.

Corollary 4.3. If π1B acts trivially on the fiberwise homology H∗(Mb; R) then a
fiberwise mapping cone construction gives a mapping

C(C(f)) : B → |Whh
•(R, G)|

which is well-defined up to homotopy.

Remark 4.4. A more precise statement is that we take the direct sum of the
fiberwise mapping cone with a fixed contractible projective R-complex P∗ with the
property that H∗(Mb; R)⊕ P∗ is free in every degree.

When R = Q, the construction of higher FR torsion extends to the case then π1B
acts unipotently on H∗(M ;Q) by which we mean that H∗(M ;Q) admits a filtration
by π1B submodules so that the action of π1B on the successive subquotients is
trivial.

Corollary 4.5. Suppose that E → B is a compact smooth manifold bundle over
a connected space B so that π1B acts unipotently on the rational homology of the
fiber M . Then we have a mapping

B → |Whh
•(Q, 1)|

which is well-defined up to homotopy and we can pull back universal higher torsion
invariants to obtain well-defined cohomology classes

τ2k(E) ∈ H4k(B;R)

which are trivial if the bundle is diffeomorphic to a product bundle.

It has been known for many years (by [FH78] using the stability theorem
[Igu88]) that there are smooth bundles which are homeomorphic but not diffeomor-
phic to product bundles and that these exotic smooth structures are detected by
algebraic K-theory. Therefore, when the higher FR torsion was successfully defined,
it had already been known to be nonzero in these cases.

However, in these exotic examples the fiber M is either odd dimensional or even
dimensional with boundary. We now have the complete calculation of the higher
torsion in the case of closed oriented even dimensional fibers.
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Theorem 4.6 (6.6 in [Igu05]). Suppose that M2n is a closed oriented even dimen-
sional manifold and M → E → B is a smooth bundle so that π1B acts unipotently
on the rational homology of M . Then the higher FR torsion invariants τ2k(E) are
well-defined and given by

τ2k(E) =
1
2
(−1)kζ(2k + 1)

1
(2k)!

T2k(E) ∈ H4k(B;R)

where ζ(s) =
∑

1
ns is the Riemann zeta function and

T2k(E) = trE
B

(
(2k)!

2
ch2k(T vE ⊗ C)

)
∈ H4k(B;Z)

with T vE being the vertical tangent bundle of E, ch2k(T vE ⊗ C) stands for the
degree 4k term in the Chern character of T vE ⊗ C and

trE
B : Hn(E;Z) → Hn(B;Z)

is the transfer (with n = 4k).

Remark 4.7. Note that T2k(E) is a tangential fiber homotopy invariant. This is
in keeping with the belief that there are rationally no stable exotic smooth struc-
tures on bundles with closed oriented even dimensional fibers. (Stable means stable
under product with large dimensional disks DN . The exotic smooth structure on
disk bundles and odd dimensional sphere bundles of [FH78] and the explicit exam-
ples given by Hatcher ([Igu02],[Goe01]) are stable.) For more details about this
conjecture see [GI10]. In that paper we construct virtually all stable exotic smooth
structures on bundles with closed odd dimensional fibers and explain why the even
dimensional case is so different. See also [Igu08] and [Goe08] for an outline of
those results.

In the special case when n = 1, M is an oriented surface and the bundle E
is classified by a map of B into the classifying space BTg of the Torelli group Tg

where g is the genus of M . The tangential homotopy invariant T2k is equal to the
Miller-Morita-Mumford class in this case ([Mum83], [Mor84], [Mil86]). It is still
unknown whether or not any of these classes (tautological classes in degree 4k) is
rationally nontrivial on the Torelli group.

There are several competing versions of higher FR torsion and the version de-
scribed here is sometimes called Igusa-Klein (IK) torsion since the first compu-
tation was given in [IK93]. Dwyer, Weiss and Williams have defined three kinds
of higher Reidemeister which are called smooth, topological and homotopy DWW
torsion [DWW03]. Badzioch, Dorabiala, Klein and Williams have recently shown
[BDKW09] that smooth DWW torsion is equivalent to IK torsion, making use of
the axiomatic characterization of higher torsion given in [Igu08b].

