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Abstract

The aim of this paper is three-fold: (i) we construct a natural highly homotopy coherent operad
structure on the derivatives of the identity functor on structured ring spectra which can be
described as algebras over an operad O in spectra, (ii) we prove that every connected O-algebra
has a naturally occurring left action of the derivatives of the identity, and (iii) we show that
there is a naturally occurring weak equivalence of highly homotopy coherent operads between
the derivatives of the identity on O-algebras and the operad O.

Along the way, we introduce the notion of N-colored operads with levels which, by construc-
tion, provides a precise algebraic framework for working with and comparing highly homotopy
coherent operads, operads, and their algebras.
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1 Introduction

A slogan of functor calculus widely expected to hold is that the symmetric sequence of Goodwillie
derivatives of the identity functor on a suitable model category C, denoted 0.Idc, ought to come
equipped with a natural operad structure. A result of this type was first proved by Ching in [15]
for C = Top, and more recently in the setting of co-categories in [18]. In this paper, we construct
an explicit “highly homotopy coherent” operad structure for the derivatives of the identity functor
in the category of algebras over a reduced operad O in spectra.

The derivatives of the identity in Alg,, have previously been studied ([49], [40]) and it is known
that O[n] is a model for 0, Idag o — the n-th Goodwillie derivative of Idaig, . It is further conjectured
(see, e.g., Arone-Ching [1]) that d,Idajg,, and O be equivalent as operads: a main difficulty of which
is describing an intrinsic operad structure on the derivatives of the identity which may be compared
with that of the operad O. Our main theorem addresses this conjecture.

Theorem 1.1. Let O be an operad in spectra such that O[n] is (—1)-connected for n > 1 and
O[0] = . Then,

(a) The derivatives of the identity in Alg, can be equipped with a natural highly homotopy
coherent operad structure

(b) Moreover, with respect to this structure, d,Idayg, is equivalent to O as highly homotopy
coherent operads.

Thbilisi Mathematical Journal Special Issue (HomotopyTheorySpectra - 2020), pp. 119-166.
Thilisi Centre for Mathematical Sciences.

Received by the editors: 04 May 2020.
Accepted for publication: 21 February 2021.



120 D. A. Clark

The proofs of parts (a) and (b) to Theorem 1.1 may be found in Sections 8.1 and 8.2, respectively.
Our technique is to avoid working with the identity directly by replacing it with the Bousfield-Kan
cosimplicial resolution provided by the stabilization adjunction (@, U) for O-algebras. The strong
cartesianness estimates of Blomquist [10] (see also Ching-Harper [19]) allow us to then express
0xIdaig, as the homotopy limit of the cosimplicial diagram (showing only coface maps)

0.(QU)™ = (0.(UQ) == 0.(UQ)* == 0.(UQ)* -+ ) (1.1)

whose terms 9, (QU)**! may be readily computed by an O-algebra analogue of the Snaith splitting.
We thus obtain a natural cosimplicial resolution C'(O) of the derivatives of the identity such that
0+Idalg, ~ holima C(O) which furthermore may be identified as the TQ resolution of O as a left
O-module. Our approach is influenced by the work of Arone-Kankaanrinta [4] wherein they use
the cosimplicial resolution offered by the stabilization adjunction between spaces and spectra to
analyze the derivatives of the identity in spaces via the classic Snaith splitting.

We induce a highly homotopy coherent operad structure (i.e., As-operad) on 0,Idayg, by
constructing a pairing of the resolution C(O) with respect to the box product O for cosimplicial
objects (see Batanin [6]). Thus, we extend to the monoidal category of symmetric sequences a
technique utilized in McClure-Smith [48]: specifically, that if X is a O-monoid in cosimplicial
spaces or spectra then Tot(X) is an A.-monoid (with respect to the closed, symmetric monoidal
product for spaces or spectra).

There are some subtleties that arise in that (i) the box product is not as well-behaved when work-
ing with the composition product o of symmetric sequences, and (ii) the extra structure encoded
by o leads us to work with N-colored operads to express A,.-monoids with respect to composi-
tion product. As such, one of the main developments of this paper is that of N-colored operads
with levels (i.e., Nje,-operads) as useful bookkeeping tools designed to algebraically encode operads
(i.e., strict composition product monoids) and “fattened-up” operads as their algebras. Within this
framework of N -operads we can also describe algebras over an A..-operad.

