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Abstract

This paper deals with approximation properties of bivariate sampling Durrmeyer operators for
functions belonging to weighted spaces of functions. After a short preliminaries and auxilary
results we present well-definiteness of (Sζ,ζ

w ). Main results of the paper includes pointwise
and uniform convergence of the family of operators, rate of convergence via bivariate weighted
modulus of continuity and quantitative Voronovskaja type theorem.
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1 Introduction

Whittaker-Kotel’nikov-Shannon (WKS) sampling theorem aims to reconstruct a function from its
sample values and approximate version of WKS sampling theorem was one of the pioneering work
done by P. L. Butzer and his school at RWTH Aachen, in the late 1970s. The generalized sampling
series, in univariate case, defined in [20], is given by

(Gχ
wf) (x) =

∑
k∈Z

f

(
k

w

)
χ (wx− k) , x ∈ R, w > 0, (1.1)

where f : R → R is any function for which the series is convergent for every x ∈ R, and χ : R → R
(called the kernel of the operator) denotes a continuous, discrete approximate identity which satisfies
suitable assumptions, and its generalized form can be found in [23].

The generalized sampling series has been widely studied since the 1980s ([21, 22, 35]) and also
through the study of the series (1.1), various applications, particularly in signal theory, have been
developed. For example, we quote here, applications to signal theory [35], to box splines [21], to
image processing [15, 10]. Nevertheless, it should be noted that most real-world signals, including
digital images, do not have a mathematical representation as continuous. Since generalized sam-
pling operators are not bounded in L1 (R) spaces, Kantorovich version of the generalized sampling
operators was introduced in [13], by replacing the sample values in (1.1) with the mean values∫ (k+1)/w

k/w
f (u) du of the form:

(Kχ
wf) (x) :=

∑
k∈Z

χ (wx− k)

w (k+1)/w∫
k/w

f (u) du

 , x ∈ R, (1.2)
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where f is a locally integrable function and χ is a kernel function, and its generalized form can be
found in [26]. Kantorovich type sampling operators and their multivariate versions has an exten-
sive working area such as linear prediction [3], image processing [12, 25, 27], inverse approximation
[24, 28], non-linear approximation [42]. While the Kantorovich modification of the operators (1.1)
presents an approximation method for functions belonging to L1, the approximation method for
functions belonging to Lp spaces is to construct Durrmeyer modification according to [32]. Dur-
rmeyer modification of (1.1) was introduced in [14], using a general convolution integral instead of
the integral means, by

(
Sζ,ζ
w f

)
(x) =

+∞∑
k=−∞

ζ (wx− k)w

∫
R

ζ (wu− k) f (u) du, x ∈ R, (1.3)

where ζ is a kernel function which satisfies suitable conditions and its generalized form can be found
in [18]. The sampling Durrmeyer operators have been studied in several works, for some of them
we refer the readers to [29, 30, 31, 16].

Among the all mentioned sampling type operators above, there is an important version of
generalized sampling operators named exponential type sampling operators, firstly introduced by
Bardaro et al. in [17] and they have been studied by many researchers, see [19, 40, 6, 7, 41].

In the context of studying generalized sampling series (1.1) in continuous function spaces, the
focus is usually on the space C0 (R), which consists of uniformly continuous and bounded functions
on R. However, in a recent paper [4], the authors investigated polynomial weighted spaces of contin-
uous functions to enlarge the space of target functions and explore the approximation behaviors of
generalized sampling series in a broader class of continuous functions, and for bivariate generalized
sampling series in similar context see [8]. The similar approach was taken for generalized sam-
pling Kantorovich series in [5], for generalized sampling Durrmeyer series in [9] and for generalized
exponential sampling type series in [11].

In this paper, we study bivariate generalized sampling Durrmeyer series defined by(
Sζ,ζ
w f

)
(x1, x2) :=

∑
(k1,k2)∈Z2

ζ (w (x1, x2)− (k1, k2))w
2

∫
R2

ζ (w (u1, u2)− (k1, k2)) f (u1, u2) du1u2

(1.4)
for functions that belong to the polynomial weighted space of bivariate continuous functions, suit-
able kernel functions ζ and w > 0. We state some notations and auxilary results in Section 2.
Main results begin with the well definiteness of

(
Sζ,ζ
w

)
which is given in Section 3. We continue

with pointwise and uniform convergence in Section 4 and present rate of convergence of
(
Sζ,ζ
w

)
in

Section 5. At the end we illustrate a quantitative Voronovskaja type theorem and corresponding
to this theorem a qualitative form of Voronovskaja type theorem.

2 Preliminaries

Let us denote by N2,N2
0 and Z2 the sets of vectors k = (k1, k2) positive integers, non-negative

integers and integers, respectively. We set |k| := k1 + k2. Furthermore, by R2 we will denote the
2−dimensional Euclidean space consisting of all vectors (x1, x2) ∈ R2 .

Let x = (x1, x2) , y = (y1, y2). We say that x > y if and only if xi > yi for i = 1, 2 and we will

denote by 0 := (0, 0) and by R2
+ the space of all vectors x > 0. Given x, y ∈ R2 and λ ∈ R the

usual operations are given by
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x + y := (x1 + y1, x2 + y2) ,

and
λx := (λx1, λx2) .

We will put by ⟨x⟩ = x1x2 and we write k! = k1!k2!. Moreover, the product and division of two
vectors of R2 are given by

xy := (x1y1, x2y2) ,

and
x

y
:=

(
x1

y1
,
x2

y2

)
, (yi ̸= 0 for all i = 1, 2) .

The norm of a vector x := (x1, x2) ∈ R2 is given by ∥x∥ = ∥(x1, x2)∥ :=
√

x2
1 + x2

2, and the
Euclidean distance is d

(
x, y

)
:= ∥x− y∥ for x, y ∈ R2.