Bismut and Lott [BL95] have defined higher analytic torsion invariants which
have been computed in many cases ([BL97], [BG01], [Bun00], [Ma97], [Goe01]).
In the case of closed oriented even dimensional fibers, the analytic torsion is always
zero and Goette has now shown that the expression in Theorem 4.6 gives the dif-
ference between BL torsion and IK torsion in all cases. (See the survey article
[Goe08].)
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Higher analytic torsion is defined using flat Z-graded superconnections. It was
observed by Goette [Goe01] that these are infinitesimal twisting cochains or, as he
puts it, that twisting cochains are combinatorial superconnections. We will explain
this comment.

5. Flat superconnections

When we review the definition of a flat Z-graded superconnection, we will see
that it is the same as an infinitesimal twisting cochain. More precisely, the super-
connection is the boundary map of the infinitesimal twisted tensor product. This
gives one explanation of the supercommutator rules.

Instead of defining superconnections and showing their relationship to twisting
cochains we will take the opposite approach. We ask the question: What is the
natural definition of an “infinitesimal twisting cochain?” This question will lead us
to the definition of a flat superconnection and we will see that the “superconnection
complex” (Ω(B, V ), D) is dual to a twisted tensor product.

Suppose that B is a smooth manifold and C =
⊕

n>0 Cn is a nonnegatively
graded complex vector bundle over B. Suppose we have a graded flat connection
∇ on C making each Cn into a locally constant coefficient sheaf for the twisting
cochain that we want. The example that we keep in mind is when C is the fiberwise
homology of a smooth manifold bundle F → E

p−→ B. By this we mean the graded
vector bundle over B whose fiber over b ∈ B is the homology of p−1(b). The dual
bundle

C∗ :=
⊕

n>0

Hom(Cn,C)

is the fiberwise cohomology bundle H∗(F ) → C∗ → B.
Now, imagine that B is subdivided into tiny simplices and we have a twisting

cochain on B with coefficients in (C,∇) which satisfies smoothness conditions to be
added later. Then, at each vertex v we have a degree −1 endomorphism ψ0(v) of
C(v). This gives a degree 1 endomorphism A0 = ψ∗0 of the dual C∗(v). Suppose we
can extend this to a smooth family of such maps

A0 ∈ Ω0(B, End(C∗)) = Ω0(B, End(C)op)

so that A0(x) has degree 1 and square zero (A0(x)2 = 0) at all x ∈ B.
Next, we take the edges of B. If an edge e goes from v0 to v1 the twisting cochain

gives us a degree 0 map

C(v0)
ψ1(e)←−−− C(v1)

so that ψ1(e) together with the map (parallel transport) given by the flat connection
∇ is a chain map. This chain map is the parallel transport of a non-flat connection
∇1 which we now describe.

If we dualize ψ1(e) and take only the linear term (ignoring ∆v2 terms) we get
a degree 0 map A1(∆v) : C∗(v0) → C∗(v1) which is linear in ∆v. To obtain the
smooth version we need to take local coordinates for C so that parallel transport of
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∇ is constant, i.e., so that, on C∗, ∇∗ = d. Then A1 becomes a matrix 1-form on
B (assuming the twisting cochain is smooth in a suitable sense)

A1 ∈ Ω1(B, End(C∗))

so that parallel transport by the new connection ∇1 = d − A1 on C∗ keeps A0

invariant. (The change in sign comes from the fact that parallel transport by d−A1

is given infinitesimally by I + A1(∆v) where A1(∆v) is evaluation of the matrix
1-form A1 on the vector ∆v.) This means that

[∇1, A0] = [d−A1, A0] = 0

dA0 = [A1, A0] = A1A0 + A0A1.

We interpret this as an approximately commutative diagram:

C∗(v0)
I+A1(∆v)−−−−−−−→ C∗(v1)

A0

x
xA0+∆A0

C∗(v0)
I+A1(∆v)−−−−−−−→ C∗(v1)

Higher order terms are needed to make the diagram actually commute. The linear
terms give the following approximate equation:

∆A0
∼= A1(∆v)A0 −A0A1(∆v)

Since A0 is odd, we get two changes of signs:

∆A0
∼= −dA0(∆v) A1(∆v)A0 = −(A1A0)(∆v)

As ∆v → 0 we get the equation dA0 = A1A0 + A0A1 as claimed.
At the next step, we take two small triangles in B forming a rectangle. The

following diagram which commutes up to homotopy by ψ∗2 = A2 indicates what is
happening. Here A1 = Ax

1dx + Ay
1dy where Ax

1 , Ay
1 are (even) matrix 0-forms and

Ax
1∆x indicates multiplication by the scalar quantity ∆x.