1.1 Remark on Theorem 1.1

In the statement of Theorem 1.1 the phrase “naturally occuring” means that we refrain from
endowing 0,Idajg, with the operad structure from O directly. Rather, we produce a method for
intrinsically describing operadic structure possessed by the derivatives of the identity that should
carry over to other model categories suitable for functor calculus. In particular, the constructions
of such an operad structure on the derivatives of the identity should:

(i) Recover the (A-) operad structure endowed on 0,Idrep, described by Ching in [15]

(ii) Endow the derivatives of an arbitrary homotopy functor F': Alg, — Algn, with a natural
bimodule structure over (0, Idaig o1 0xIdalg,, ) suitable for describing a chain rule (as in Arone-
Ching [1])

(iii) Be fundamental enough to describe an operad structure on 9,Idc and chain rule for a suitable
model category C (e.g., one in which one can do functor calculus).
1.2 Future applications

The three facets outlined above are all matters of ongoing work and will not be pursued in this
document. We note however that our constructions are anticipated to underlie a “highly homotopy
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coherent chain rule” for composable functors F, G of structured ring spectra. That is, a comparison
map 0, F 0 0,G — 0,(FG) which, under the identification of 0,Idag, ~ O, prescribes a suitably
coherent (O, O)-bimodule structure on the derivatives of an arbitrary functor F': Algy, — Algy,.
Such a result would extend work of Arone-Ching [1] (see also Klein-Rognes [39], Ching [16], and
Yeakel [54]) to categories of structured ring spectra and lend to a more robust analysis of functors
thereof.

Item (iii) above is perhaps the most lofty and also the most tempting. We are interested in
utilizing our techniques to endow 9,Idc with a naturally occurring operad structure for a suitable
model category C. One application of such a result would be in providing homotopy descent data in
the form of an equivalence of categories between (a suitable subcategory of) C and algebras over the
operad 0,Idc (see Hess [37], Behrens-Rezk [8], and Francis-Gaitsgory [29]). Such an extension of
our work seems to rely crucially on the existence of Snaith splittings associated to the stabalization
adjunction (X, Q) between C and Spt(C) in order to provide a cosimplicial model 9,Idc. Such a
splitting is necessarily a statement about the Taylor tower of the associated comonad K¢ = XZ0°
and the properties of its derivatives. If Spt(C) ~ Spt then Arone-Ching provide a model for the
derivatives of K¢ in [1] and Lurie outlines a model for 9,K¢ as an oo-cooperad in [44, §5.2 and §6].
A more rigid description for the cooperad structure in general is the subject of ongoing work and
will not be further pursued in this paper.

1.3 Outline of the argument

Our main tool is to utilize the Bousfield-Kan cosimplicial resolution of an O-algebra X with respect
to the TQ-homology adjunction

Algo <T3 Alg; >~ Modoyy-

Here, J denotes a suitable replacement of 71 O, the truncation of O above level 1 (see Section 2.8).
Of important note is that the pair (@, U) is equivalent to the stabilization adjunction for O-algebras
(see Section 2.8) and that Alg; and Modp;) are Quillen equivalent.

Using the strong connectivity estimates offered by Blomquist’s higher stabilization theorems [10,
§7], we first show that 8, Iday, is equivalent to holima 9, (UQ)*** (see (1.1)). Similarly to Arone-
Kankaanrinta [4], in which they compute the n-excisive approximations (resp. n-th derivatives)
of the identity functor on Top, in terms of the n-excisive approximations (resp. n-th derivatives)
of iterates of stabilization Q2°°X°° by means of the Snaith splitting, we then analyze the terms
0,(UQ)**! via an analog of the Snaith splitting in Alge,.

Essentially a statement about the Taylor tower of the associated comonad QU, the Snaith
splitting in Alg, permits equivalences of symmetric sequences

0.(QU) ~ | Bar(J,0,.J)| ~ J oy J =: B(O)

as (J,J)-bimodules (here, o" denotes the derived composition product). By iterated applications
of the splitting, we may compute

0.(UQ)"™! = B(O) oy -0, B(O) = Jog --- 00 J = C(O)*

k k+1
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and moreover that 9,(UQ)*™! ~ C(O) as cosimplicial symmetric sequences. Here, C(O) is given
by

J—=JopJ—=JopJopJ —=JonpJonpJon J---

with coface map d’ induced by inserting @ — J at the i-th position (see Remark 4.5 along with
(2.6)).

Note, B(O) is (at least up to homotopy) a cooperad with a coaugmentation map J — B(O),
and our C(O) is essentially a rigid cosimplicial model for the cobar construction on B(O). In
particular, this allows us to bypass referencing any particular model for the comultiplication on
B(O) (e.g., that of Ching [15], see also Section 4.3).