A function ρ̃ is called a weight function if it is a positive continuous function on the whole R2.
In this paper, we consider the weight function

ρ̃ (x, y) :=
1

1 + x2 + y2
, x, y ∈ R.

We denote the space of functions whose product with the weight function ρ̃ on R2 is bounded by
Bρ̃

(
R2

)
, that is,

Bρ̃

(
R2

)
=

{
f : R2 → R : sup

x,y∈R
ρ̃ (x, y) |f (x, y)| ∈ R

}
.

We denote the space of continuous function on the whole R2 by C0
(
R2

)
. We can also consider the

following natural subspaces of Bρ̃

(
R2

)
:

Cρ̃

(
R2

)
:=C0

(
R2

)
∩Bρ̃

(
R2

)
,

C∗
ρ̃

(
R2

)
:=

{
f ∈ Cρ̃

(
R2

)
: ∃ lim

∥(x,y)∥→±∞
ρ̃ (x, y) f (x, y) ∈ R

}
,

Uρ̃

(
R2

)
:=

{
f ∈ C∼

w

(
R2

)
: ρ̃f is uniformly continuous

}
.

The linear space of functions Bρ̃

(
R2

)
, and its above subspaces are normed spaces with the norm

∥f∥ρ̃ := sup
x,y∈R

ρ̃ (x, y) |f (x, y)|

see [1, 2, 33, 34, 36].
In Section 5 we aim to study rate of convergence of the operators Sζ,ζ

w . To follow this aim
we mention the weighted modulus of continuity for bivariate functions. It was defined in [38] for
f ∈ C∗

w̃

(
R2

)
by

Ω (f ; δ1, δ2) = sup
|u|<δ1,|v|<δ2

(x,y)∈R2

|f(x+ u, y + v)− f(x, y)|
(1 + u2 + v2) (1 + x2 + y2)

. (2.1)
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The weighted modulus of continuity has following properties (as in one dimensional case):

Ω (f ; δ1, δ2) → 0 for δ1 → 0, δ2 → 0 (2.2)

and for λ1 > 0, λ2 > 0,

Ω (f ;λ1δ1, λ2δ2) ≤ 4 (1 + λ1) (1 + λ2)
(
1 + δ21

) (
1 + δ22

)
Ω (f, δ1, δ2) . (2.3)

To get more information about bivariate weighted modulus of continuity, we direct readers to see
[37, 38]. Here, we present an auxiliary result that will be utilized in the following section.

Remark 2.1 ([8]). In the inequality (2.3) if we replace λ1 = |x2−x1|
δ1

, λ2 = |y2−y1|
δ2

, (x1, y1) ∈
R2, (x2, y2) ∈ R2, δ1, δ2 > 0 and consider the definition of the weighted modulus of continuity, the
inequality

|f (x2, y2)− f (x1, y1)|

≤16
(
1 + δ21

)2 (
1 + δ22

)2 (
1 + x2

1 + y21
)
Ω (f ; δ1, δ2)

[
1 +

|y2 − y1|3

δ32
+

|x2 − x1|3

δ31
+

|y2 − y1|3

δ32

|x2 − x1|3

δ31

]
.

holds. Finally we obtain

|f (x2, y2)− f (x1, y1)|

≤256
(
1 + x2

1 + y21
)
Ω (f ; δ1, δ2)

[
1 +

|y2 − y1|3

δ32
+

|x2 − x1|3

δ31
+

|y2 − y1|3

δ32

|x2 − x1|3

δ31

]
(2.4)

with the choice of δ1 ≤ 1 and δ2 ≤ 1.

Let ζ be a function belonging to L1
(
R2

)
, such that ζ is bounded in a neighborhood of the

origin, and satisfies ∑
(k1,k2)∈Z2

ζ ((u1, u2)− (k1, k2)) = 1, for every (u1, u2) ∈ R2 (2.5)

and ∫
R2

ζ (u1, u2) du1du2 = 1. (2.6)

We recall that for any j ≥ 0, the discrete and continuous absolute moments of order j are defined
by

Mj (ζ) := sup
(u1,u2)∈R2

∑
(k1,k2)∈Z2

ζ ((u1, u2)− (k1, k2)) ∥(u1, u2)− (k1, k2)∥j

and
∼
M j (ζ) :=

∫
R2

|ζ (u1, u2)| ∥(u1, u2)∥j du1du2,

respectively. Throughout out the paper, ζ will be called kernel if it satisfies the conditions (2.5),

(2.6) such that there exist α, β > 0 with Mj (ζ) < +∞ and
∼
M j (ζ) < +∞.
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Lemma 2.2 ([26]). Let ζ be a kernel with some β > 0 and continuous on R2.

1. For every η > 0 there holds:

lim
w→∞

∑
∥(k1,k2)−w(x1,x2)∥>wη

|ζ (w (x1, x2)− (k1, k2))| = 0,

uniformly with respect to (x1, x2) ∈ R2.

2. For every ξ > 0 and ε > 0 there exists a constant C > 0 such that∫
∥(u1,u2)∥>C

w2 |ζ (w (u1, u2)− (k1, k2))| du1du2 < ε,

for sufficiently large w > 0 and (k1, k2) such that ∥(k1, k2)∥ ≤ ξw.

3 Well definiteness of the operators Sζ,ζ
w

Proposition 3.1. Let ζ be kernel with α = β = 2. Moreover, we denote by p (x1, x2) :=
1

ρ̃(x1,x2)
=

1 + x2
1 + x2

2, (x1, x2) ∈ R2. Then∣∣(Sζ,ζ
w p

)
(x1, x2)

∣∣ ≤ M0 (ζ)

(
∼
M0 (ζ) +

2

w2

∼
M2 (ζ)

)
+ 4

∼
M0 (ζ)

(
1

w2
M2 (ζ) +M0 (ζ) ∥(x1, x2)∥2

)
holds.