C∗(v′1)
I+Ax

1∆x+∆Ax
1∆x−−−−−−−−−−−−→ C∗(v2)

I+Ay
1∆y

x
xI+Ay

1∆y+∆Ay
1∆y

C∗(v0)
I+Ax

1∆x−−−−−−−−−−→ C∗(v1)

This gives the following approximate equation where ∆x, ∆y are scalar quantities
and ∆vx, ∆vy are the corresponding vector quantities giving our rectangle in B.

(A0A2 + A2A0)(∆vx, ∆vy) ∼= Ay
1∆y + ∆Ay

1∆yAx
1∆x−Ax

1∆x + ∆Ax
1∆xAy

1∆y

∼= Ay
1A

x
1∆x∆y +

∂Ay
1

∂x
∆x∆y −Ax

1Ay
1∆x∆y − ∂Ax

1

∂y
∆x∆y

Since Ax
1 , Ay

1 are even, the right hand side can be written as
(
dA1 −A2

1

)
(∆vx, ∆vy)
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In other words, we have
A2 ∈ Ω2(B, End(C∗))

satisfying the equation
dA1 = A0A2 + A2

1 + A2A0.

In general we will require that

dAn−1 =
∑

p+q=n

ApAq.

(See [Igu09] for a full explanation.) This leads to the following definition.

Definition 5.1. An infinitesimal twisting cochain on B with coefficients in a graded
vector bundle C∗ with graded flat connection ∇ (∇ =

∑∇k where (−1)k∇k is a
flat connection on Ck) is equal to a sequence of End(C∗)-valued forms

Ap ∈ Ωp(B, End1−p(C∗)) = Ω0(B, End1−p(C∗))⊗Ω0(B) Ωp(B)

of total degree 1 so that

∇An−1 =
∑

p+q=n

ApAq. (9)

Next we pass to the algebra of operators on Ω(B,C∗) where we carefully distin-
guish between differential forms A and the operators Ã that they define to arrive
at the Bismut-Lott definition of a flat Z-grade superconnection.

6. Forms as operators

If A ∈ Ω(B, End(C∗)) is written as A =
∑

ϕi ⊗ αi with fixed total degree
|A| = |ϕi|+ |αi|, let Ã be the linear operator on

Ω(B, C∗) = Ω0(B, C∗)⊗Ω0(B) Ω(B)

given by

Ã(c⊗ γ) :=
∑

i

(−1)|c|·|αi|ϕi(c)⊗ αi ∧ γ (10)

Proposition 6.1 (Prop. 1 in [Qui85]). If ω ∈ Ωk(B) then

Ã ◦ ω = (−1)k|A|ω ◦ Ã.

Conversely, any linear operator on Ω(B, C∗) of fixed total degree having this property
is equal to Ã for a unique A ∈ Ω(B, End(C∗)).

Proof. Since Ã acts only on the first tensor factor we get

Ã ◦ ω = Ãω = (−1)k|A|ω̃A = (−1)k|A|ω ◦ Ã

as required. Conversely, any linear operator which is Ω(B)-linear in this sense must
be “local” and thus we may restrict to a coordinate chart U over which C∗ has a
basis of sections. This makes Ω(U,C∗|U) into a free module over Ω(U). Thus any
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Ω(U)-linear operator is uniquely given by Ã where A ∈ Ω(U,End(C∗|U)) is given
by the value of the operator on the basis of sections of C∗|U . We can patch these
together on intersections of coordinate charts since, by uniqueness, the differential
forms defined using different coordinate charts will agree.

Here is another straightforward calculation.

Proposition 6.2. [d, Ã] = d ◦ Ã− (−1)|A|Ã ◦ d = d̃A.

If A′ is another End(C∗) valued form on B then ÃA′ = Ã ◦ Ã′. So

[d, Ãn−1] = d̃An−1 =
∑

p+q=n

Ãp ◦ Ãq

which, in coordinate free notation, is

[∇, Ã] = Ã ◦ Ã

Since |A| = 1 and ∇2 = 0, we get

(∇− Ã)2 = (∇− Ã) ◦ (∇− Ã) = 0.