We construct a pairing m: C(O)OC(O) — C(O) with respect to the box product (Definition
5.1) of cosimplicial symmetric sequences via compatible maps of the form (induced by the operad
structure maps J o J — J)

mp’q: JOO...OO(JQJ)OO...OOJ%JOO...QOJOO...OOJ

p+1 q+1 pt+g+1

along with a unit map u: I — C(O), where I denotes the constant cosimplicial symmetric sequence
on I. Our argument is then to induce an A,.-monoidal pairing on 9.Idajg, — modeled as Tot C'(O)
— via m and u (compare with McClure-Smith [48]).

One difficulty which arises is that the composition product of symmetric sequences is not as
well-behaved of a product as, say, cartesian product of spaces or smash product of spectra. Thus,
we do not obtain m as a strictly monoidal pairing on the level of cosimplicial diagrams. In resolving
this issue we introduce a specialized category of N-colored operads with levels (i.e., Nje,-operads)
designed specifically to overcome these technical subtleties of the composition product. As a result,
a large portion of this document is dedicated to carefully developing the framework of Nje,-operads
and their algebras.

With these details in tow it is then possible to produce an A..-operad structure on d,Idayg,. Let
Tot denote restricted totalization Tot™ (see Section 2.5), we then obtain an A.,-monoidal pairing

Tot C(O) o Tot C(O) — Tot C(O)

described as an algebra over a certain N -operad which is a naturally “fattened-up” replacement
of the Ne-operad whose algebras are strict operads (see Definition 7.1 along with Propositions
7.3 and 7.10). Moreover, the coaugmentation O — C(O) provides a comparison between O and
0xIdalg, which we show yields an equivalence of A.-operads, thus resolving the aforementioned
conjecture.

Remark 1.2. It is worth noting that Ching [18] has recently proved a similar result in the context
of oco-categories using the Day convolution. The author expects a comparison should be possible
between the arguments presented in this document and those due to Ching, but is not aware of any
explicit description at present.

1.4 Organization of paper
Section 2 provides an overview of the relevant details of working with O-algebras and their TQ-

completions. In sections 3 and 4 we provide an overview of the calculus of homotopy functors
between categories of operadic algebras and describe the particular model for the derivatives of the
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identity that we employ. Section 5 is devoted to the box-product of cosimplicial objects. Much of
the technical bulk of our paper occurs in the last three sections: Section 6 provides the framework
for describing our notion of (symmetric) N-colored operads with levels. Section 7 provides proofs
regarding of N -operads of interest and Section 8 contains the proofs of our main theorems on the
derivatives of the identity.
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2 Operads of spectra and their algebras

We work in the category algebras over a reduced operad in a closed, symmetric monoidal category
of spectra (Spt, A, .S). For convenience we will use the category of S-modules as in Elmendorf-Kriz-
Mandell-May [28] and refer to such objects as spectra. The main technical benefit of working with
S-modules is that all spectra will be fibrant (and thus Tot X' of a levelwise fibrant diagram will
already correctly model holima &X'), though we note that similar results should hold in the category
of symmetric spectra by utilizing suitable fibrant replacement monads.

We observe that Spt is a cofibrantly generated, closed symmetric monoidal model category (see,
e.g., [1, Definition 1.12]) and write MapSpt(X, Y) for the internal mapping object of Spt. When
it is clear from context we write Map for Maps"t. We let Top denote the category of compactly
generated Hausdorff spaces. In [28], it is shown that Spt admits a tensoring of Top, which may be
extended to Top by first adding a disjoint basepoint. In particular for K € Top, X,Y € Spt there
are natural isomorphisms

hom(K, A X,Y) = hom(X, Map ™ (K, Y)).

Though we will not make explicit use of it, we define a simplicial tensoring of Spt via K A X :=
|K| A X for K € sSet, and X € Spt.

2.1 Symmetric sequences

Let (C,®,1) be a closed symmetric monoidal category and write MapC for the mapping object in
C. When C is clear from context we write Map for Map®. We will require that C be cocomplete,
and write x for the initial object of C; particular categories of interest are Spt and Top,.