Proof. Using definition of the operators Sζ,ζ
w we have∣∣(Sζ,ζ

w p
)
(x1, x2)

∣∣
≤

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1, k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))|
(
1 + u2

1 + u2
2

)
du1du2

:=I1 + I2.

It is easy to see that I1 ≤ M0 (ζ)
∼
M0 (ζ). Let us estimate I2. By simple calculation we get:

I2 =
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))| ∥(u1, u2)∥2 du1du2

=
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|

×
∫
R2

|ζ (w (u1, u2)− (k1, k2))| ∥w (u1, u2)− (k1, k2) + (k1, k2)∥2 du1du2

≤
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|

× 2

∫
R2

|ζ (w (u1, u2)− (k1, k2))|
[
∥w (u1, u2)− (k1, k2)∥2 + ∥(k1, k2)∥2

]
du1du2

≤ 2

w2
M0 (ζ)

∼
M2 (ζ)
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+
2

w2

∼
M0 (ζ)

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))| ∥(k1, k2)− w (x1, x2) + w (x1, x2)∥2

≤ 2

w2
M0 (ζ)

∼
M2 (ζ)

+
4

w2

∼
M0 (ζ)

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|
[
∥(k1, k2)− w (x1, x2)∥2 + ∥w (x1, x2)∥2

]
≤ 2

w2
M0 (ζ)

∼
M2 (ζ) +

4

w2

∼
M0 (ζ)

(
M2 (ζ) + w2M0 (ζ) ∥(x1, x2)∥2

)
.

At the end, by combining estimates I1 and I2 we have∣∣(Sζ,ζ
w p

)
(x1, x2)

∣∣ ≤ M0 (ζ)

(
∼
M0 (ζ) +

2

w2

∼
M2 (ζ)

)
+ 4

∼
M0 (ζ)

(
1

w2
M2 (ζ) +M0 (ζ) ∥(x1, x2)∥2

)
which is desired. q.e.d.

Theorem 3.2. Let ζ be kernel with α = β = 2. Then the inequality∥∥Sζ,ζ
w

∥∥
Bρ̃(R2)→Bρ̃(R2)

≤ M0 (ζ)

(
∼
M0 (ζ) +

2

w2

∼
M2 (ζ)

)
+ 4

∼
M0 (ζ)

(
1

w2
M2 (ζ) +M0 (ζ)

)
holds. In particular, Sζ,ζ

w is a linear operator from Bρ̃

(
R2

)
to Bρ̃

(
R2

)
for any fixed w > 0.

Proof. By using the definition of
(
Sζ,ζ
w f

)
and Proposition 3.1 we have∣∣(Sζ,ζ

w f
)
(x1, x2)

∣∣
≤

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))| |f (u1,u2)| du1du2

=
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))| ρ̃ (x1, x2) |f (u1,u2)| p (x1, x2) du1du2

≤∥f∥ρ̃

[
M0 (ζ)

(
∼
M0 (ζ) +

2

w2

∼
M2 (ζ)

)
+ 4

∼
M0 (ζ)

(
1

w2
M2 (ζ) +M0 (ζ) ∥(x1, x2)∥2

)]
.

If we multiply both sides with ρ̃ (x1, x2), we have

ρ̃ (x1, x2)
∣∣(Sζ,ζ

w f
)
(x1, x2)

∣∣ ≤ ∥f∥ρ̃

[
M0 (ζ)

(
∼
M0 (ζ) +

2

w2

∼
M2 (ζ)

)
+ 4

∼
M0 (ζ)

(
1

w2
M2 (ζ) +M0 (ζ)

)]
.

By assumption, since ζ is a kernel with α = β = 2, we conclude
∥∥Sζ,ζ

w

∥∥
ρ̃
< +∞, that is Sζ,ζ

w f ∈
Bρ̃

(
R2

)
. Now taking supremum over (x1, x2) ∈ R2 and the supremum with respect to f ∈ Bρ̃

(
R2

)
with ∥f∥ ≤ 1 it turns out that∥∥Sζ,ζ

w

∥∥
Bρ̃(R2)→Bρ̃(R2)

≤ M0 (ζ)

(
∼
M0 (ζ) +

2

w2

∼
M2 (ζ)

)
+ 4

∼
M0 (ζ)

(
1

w2
M2 (ζ) +M0 (ζ)

)
which completes the proof. q.e.d.
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4 Convergence of the family of operators Sζ,ζ
w

In this section, we present pointwise and uniform convergence of the sampling Durrmeyer operators
in weighted spaces of bivariate functions.

Theorem 4.1. Let f ∈ Cρ̃

(
R2

)
be fixed and ζ kernel with α = β = 2. Then

lim
w→+∞

(
Sζ,ζ
w f

)
(x1, x2) = f (x1, x2) (4.1)

holds for (x1,x2) ∈ R2. Moreover if f ∈ Uρ̃

(
R2

)
, then

lim
w→+∞

∥∥Sζ,ζ
w f − f

∥∥
ρ̃
= 0. (4.2)

Proof. For all (x1, x2) , (u1, u2) ∈ R2, the inequality

|f (u1, u2)− f (x1, x2)| ≤ ρ̃ (u1, u2) |f (u1, u2)|
∣∣∣∣ 1

ρ̃ (u1, u2)
− 1

ρ̃ (x1, x2)

∣∣∣∣
+

1

ρ̃ (x1, x2)
|ρ̃ (u1, u2) f (u1, u2)− ρ̃ (x1, x2) f (x1, x2)|

holds. By using the above inequality, linearity of
(
Sζ,ζ
w f

)
and definition of kernel we have∣∣(Sζ,ζ

w f
)
(x1, x2)− f (x1, x2)