This leads to the following definition due to Bismut and Lott [BL95]. (A similar
definition appeared in [Che75].)

Definition 6.3. Let V =
⊕

n>0 V n be a graded complex vector bundle over a
smooth manifold B. Then a superconnection on V is defined to be a linear operator
D on Ω(B, V ) of total degree 1 so that

Dα = dα + (−1)|α|αD

for all α ∈ Ω(B). The superconnection D is called flat if

D2 = 0.

If D is flat then (Ω(B, V ), D) is a chain complex which we call the superconnection
complex. We will see later that it is homotopy equivalent to the dual of a twisted
tensor product. The superconnection complex is bigraded:

Ω(B, V ) =
⊕

Ωp(B, V q)

and the superconnection D has terms of degree (k, 1 − k) for k > 0. This gives a
spectral sequence in the usual way with Ep,q

1 = Ωp(B, Hq(V,A0)) and

Ep,q
2 = Hp(B; Hq(V,A0)) ⇒ Hp+q(Ω(B, V ), D)

A flat superconnections on V corresponds to a contravariant A∞ functor on B.
To get a twisting cochain we need an ordinary graded flat connection ∇ on V . Then
D −∇ gives a twisting cochain by reversing the above process.

The first step is to get out of the superalgebra framework by writing D as a sum

D = ∇− Ã = ∇− Ã0 − Ã1 − Ã2 − · · ·
where Ap ∈ Ωp(B, End1−p(V )) corresponds to Ãp by (10) and satisfies (9).
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Next, we obtain a contravariant twisting cochain on the category of smooth
simplices in B with coefficients in the category of cochain complexes by iterated
integration of A∗. Then we dualize, relying on Proposition 1.3 to recover the original
twisting cochain.

7. Chen’s iterated integrals

This section gives a very short discussion and proof of the first two steps in the
process of integrating a flat superconnection to obtain a twisting cochain. Details
are fully explained in [Igu09] although the original idea is contained in Chen’s
work [Che73], [Che75], [Che77]. A more direct, less computational method of
constructing the twisting cochain is explained in the next section.

Since ∇ is a flat connection, we can choose local coordinates so that V is a
trivial bundle and ∇ = d. Starting with p = 0 we note that A0(x) is a degree 1
endomorphism of Vx with A0(x)2 = 0 making C(x) = (Vx, A0(x)) into a cochain
complex for all x ∈ B. Putting n = 2 in (9) we see that the curvature (d−A1)2 of
the connection d−A1 is null homotopic. Also we will see that parallel transport of
this connection is a cochain map.

It is well-known that the parallel transport Φ1 associated to the connection d−A1

on V is given by an iterated integral of the matrix 1-form A1. Given any piecewise
smooth path γ : [0, 1] → B, parallel transport is the family of degree zero homo-
morphisms Φ1(t, s) : C(γ(s)) → C(γ(t)) so that Φ1(s, s) = I = idV and d−A1 = 0,
i.e.,

∂

∂t
Φ1(t, s) = A1/tΦ1(t, s)

∂

∂s
Φ1(t, s) = −Φ1(t, s)A1/s

where A1/t = A1(γ(t))(γ′) ∈ End(C(γ(t))). The solution is given by Chen’s iterated
integral [Che77]:

Φ1(s0, s1) = I +
∫

s0>t>s1

dt1A1/t +
∫

s0>t1>t2>s1

dt1dt2(A1/t1)(A1/t2)

+
∫

s0>t1>t2>t3>s1

dt1dt2dt3(A1/t1)(A1/t2)(A1/t3) + · · ·

which we abbreviate as:

Φ1(s0, s1) = I +
∫

γ

A1 +
∫

γ

(A1)2 +
∫

γ

(A1)3 + · · · .

This can also be written as a limit of products (multiplied right to left)

Φ1 = lim
∆t→0

∏
(I + (A1/ti)∆t)

In the case when A1 is constant, parallel transport C(γ(0)) → C(γ(1)) is given by
eA1 . The inverse is given by Φ1(0, 1) = e−A1 .
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Proposition 7.1. A0(γ(t))Φ1(t, s) = Φ1(t, s)A0(γ(s)), i.e., Φ1(t, s) gives a cochain
map

C(γ(t)) ← C(γ(s)).

