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CONNECTIONS AND PARALLEL TRANSPORT

FLORIN DUMITRESCU

(communicated by James Stasheff)

Abstract
In this short note we give an elementary proof of the fact

that connections and their geometric parallel-transport coun-
terpart are equivalent notions.

It is well known that a connection (a.k.a. covariant derivative) on a vector bundle
over a manifold gives rise to a parametrization-independent parallel transport along
(piecewise) smooth paths in the manifold. A converse of this result appears in
the book of Walter Poor [10]. The definition of parallel transport used there is
unnecessarily elaborate. A similar notion, called path-connection, was introduced
by Mackenzie in [9], which characterizes connections by means of path-lifting. In
this note we adopt a more natural definition of parallel transport better suited to the
“field theory” paradigm and show how parallel transport gives rise to connections.
The equivalence of connections and parallel transport for line bundles is proved by
Freed in the appendix B of [4]. In [1] Barrett and in a sightly different approach
Caetano-Picken in [2] show that holonomy characterizes bundles with connections
up to isomorphism. This result was then extended for abelian gerbes with connection
by Mackaay and Picken in [8]. In [11] Schreiber and Waldorf introduce a categorical
notion of parallel transport, called transport functor, and describe bundles with
connections as transport functors by an equivalence of categories. Their language
of transport functors is suitable for higher notions of parallel transport, see [12].
Another (unpublished) proof of the equivalence of connections and parallel transport
is due to Stolz. In a forthcoming paper with Stephan Stolz we will show that vector
bundles with connections over a space M describe 1-dimensional topological field
theories over M .

The applications of this theorem are quite surprising of which we will speak
elsewhere (see [3]). The result is formulated for connections on principal bundles
but the reader can think of vector bundles instead if she prefers.

Let Q be a principal G-bundle over a manifold M , with the fiber G a Lie group.
Recall that a connection on Q is a G-invariant distribution on Q that is complemen-
tary to the canonical vertical distribution determined by the tangent spaces along
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the fibers.
Denote by P(M) the space of (piecewise) smooth paths in M . This is an infinite

dimensional smooth manifold, see for example [6]. For a path γ in M , let i(γ) be
the starting point of γ and e(γ) the ending point of γ. Consider the G-bundle QQ
over M × M , whose fiber at (x, y) ∈ M × M is the space of G-equivariant maps
from Qx to Qy. Consider also the pullback bundle Q of the bundle QQ over M ×M
via the map

P(M) −→ M ×M : γ 7→ (i(γ), e(γ)).

We define a parallel transport map associated to the bundle Q over M to
be a smooth section P of the bundle Q over P(M) that is the identity over constant
paths, it is invariant under the action of the diffeomorphism group of intervals and
is compatible with the diagram:

Q×M Q //

²²

Q

²²
P(M)×M P(M) // P(M).

Here P(M)×M P(M) is the space of pairs of paths (γ1, γ2) such that e(γ1) = i(γ2)
and the horizontal lower map is the juxtaposition-of-paths map. The product Q×M

Q is defined in the expected way and the horizontal upper map is the composition
map. A section P of the bundle Q is called smooth if for each family of paths
parametrized by some (finite dimensional) manifold S, the section P associates a
family of smooth G-equivariant maps parametrized by S; compare [1], Section 2.1.1.

In other words, a parallel transport map P associates smoothly (in families) to
each path γ in M a G-map P (γ) : Qi(γ) → Qe(γ) such that:

1. P (γx) = 1Qx , where γx is a constant map at x ∈ M .
2. (Invariance under reparametrization) P (γ◦α) = P (γ), where α is an orientation-

preserving diffeomorphism of intervals.
3. (Compatibility under juxtaposition) P (γ2 ? γ1) = P (γ2) ◦P (γ1), where γ2 ? γ1

is the juxtaposition of the paths γ1 and γ2.
Then we prove:

Theorem 1. There is a natural 1-1 correspondence:

{
Connections

on Q over M

}
↔

{
Parallel-transport maps
associated to Q over M

}

Proof. It is well known how a connection gives rise to parallel transport, see for
example [7]. We only need to show how a parallel transport map P associated to
the bundle Q over M produces a connection.