∣∣
≤

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))| |f (u1, u2)− f (x1, x2)| du1du2

≤
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

×
∫
R2

|ζ (w (u1, u2)− (k1, k2))| ρ̃ (u1, u2) |f (u1, u2)|
∣∣∣∣ 1

ρ̃ (u1, u2)
− 1

ρ̃ (x1, x2)

∣∣∣∣ du1du2

+
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

×
∫
R2

|ζ (w (u1, u2)− (k1, k2))|
1

ρ̃ (x1, x2)
|ρ̃ (u1, u2) f (u1, u2)− ρ̃ (x1, x2) f (x1, x2)| du1du2

=
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

×
∫
R2

|ζ (w (u1, u2)− (k1, k2))| ρ̃ (u1, u2) |f (u1, u2)|
∣∣u2

1 + u2
2 − x2

1 − x2
2

∣∣ du1du2

+
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

×
∫
R2

|ζ (w (u1, u2)− (k1, k2))|
1

ρ̃ (x1, x2)
|ρ̃ (u1, u2) f (u1, u2)− ρ̃ (x1, x2) f (x1, x2)| du1du2

=I1 + I2.
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Firstly, we consider I1. Similar calculation given in [9], we have∣∣u2
1 + u2

2 − x2
1 − x2

2

∣∣
≤ 1

w2

[
|wu1 − k1|2 + |wu1 − k1| |k1 + wx1|+ |k1 − wx1| |wu1 − k1|

+ |k1 − wx1| |k1 + wx1|]

+
1

w2

[
|wu2 − k2|2 + |wu2 − k2| |k2 + wx2|+ |k2 − wx2| |wu2 − k2|

+ |k2 − wx2| |k2 + wx2|] .

(4.3)

Using (4.3) we obtain

I1 ≤∥f∥ρ̃

 ∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|
∫
R2

|ζ (w (u1, u2)− (k1, k2))|
(
|wu1 − k1|2 + |wu2 − k2|2

)
du1du2

+
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))| |k1 + wx1|
∫
R2

|ζ (w (u1, u2)− (k1, k2))| |wu1 − k1| du1du2

+
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))| |k1 − wx1|
∫
R2

|ζ (w (u1, u2)− (k1, k2))| |wu1 − k1| du1du2

+
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))| |k1 − wx1| |k1 + wx1|
∫
R2

|ζ (w (u1, u2)− (k1, k2))| du1du2

+
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))| |k2 + wx2|
∫
R2

|ζ (w (u1, u2)− (k1, k2))| |wu2 − k2| du1du2

+
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))| |k2 − wx2|
∫
R2

|ζ (w (u1, u2)− (k1, k2))| |wu2 − k2| du1du2

+
∑

(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))| |k2 − wx2| |k2 + wx2|
∫
R2

|ζ (w (u1, u2)− (k1, k2))| du1du2


≤
∥f∥ρ̃
w2

[
M0 (ζ)

∼
M2 (ζ) + 4M1 (ζ)

∼
M1 (ζ) + 2wM0 (ζ)

∼
M1 (ζ) [|x1|+ |x2|]

+ 2M2 (ζ)
∼
M0 (ζ) + 2wM1 (ζ)

∼
M0 (ζ) [|x1|+ |x2|]

]
.

Now, we estimate I2 by rewriting it into three parts:

I2 =
1

ρ̃ (x1, x2)

 ∑
∥w(x1,x2)−(k1,k2)∥≤wδ

2

|ζ (w (x1, x2)− (k1,k2))|w2

×
∫

∥w(u1,u2)−(k1,k2)∥≤wδ
2

|ζ (w (u1, u2)− (k1, k2))| |ρ̃ (u1, u2) f (u1, u2)− ρ̃ (x1, x2) f (x1, x2)| du1du2
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+
∑

∥w(x1,x2)−(k1,k2)∥≤wδ
2

|ζ (w (x1, x2)− (k1,k2))|w2

×
∫

∥w(u1,u2)−(k1,k2)∥>wδ
2

|ζ (w (u1, u2)− (k1, k2))| |ρ̃ (u1, u2) f (u1, u2)− ρ̃ (x1, x2) f (x1, x2)| du1du2

+
∑

∥w(x1,x2)−(k1,k2)∥>wδ
2

|ζ (w (x1, x2)− (k1,k2))|w2

×
∫
R2

|ζ (w (u1, u2)− (k1, k2))| |ρ̃ (u1, u2) f (u1, u2)− ρ̃ (x1, x2) f (x1, x2)| du1du2


=

1

ρ̃ (x1, x2)
[I2,1 + I2,2 + I2,3] .

For (u1, u2) ∈ R2 with the property |w (u1, u2)− (k1, k2)| ≤ wδ
2 if we also have |w (x1, x2)− (k1, k2)| ≤

wδ
2 then we have

|(u1, u2)− (x1, x2)| ≤
∣∣∣∣(u1, u2)−

(
k1
w
,
k2
w

)∣∣∣∣+ ∣∣∣∣(k1
w
,
k2
w

)
− (x1, x2)

∣∣∣∣ .
Since ρ̃f ∈ Cρ̃

(
R2

)
, we have I2,1 ≤ εM0 (ζ)

∼
M0 (ζ). For I2,2, taking supremum for (u1, u2) ∈ R2,

we have

I2,2 ≤ 2 ∥f∥ρ̃
∑

∥w(x1,x2)−(k1,k2)∥≤wδ
2

|ζ (w (x1, x2)− (k1,k2))|w2

×
∫

∥w(u1,u2)−(k1,k2)∥>wδ
2

|ζ (w (u1, u2)− (k1, k2))| du1du2

and in view of Lemma 2.2

w2

∫
∥w(u1,u2)−(k1,k2)∥>wδ

2

|ζ (w (u1, u2)− (k1, k2))| du1du2

=

∫
∥(y1,y2)∥>wδ

2

|ζ ((y1, y2))| dy1dy2 → 0 as w → +∞

for sufficiently large w, so, we have

I2,2 ≤ 2 ∥f∥ρ̃ M0 (ζ) ε.