Proof. By (9) we have:

− d

dt
A0(γ(t)) = dA0(γ(t))(γ′) = A0(γ(t))A1/t− (A1/t)A0(γ(t))

where both negative signs come from the fact that A0 is odd. So, X(t) =
A0(γ(t))Φ1(t, s) is the unique solution of the differential equation

∂

∂t
X(t) = (A1/t)X(t)

with initial condition X(s) = A0(γ(s)). So, X(t) must also be equal to the other
solution of this differential equation which is X(t) = Φ1(t, s)A0(γ(s)).

Let
∆2 = {(x, y) ∈ R2 | 1 > x > y > 0}

and suppose that σ : ∆2 → B is a smooth simplex with vertices v0 = σ(0, 0), v1 =
σ(1, 0), v2 = σ(1, 1) ∈ B. Then a chain homotopy

Φ1(v0, v2) ' Φ1(v0, v1)Φ1(v1, v2)

can be obtained by an iterated integral of the form

ψ2(σ) =
∫

σ

A2 +
∫

σ

A2A1 +
∫

σ

A1A2 +
∫

σ

A2A1A1 +
∫

σ

A1A2A1 + · · · .

The integral over σ is the double integral of the pull-back to ∆2. The factors of
A1 will just give the parallel transport Φ1 along paths connecting v0 and v2 to the
point v = σ(x, y)

ψ2(σ) =
∫

1>x>y>0

σ∗(Φ1(v0, v)A2(v)Φ1(v, v2)) ∈ Hom(C(v2), C(v0))

where Φ1(v0, v),Φ1(v, v2) are given by parallel transport along paths given by two
straight lines each as shown in the Figure.

Φ1(v, v2) = Φ1(v, σ(x, x))Φ1(σ(x, x), v2)

Φ1(v0, v) = Φ1(v0, σ(x, 0))Φ1(σ(x, 0), v).

Proposition 7.2. A0(v0)ψ2(σ) + ψ2(σ)A0(v2) = Φ1(v0, v2)− Φ1(v0, v1)Φ1(v1, v2).

Proof. For x ∈ [0, 1] let Φ(x) be the parallel transport of d − A1 along the three
segment path:

Φ(x) = Φ1(v0, σ(x, 0))Φ1(σ(x, 0), σ(x, x))Φ1(σ(x, x), v2).

Then
Φ(0) = Φ1(v0, v2)
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Figure 1: Φ1(v0, v), Φ1(v, v2) are parallel transport along dark lines.

v = σ(x, y)

v0
σ(x, 0)

s

s

s

s

s

s

σ(x, x)

v2

v1

Φ(1) = Φ1(v0, v1)Φ1(v1, v2).

So the right hand side of the formula we are proving is

Φ(0)− Φ(1) = −
∫ 1

0

dΦ(x). (11)

By Proposition 7.1 the left hand side is equal to
∫

σ

Φ1(v0, v)[A0(v)A2(v) + A2(v)A0(v)]Φ1(v, v2)

(The sign in front of A2(v)A0(v) is (−1)2 = +1 since the form degree of A2 is 2.)
By (9) this is equal to

=
∫

σ

Φ1(v0, v)[−A1(v)A1(v) + dA1(v)]Φ1(v, v2) (12)

In (11), we have

−dΦ(x)
dx

= Φ1(v0, σ(x, 0))X(x)Φ1(σ1(x, x), v2)

where

X(x) = Ax
1Φ1(σ(x, 0), σ(x, x))− d

dx
Φ1(σ(x, 0), σ(x, x))− Φ1(σ(x, 0), σ(x, x))Ax

1

using the notation σ∗(A1) = Ax
1dx + Ay

1dy. (The term Φ1(σ(x, 0), σ(x, x))Ay
1 which

occurred with positive sign in the second term and negative sign in the third term
was cancelled.) Comparing this to (12) we are reduced to showing that X(x) = Y (x)
where

Y (x) =
∫

06y6z

dy Φ1(σ(x, 0), v)
(
−Ax

1Ay
1 + Ay

1A
x
1 +

∂Ay
1

∂x
− ∂Ax

1

∂y

)
Φ1(v, σ(x, x)).