Let us begin by remarking that a parallel transport map allows us to lift paths in
the manifold M to paths in the bundle Q. More precisely, let p ∈ Q and denote by
x its projection on M , via the bundle projection map π : Q → M . Let P(M ; 0, x)
be the space of smooth paths α in M defined on a fixed (this is not a restriction on
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our further choices) interval I containing 0 such that α(0) = x, and let P(Q; 0, p)
be defined similarly. These path spaces are infinite dimensional smooth manifolds;
a tangent vector to a path α in, say, P(M ; 0, x) is a vector field v along α in M , i.e.
v(t) ∈ Tα(t)M . Then the parallel transport map P defines a smooth map

Φp : P(M ; 0, x) −→ P(Q; 0, p)

in an obvious way: if α : I → M is a path in M , define Φp(α) : I → Q by
t 7→ P (α|t)(p), where α|t is the restriction of α to the interval [0, t] (or [t, 0] if
t < 0). In the following lemma we denote Φp by Φ to simplify notation, and use the
dot notation for derivative.

Lemma 2. Let α, β ∈ P(M ; 0, x) such that α̇(0) = β̇(0) = v ∈ TxM . Then
˙̃

Φ(α)(0) =
˙̃

Φ(β)(0).

Proof of Lemma. Let αε : I → M : t 7→ α(εt), 0 6 ε 6 1. Then {αε}ε is a curve in
P(M ; 0, x) joining cx, the constant path at x ∈ M , with the path α. Then

d

dε

∣∣∣
ε=0

αε(t) =
d

dε

∣∣∣
ε=0

α(εt) = tα̇(0) = tv.

So d
dε

∣∣
ε=0

αε = {t 7→ tv} ∈ TcxP(M ; 0, x). Then the differential of Φ applied to this
tangent vector at cx is

Φ∗cx(t 7→ tv) =
{

t 7→ d

dε

∣∣∣
ε=0

Φ(αε)(t) =
d

dε

∣∣∣
ε=0

Φ(α)(εt) = t
˙̃

Φ(α)(0)
}

.

The first equality inside the braces is true since the parallel transport is invariant
under reparametrization. Similarly,

Φ∗cx(t 7→ tv) = {t 7→ t
˙̃

Φ(β)(0)},
whence the lemma.

Because of the lemma, for any tangent vector v ∈ TxM we can define ṽ, its lift

to p ∈ Q, by ṽ =
˙̃

Φ(α)(0) ∈ TpQ, if v = α̇(0), for some α ∈ P(M ; 0, x). Then define

Hp := {ṽ | ṽ is the lift to p of v, for some v ∈ TxM}.
Let us remark that Hp is a linear subspace of the tangent space TpQ of Q at p.
Indeed, if we let

j : TxM → TcxP(M ; 0, x) : v 7→ {t 7→ tv}
be the inclusion of the tangent space to M at x into the tangent space to P(M ; 0, x)
at the constant path cx at x, then Φp

∗(j(TxM)) is the subspace of TcxP(Q; 0, p)
consisting of tangent vectors of the form {t 7→ tṽ} where ṽ is the lift of v, for some
v ∈ TxM , a space which is easily identified with Hp.

Next, let us observe that the G-action on the fibers of the bundle allows us to
define for each group element g ∈ G a map

Rg : P(Q; 0, p) → P(Q; 0, pg)

by right g-translation. It is then clear that

Φpg = Rg ◦ Φp,
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which implies that

Hpg = Rg∗(Hp).

In other words, the collection of spaces {Hp}p∈Q defines a G-invariant distribution
on the manifold Q. It is also complementary to the vertical distribution on Q, i.e.

Hp ⊕ Vp = TpQ, for all p ∈ Q,

where Vp is the tangent space along the fiber at p ∈ Q. This is true since π∗Hp =
TxM on one side, and vertical vectors cannot be lifts of tangent vectors on the base,
on the other side. The distribution H = {Hp}p∈Q therefore defines a connection on
the bundle Q, whose parallel transport is clearly the parallel transport map we
started with. The two constructions are inverses of each other and this ends the
proof.

A homotopy-invariant parallel transport map associated to Q over M is a par-
allel transport map P which is invariant under homotopies of paths via smooth
deformations with fixed endpoints. As a consequence of the theorem, we obtain the
following:

Corollary 3. There is a natural 1-1 correspondence:
{

Flat connections
on Q over M

}
↔

{
homotopy-invariant parallel transport

maps associated to Q over M

}

Proof. It is well-known that a bundle with flat connection gives rise to a par-
allel transport map that is homotopy-invariant. Conversely, given such a parallel-
transport map P associated to the bundle Q over M , by the previous theorem, there
is a connection on Q over M whose parallel transport is given by P . The curvature
of such a connection is zero, since its parallel transport map is homotopy-invariant
(see for example [5], Section 2.6).
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