Finally, by Lemma 2.2, since for every η > 0, we have

lim
w→+∞

∑
|w(x1,x2)−(k1,k2)|>η

|ζ (w (x1, x2)− (k1, k2))| = 0
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uniformly with respect to (x1, x2) ∈ R2 we get

I2,3 ≤ 2 ∥f∥ρ̃
∼
M0 (ζ) ε

for sufficiently large w. Hence, combining all obtained estimates we have∣∣(Sζ,ζ
w f

)
(x1, x2)− f (x1, x2)

∣∣ ≤ ∥f∥ρ̃
w2

[
M0 (ζ)

∼
M2 (ζ) + 4M1 (ζ)

∼
M1 (ζ) + 2wM0 (ζ)

∼
M1 (ζ) [|x1|+ |x2|]

+ 2M2 (ζ)
∼
M0 (ζ) + 2wM1 (ζ)

∼
M0 (ζ) [|x1|+ |x2|]

]
+

ε

ρ̃ (x1, x2)

[
M0 (ζ)

∼
M0 (ζ) + 2 ∥f∥ρ̃

(
M0 (ζ) +

∼
M0 (ζ)

)]
.

(4.4)

By taking limit as w → +∞ we get (4.1). Let us consider f ∈ U∼
w

(
R2

)
. If we multiply both sides

of (4.4) with ρ̃ (x1, x2) ,we have

ρ̃ (x1, x2)
∣∣(Sζ,ζ

w f
)
(x1, x2)− f (x1, x2)

∣∣
≤
∥f∥ρ̃
w2

[
M0 (ζ)

∼
M2 (ζ) + 4M1 (ζ)

∼
M1 (ζ) + 2wM0 (ζ)

∼
M1 (ζ) + 2M2 (ζ)

∼
M0 (ζ) + 2wM1 (ζ)

∼
M0 (ζ)

]
+ε

[
M0 (ζ)

∼
M0 (ζ) + 2 ∥f∥ρ̃

(
M0 (ζ) +

∼
M0 (ζ)

)]
and taking supremum over (x1, x2) ∈ R2 we obtain (4.2) for w → +∞. q.e.d.

5 Rate of convergence of the operators Sζ,ζ
w

This section deals with the determine rate of convergence the operators Sζ,ζ
w in the weighted spaces

of bivariate functions via weighted modulus of continuity given in (2.1).

Theorem 5.1. Let ζ be kernel with α = β = 6. Then, for f ∈ Cρ̃

(
R2

)
the inequality∥∥Sζ,ζ

w f − f
∥∥∼
w
≤ 256Ω

(
f ;w−1, w−1

)
×
{
M0 (ζ)

∼
M0 (ζ) + 16

√
2

(
M0 (ζ)

∼
M3 (ζ) +M3 (ζ)

∼
M0 (ζ)

)
+16

[
M0 (ζ)

∼
M6 (ζ) + 2M3 (ζ)

∼
M3 (ζ) +M6 (ζ)

∼
M0 (ζ)

]}
holds for w ≥ 1.

Proof. By using definition of Sζ,ζ
w and the inequality (2.4) we have∣∣(Sζ,ζ

w f
)
(x1, x2)− f (x1, x2)

∣∣
≤256

(
1 + x2

1 + x2
2

)
Ω (f ; δ1, δ2)

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))|

×

{
1 +

|u1 − x1|3

δ31
+

|u2 − x2|3

δ32
+

|u1 − x1|3

δ31

|u2 − x2|3

δ32

}
du1du2
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≤256
(
1 + x2

1 + x2
2

)
Ω (f ; δ1, δ2)

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))|

×
{
1 +

4

w3δ31

(
|wu1 − k1|3 + |wx1 − k1|3

)
+

4

w3δ32

(
|wu2 − k2|3 + |wx2 − k2|3

)
+

16

δ31δ
3
2w

6

[
|wu1 − k1|3 + |wx1 − k1|3

] [
|wu2 − k2|3 + |wx2 − k2|3

]}
du1du2

=I1 + I2.

Now, first we estimate I1. By simple calculations we have

I1 ≤ 256
(
1 + x2

1 + x2
2

)
Ω (f ; δ1, δ2)

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))|

×
{
1 +

4

w3

(
1

δ31
+

1

δ32

)[
2
(
|wu1 − k1|2 + |wu2 − k2|2

)] 3
2

+
4

w3

(
1

δ31
+

1

δ32

)[
2
(
|wx1 − k1|2 + |wx2 − k2|2

)] 3
2

}
du1du2

= 256
(
1 + x2

1 + x2
2

)
Ω (f ; δ1, δ2)

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))|

×

{
1 +

8
√
2

w3

(
1

δ31
+

1

δ32

)[(
|wu1 − k1|2 + |wu2 − k2|2

) 3
2

+
(
|wx1 − k1|2 + |wx2 − k2|2

) 3
2

]}
du1du2

≤ 256
(
1 + x2

1 + x2
2

)
Ω (f ; δ1, δ2)

×

{
M0 (ζ)

∼
M0 (ζ) +

8
√
2

w3

(
1

δ31
+

1

δ32

)(
M0 (ζ)

∼
M3 (ζ) +M3 (ζ)

∼
M0 (ζ)

)}
.