Expressing Φ1(σ(x, 0), σ(x, x)) as an iterated integral of Ay
1dy we see that the

second term of X(x) is equal to the third term of Y (x) (with ∂Ay
1

∂x ). The negative
sign comes from the fact that we are going backwards along the y direction (dt =
−dy). The other three terms of Y (x) form the commutator of Ax

1 with each factor
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A1/dt = −Ay
1 in the iterated integral representation of Φ1(σ(x, 0), σ(x, x)). This

can be more easily seen in the product limit form:

Φ1(σ(x, 0), σ(x, x)) = lim
n →∞

∆y = x/n

n∏
1

(I −Ay
1∆y)

The commutator of Ax
1 with I −Ay

1∆y is:

Ax
1(I−Ay

1∆y)− (I−Ay
1∆y)(Ax

1 +∆yAx
1) = −Ax

1Ay
1∆y +Ay

1∆yAx
1 −∆yAx

1 + o(∆y)

So, the commutator of Ax
1 with Φ1(σ(x, 0), σ(x, x)) is

Ax
1Φ1−Φ1A

x
1 = lim

∆y→0

∑

i

i−1∏
1

(I−Ay
1∆y) [−Ax

1Ay
1∆y+Ay

1∆yAx
1−∆yAx

1 ]
n∏

i+1

(I−Ay
1∆y)

So, the sum of the remaining two terms of X(x) is equal to the sum of the remaining
three terms of Y (x) and we conclude that X(x) = Y (x) proving the proposition.

The construction that we just explained in detail is a special case of a construction
outlined by Chen in [Che73], sec. 4.5. Chen constructs mappings

θ(n) : In−1 → P (∆n, vn, v0)

from the n − 1 cube In−1 to the space P (∆n, vn, v0) of smooth paths in ∆n from
vn to v0 by smoothing a piecewise linear construction very similar to the one we
explained. When n = 2, this is the 1-parameter family of paths in ∆2 given in
Figure 1 above. The main conceptual difference between Chen’s construction and
ours is that Chen follows this mapping with a smooth mapping of the n simplex
into the space B which sends all vertices of ∆n to the base point of B. He uses this
to obtain a cubical chain complex for ΩB.

A very longwinded description of the higher steps in this process of converting
a flat superconnection into a simplicial twisting cochain can be found in [Igu09]
which uses much of Chen’s notation to allow for comparison and to make it easier
to understand Chen’s work.

In the last section of this paper we will show how the entire process can be done
in an easier way.

8. Another method

There is another method for constructing a simplicial twisting cochain from a
flat connection. We assume that B is compact and we choose a finite “good cover”
for B. (See [BT82].) This is a covering of B by contractible open sets U so that all
nonempty intersections

Uα1 ∩ Uα2 ∩ · · · ∩ Uαn

are also contractible.
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Lemma 8.1. If U is a contractible open subset of B and D is a flat superconnection
on a graded vector bundle V over B then the cohomology of the superconnection
complex over U is isomorphic to the cohomology of V using A0 as differential:

Hn(Ω(U, V |U), D) ∼= Hn(V,A0)

where the isomorphism is given by restriction to any point in U .

Proof. The spectral sequence collapses since its E2-term is Hp(U ; Hq(V )).

This lemma implies that

F : U 7→ (Ω(U, V |U), D)

is a functor from the nerve N•U of the good cover U of B to the category of cochain
complexes over C and cochain homotopy equivalences. Applying the A∞ cohomol-
ogy functor we get a contravariant A∞ functor H∗F on N•U . By Proposition 1.3
we can dualize to get a covariant A∞ functor Φ1 + ψ on N•U with coefficients in
(Φ,Φ1) = (V ∗,∇∗). Subtracting Φ1 = ∇∗ we get the twisting cochain ψ satisfying
the following.

Theorem 8.2. The twisted tensor product C∗(N•U)⊗ψ V ∗ is homotopy equivalent
to the dual of the superconnection complex. I.e.,

(Ω(B, V ), D) ' Hom(C∗(N•U)⊗ψ V ∗,C).

Proof. This holds by induction on the number of open sets in the finite good cov-
ering U . When the number is 1 we use Lemma 8.1. To increase the number we use
Mayer-Vietoris.

Remark 8.3. By Ed Brown’s Theorem 2.3 this implies that, if the superconnection
is constructed correctly, the superconnection complex gives the cohomology of the
total space of a smooth manifold bundle. This construction also allows us to compare
flat superconnections with twisting cochains, giving a K-theory difference class with
a well defined higher torsion. But, this is the subject of another paper.
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