For I2, from the facts that a3b3 ≤
(
a2 + b2

)3
and a3 ≤

(
a2 + b2

)3/2
for a, b > 0 we obtain

I2 = 256
(
1 + x2

1 + x2
2

)
Ω (f ; δ1, δ2)

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))|

× 16

δ31δ
3
2w

6

[
|wu1 − k1|3 + |wx1 − k1|3

] [
|wu2 − k2|3 + |wx2 − k2|3

]
du1du2

≤ 256
(
1 + x2

1 + x2
2

)
Ω (f ; δ1, δ2)

∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))|

× 16

δ31δ
3
2w

6

[
|wu1 − k1|3 |wu2 − k2|3 + |wu1 − k1|3 |wx2 − k2|3

+ |wx1 − k1|3 |wu2 − k2|3 + |wx1 − k1|3 |wx2 − k2|3
]
du1du2

≤ 256
(
1 + x2

1 + x2
2

)
Ω (f ; δ1, δ2)

16

δ31δ
3
2w

6

[
M0 (ζ)

∼
M6 (ζ) + 2M3 (ζ)

∼
M3 (ζ) +M6 (ζ)

∼
M0 (ζ)

]
.
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Combining the above estimates, we have∣∣(Sζ,ζ
w f

)
(x1, x2)− f (x1, x2)

∣∣ ≤ 256
(
1 + x2

1 + x2
2

)
Ω (f ; δ1, δ2)

×

{
M0 (ζ)

∼
M0 (ζ) +

8
√
2

w3

(
1

δ31
+

1

δ32

)(
M0 (ζ)

∼
M3 (ζ) +M3 (ζ)

∼
M0 (ζ)

)
+

16

δ31δ
3
2w

6

[
M0 (ζ)

∼
M6 (ζ) + 2M3 (ζ)

∼
M3 (ζ) +M6 (ζ)

∼
M0 (ζ)

]}
.

Finally, by choosing δ1 = w−1, δ2 = w−1 and taking the supremum for (x1, x2) ∈ R2 we get desired
result. q.e.d.

6 Voronovskaja type theorem for the operators Sζ,ζ
w

In this section, we present Voronovskaja type theorem in quantitative form for the operators Sζ,ζ
w

in the weighted spaces of bivariate functions.
Let x = (x1, x2) , k = (k1,k2) ∈ R2

+, |k| = r, for a function f : R2 → R by

Drf :=
∂r

∂k1
x1∂

k2
x2

f

we denote the r-th order derivatives of f . For r ∈ N, by C(r) (K) we denote the subspace of C0 (K)
which consist of all functions f with the derivatives up to the order r in C0 (K). By the Taylor
expansion of f (see [39]),

f (s1, s2) = f (x1, x2) + (s1 − x1)
∂f

∂x1
(x1, x2) + (s2 − x2)

∂f

∂x2
(x1, x2)

+R1 (s1, s2) ,

(6.1)

where

R1 (s1, s2) =

{
(s1 − x1)

[
∂f

∂x1
(ηx1

, ηx2
)− ∂f

∂x1
(x1, x2)

]
+ (s2 − x2)

[
∂f

∂x2
(ηx1

, ηx2
)− ∂f

∂x2
(x1, x2)

]}
(6.2)

such that ηx1
= x1 + θ (s1 − x1) , ηx2

= x2 + θ (s2 − x2) and 0 < θ < 1.
In view of the inequality (2.4), with similar method presented in [1] and [8] we conclude that

|R1 (s1, s2)|
≤256

(
1 + x2

1 + x2
2

)
×
{
Ω (fx1 ; δ1, δ2)

[
|s1 − x1|+

1

δ32
|s2 − x2|3 |s1 − x1|+

1

δ31
|s1 − x1|4 +

1

δ31δ
3
2

|s1 − x1|4 |s2 − x2|3
]

+ Ω(fx2
; δ1, δ2)

[
|s2 − x2|+

1

δ32
|s2 − x2|4 +

1

δ31
|s1 − x|3 |s2 − x2|+

1

δ31δ
3
2

|s2 − x2|4 |s1 − x1|3
]}

.

(6.3)
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Now, let h = (h1, h2) ∈ N2
0 and let v = |h| . For u = (u1, u2) ∈ R2

+ we define the discrete and
continuous algebraic moments of order h of ζ as

mv
h (ζ,u) :=

∑
(k1,k2)∈Z2

ζ ((u1, u2)− (k1, k2)) ⟨(k1, k2)− (u1, u2)⟩h

=
∑

(k1,k2)∈Z2

ζ ((u1, u2)− (k1, k2)) (k1 − u1)
h1 (k2 − u2)

h2

and

∼
m

v

h (ζ,u) :=

∫
R2

ζ ((u1, u2)) ⟨(u1, u2)⟩hdu1du2

=

∫
R2

ζ ((u1, u2))u
h1
1 uh2

2 du1du2.

We need one more assumption on the kernel function ζ to estimate the order of approximation
under a local regularity assumption on function f . In particular, there exists a natural number
l ∈ N such that h ∈ N2

0 and |h| ≤ l

m
|h|
h (ζ,u) :=m

|h|
h (ζ) is independent of u.

∼
m

|h|
h (ζ,u) :=

∼
m

|h|
h (ζ) is independent of u.

(⋆)

Theorem 6.1. Let ζ be kernel with α = β = 7 and (⋆) for l = 1 such that(
m0 (ζ)

∼
m

1

(1,0) (ζ) +m1
(1,0) (ζ)

∼
m0 (ζ)

)
̸= 0

or (
m0 (ζ)

∼
m

1

(0,1) (ζ) +m1
(0,1) (ζ)

∼
m0 (ζ)

)
̸= 0.

Then, for f ′ ∈ C1
ρ̃

(
R2

)
we have∣∣∣∣w [(

Sζ,ζ
w f

)
(x1, x2)− f (x1, x2)

]
−
(
m0 (ζ)

∼
m

1

(1,0) (ζ) +m1
(1,0) (ζ)

∼
m0 (ζ)

) ∂f

∂x1
(x1, x2)

+
(
m0 (ζ)

∼
m

1

(0,1) (ζ) +m1
(0,1) (ζ)

∼
m0 (ζ)

) ∂f

∂x2
(x1, x2)

∣∣∣∣
≤256

(
1 + x2

1 + x2
2

) [
Ω
(
fx1

;w−1, w−1
)
+Ω

(
fx2

;w−1, w−1
)]

×
{√

2

(
M0 (ζ)

∼
M1 (ζ) +M1 (ζ)

∼
M0 (ζ)

)
+ 40

(
M0 (ζ)

∼
M4 (ζ) +M4 (ζ)

∼
M0 (ζ)

)
+ 512

√
2

(
M0 (ζ)

∼
M7 (ζ) +M7 (ζ)

∼
M0 (ζ)

)}
.
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Proof. Using definition of the operator Sζ,ζ
w and consider the Taylor expansion given in (6.1) we

can write(
Sζ,ζ
w f

)
(x1, x2) =

∑
(k1,k2)∈Z2

ζ (w (x1, x2)− (k1,k2))w
2

∫
R2

ζ (w (u1, u2)− (k1, k2)) f (u1, u2) du1du2

=
∑

(k1,k2)∈Z2

ζ (w (x1, x2)− (k1,k2))w
2

∫
R2

ζ (w (u1, u2)− (k1, k2))

×
[
f (x1, x2) + (u1 − x1)

∂f

∂x1
(x1, x2) + (u2 − x2)

∂f

∂x2
(x1, x2)

]
du1du2

+
∑

(k1,k2)∈Z2

ζ (w (x1, x2)− (k1,k2))w
2

∫
R2

ζ (w (u1, u2)− (k1, k2))R1 (u1, u2) du1du2

:= I1 + I2

where R1 (u1, u2) is the remainder as in (6.2). Let us first estimate I1. Using definition of the
discrete algebraic moments and the operators we get

I1 = f (x1, x2) +
1

w

(
m0 (ζ)

∼
m

1

(1,0) (ζ) +m1
(1,0) (ζ)

∼
m0 (ζ)

) ∂f

∂x1
(x1, x2)

+
1

w

(
m0 (ζ)

∼
m

1

(0,1) (ζ) +m1
(0,1) (ζ)

∼
m0 (ζ)

) ∂f

∂x2
(x1, x2) .

Now, we take into account that I2. By using the inequality (6.3), we have

|I2| ≤ 256
(
1 + x2

1 + x2
2

) ∑
(k1,k2)∈Z2

ζ (w (x1, x2)− (k1,k2))w
2

∫
R2

ζ (w (u1, u2)− (k1, k2))

×
{
Ω(fx1 ; δ1, δ2)

[
|u1 − x1|+

1

δ32
|u2 − x2|3 |u1 − x1|+

1

δ31
|u1 − x1|4 +

1

δ31δ
3
2

|u2 − x2|3 |u1 − x1|4
]

+Ω(fx2 ; δ1, δ2)

[
|u2 − x2|+

1

δ32
|u2 − x2|4 +

1

δ31
|u1 − x1|3 |u2 − x2|1 +

1

δ31δ
3
2

|u2 − x2|4 |u1 − x1|3
]}

du1du2

and by considering the inequalities

|u1 − x1| ≤ |u1 − x1|+ |u2 − x2| , |u2 − x2| ≤ |u1 − x1|+ |u2 − x2|
|u1 − x1|4 ≤

(
|u1 − x1|2 + |u2 − x2|2

)2
, |u2 − x2|4 ≤

(
|u1 − x1|2 + |u2 − x2|2

)2
|u1 − x1| |u2 − x2|3 ≤ 22

(
|u1 − x1|2 + |u2 − x2|2

)2
, |u1 − x1|3 |u2 − x2| ≤ 22

(
|u1 − x1|2 + |u2 − x2|2

)2
|u1 − x1|3 |u2 − x2|4 ≤ 2

7
2
(
|u1 − x1|2 + |u2 − x2|2

) 7
2 , |u1 − x1|4 |u2 − x2|3 ≤ 2

7
2
(
|u1 − x1|2 + |u2 − x2|2

) 7
2
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we get

|I2| ≤ 256
(
1 + x2

1 + x2
2

) ∑
(k1,k2)∈Z2

|ζ (w (x1, x2)− (k1,k2))|w2

∫
R2

|ζ (w (u1, u2)− (k1, k2))|

×
{
Ω (fx1

; δ1, δ2)

[
|u1 − x1|+ |u2 − x2|+

22

δ32

(
|u1 − x1|2 + |u2 − x2|2

)2

+
1

δ31

(
|u1 − x1|2 + |u2 − x2|2

)2

+
2

7
2

δ31δ
3
2

(
|u1 − x1|2 + |u2 − x2|2

) 7
2

]

+Ω(fx2 ; δ1, δ2)

[
|u1 − x1|+ |u2 − x2|+

1

δ32

(
|u1 − x1|2 + |u2 − x2|2

)2

+
22

δ31

(
|u1 − x1|2 + |u2 − x2|2

)2

+
2

7
2

δ31δ
3
2

(
|u1 − x1|2 + |u2 − x2|2

) 7
2

]}
du1du2.

Finally, by definition of absolute moments we conclude

≤ 256
(
1 + x2

1 + x2
2

){
Ω (fx1

; δ1, δ2)

[√
2

w

(
M0 (ζ)

∼
M1 (ζ) +M1 (ζ)

∼
M0 (ζ)

)
+

32

δ32w
4

(
M0 (ζ)

∼
M4 (ζ) +M4 (ζ)

∼
M0 (ζ)

)
+

8

δ31w
4

(
M0 (ζ)

∼
M4 (ζ) +M4 (ζ)

∼
M0 (ζ)

)
+

512
√
2

δ31δ
3
2w

7

(
M0 (ζ)

∼
M7 (ζ) +M7 (ζ)

∼
M0 (ζ)

)]

+Ω(fx2
; δ1, δ2)

[√
2

w

(
M0 (ζ)

∼
M1 (ζ) +M1 (ζ)

∼
M0 (ζ)

)
+

8

δ32w
4

(
M0 (ζ)

∼
M4 (ζ) +M4 (ζ)

∼
M0 (ζ)

)

+
32

δ31w
4

(
M0 (ζ)

∼
M4 (ζ) +M4 (ζ)

∼
M0 (ζ)

)
+

512
√
2

δ31δ
3
2w

7

(
M0 (ζ)

∼
M7 (ζ) +M7 (ζ)

∼
M0 (ζ)

)]}
.

Hence, choosing δ1 = δ2 = w−1 we get∣∣∣∣w [(
Sζ,ζ
w f

)
(x1, x2)− f (x1, x2)

]
−
(
m0 (ζ)

∼
m

1

(1,0) (ζ) +m1
(1,0) (ζ)

∼
m0 (ζ)

) ∂f

∂x1
(x1, x2)

+
(
m0 (ζ)

∼
m

1

(0,1) (ζ) +m1
(0,1) (ζ)

∼
m0 (ζ)

) ∂f

∂x2
(x1, x2)

∣∣∣∣
≤ 256

(
1 + x2

1 + x2
2

) [
Ω
(
fx1

;w−1, w−1
)
+Ω

(
fx2

;w−1, w−1
)]

×
{√

2

(
M0 (ζ)

∼
M1 (ζ) +M1 (ζ)

∼
M0 (ζ)

)
+ 40

(
M0 (ζ)

∼
M4 (ζ) +M4 (ζ)

∼
M0 (ζ)

)
+512

√
2

(
M0 (ζ)

∼
M7 (ζ) +M7 (ζ)

∼
M0 (ζ)

)}
which is desired result. q.e.d.
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Corollary 6.2. Under the assumption of Theorem 6.1, in view of (2.2), we have a qualitative form
of the asymptotic formula for Sζ,ζ

w , i.e.,

lim
w→+∞

w
[(
Sζ,ζ
w f

)
(x, y)− f (x, y)

]
=
(
m0 (ζ)

∼
m

1

(1,0) (ζ) +m1
(1,0) (ζ)

∼
m0 (ζ)

) ∂f

∂x1
(x1, x2)

+
(
m0 (ζ)

∼
m

1

(0,1) (ζ) +m1
(0,1) (ζ)

∼
m0 (ζ)

) ∂f

∂x2
(x1, x2) .

At the end of the paper, we give examples of kernel functions which can be used for bivari-
ate sampling Durrmeyer series. In bivariate case, it is not easy to verify a function satisfies the
conditions of being kernel. According to [23], a a bivariate kernel can be obtained by product-
ing two univariate kernel. So, we will follow this process to obtain a bivariate kernel. Suppose
ζ1, ζ2 ∈ L1 (R), such that both bounded in a neighborhood of the origin,∑

k∈Z
ζi (u− k) = 1, i = 1, 2

for every u ∈ R and ∫
R

ζi (u) du, i = 1, 2.

Now we set ζ (x1, x2) := ζ1 (x1) ζ2 (x2). ζ is a bounded function in a neighborhood of the origin
and also we have∑

(k1,k2)∈Z2

ζ ((u1, u2)− (k1, k2)) =
∑
k1∈Z

ζ1 (u1 − k1)
∑
k2∈Z

ζ2 (u2 − k2) = 1

and ∫
R2

ζ (u1, u2) du1du2 =

∫
R

ζ (u1) du1

∫
R

ζ (u2) du2 = 1

which means ζ is a kernel function in bivariate setting.
Let Bn is a central B-spline of order n ∈ N, and it is defined by

Bn (t) :=
1

(n− 1)!

n∑
j=0

(−1)
i

(
n

j

)(n
2
+ t− j

)n−1

+
, t ∈ R,

where (t)+ := max{t, 0}, t ∈ R. Since B-spline is a univariate kernel, see [22, 16], we can use
it to obtain bivariate kernel. For simplicity, we take into account the case n = 2, i.e., we will
use B2 (t) = (1− |t|)χ[−1,1](t)

as a univariate kernel where χ is a characteristic function. Putting,

ζ1 = ζ2 = B2 we construct a bivariate kernel

ζ (t1, t2) = ζ1 (t1) ζ2 (t2)

:= B2,2 (t1, t2)

=


(t1 − 1)(t2 − 1) 0 ≤ t1 ≤ 1 and 0 ≤ t2 ≤ 1

−(t1 + 1)(t2 − 1) −1 ≤ t1 < 0 and 0 ≤ t2 ≤ 1

−(t1 − 1)(t2 + 1) 0 ≤ t1 ≤ 1 and − 1 ≤ t2 < 0

(t1 + 1)(t2 + 1) −1 ≤ t1 < 0 and − 1 ≤ t2 < 0

.

(6.4)
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Since Bn,n are bounded on R2 for all n ∈ N with compact support
[
−n

2 ,
n
2

]
, see [26, 23], we have

Bn,n ∈ L1
(
R2

)
and the absolute moment condition Mr (Bn,n) < +∞ satisfied for all r > 0.

Therefore, putting as a kernel ζ = B2,2 bivariate sampling Durrmeyer series comes out(
SB2,2,B2,2
w f

)
(x1, x2)

=
∑

(k1,k2)∈Z2

B2,2 (w (x1, x2)− (k1, k2))w
2

∫
R2

B2,2 (w (u1, u2)− (k1, k2)) f (u1, u2) du1u2

and since Mr (Bn,n) < +∞ for all r > 0, all results obtained in this paper can be used with this
kernel.
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