Recall that a symmetric sequence in C is a collection X[n] € C for n > 0 such that X|[n]
admits a (right) action by 3,. We let SymSeqc denote the category of symmetric sequences in C
and action preserving morphisms. A symmetric sequence X is reduced if X[0] = * (some authors
require in addition that X[1] = 1, however we omit this condition). When C is clear from context
we will simply write SymSeq. Note that SymSeq comes equipped with a monoidal product o, the
composition product (also called circle product) defined as follows (see also [50] or [34]).
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2.2 The composition product of symmetric sequences
For X,Y € SymSeq we define X oY at level k by

(XoY)[k] = [] X[n] @s, Y [K]. (2.1)
n>0

Here, & denotes the tensor of the symmetric sequences (e.g., as in [34]). For n,k > 0, Y®"[k] is
computed as

[[IYimle oYl  JI  Sksgscexs, Yik]©- @Y (k]
k- n ki +kn=Fk

where 7 runs over all surjections k = {1,...,n} — {1,...,n} = n and we set m; := |7~ 1(i)| for
i € n. The composition product admits a unit I given by I[1] = 1 and I[k] = * otherwise.

For our purposes, we find it convenient to work with with a slightly modified version of the
composition product for reduced symmetric sequences. Let XY € SymSeq be reduced. Let
(k1,...,kn) denote a sequence of integers k1, ..., k, > 1 (allowing for repetition of entries) and set
Sum” to be the collection of orbits (k1,...,k,)s, such that Y7  k; = k.

Definition 2.1. Given k1, ..., k, > 1 we define H(k1, ..., k,) as the collection of block permutation
matrices X, X -+ x M, < Xy, along with the ¥,,, permutations of those blocks such that k; = d;.

Remark 2.2. We observe that orbits (ki1,...,k,)s, are in bijective correspondence to partitions
k=dipr + -+ dmpm where 1 < d; < --- < d,, and p; > 1. Given an orbit (ki,...,k,)x, let
1 <d; <---dp, be the distinct entries of multiplicity p;. We note that there is an isomorphism
(here, X1 denotes the wreath product ¥, 1 X, := 32X x 3,)

H(ky, .o k) 250 X x B0,

Moreover H(ki,...,k,) admits a natural ¥, action by permutation of elements k; and the
k

induced map H(ky,...,kn) — H(kgy1), .-, Ks(n)) is an isomorphism for all o € X,,.

Though we will not need this fact, we remark that H(ki,...,k,) may be identified with the
stabilizer of the X; action on partitions of {1,...,k} into sets of size ki,...,k, (see, e.g., [16,
§1.12)).

For k > 0 we set X[k] := [[,¢5, 1.

Remark 2.3. The composition product X oY may be equivalently written as

(XoV)[k = [ 1T Sk @phyoby XM QY[ @@ Y[k (22)

n>0 (ky,...,kn)s,, €Sumk

Here, the action of H(ky, ..., k,) on X[k] is induced by that on ¥; and the action on X[n]®Y[k;]|®
-+ ®Y[ky] is given as follows (see also Ching [16, 1.13])

o X, X---xX, <X, acts on X[n]
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o fori=1,...,m, Eg’;" acts on the factors Y[k;| such that k; = d; by
(i) permuting the p; factors Y'[d;]
(ii) acting by corresponding ¥4, factor on each Y[d;].

We also make the following definition for the nonsymmetric composition product X3Y (note
that our definition differs from [35])

(xaY)[k] == 11 Xn|@Y[k]® - ®Y[kn] (2.3)
n>0 (ki,...,kpn)sx,, €Sumk

Note that 6 is not associative, our primary use for 6 will be as a bookkeeping tool for indexing
the factors involved in expanding iterates of o from the left (as in Section 6).

2.3 Operads as monads

A reduced operad in C is a symmetric sequence O which is a monoid with respect to o, i.e., there are
maps OoO — O and I — O which satisfy additional associativity and unitality relations (see, e.g.,
Rezk [50]). We will only consider reduced operads, and interpret operad to mean reduced operad.

Any symmetric sequence M gives rise to a functor M o(—) on C given as follows (note X®% = 1)

X Mo (X)=\/ M[n]®g, X"
n>0

If O is an operad, then the associated functor O o (=) is a monad on C which we will frequently
conflate with the operad O. We let Alg(cg denote the category of algebras for the monad associated
to an operad O in C.

When C = Spt and O is an operad of spectra, then Alg, = Alg%pt is a pointed simplicial model
category (see, e.g., [20, §7]) when endowed with projective model structure from Spt. For a further
overview of notation and terminology we refer the reader to [34, §3] or [50, §2].

2.4 Assumptions on O

From now on in this document we assume that O is a reduced operad in Spt which obeys some mild
cofibrancy conditions that are satisfied if, e.g., O arises via the suspension spectra of a cofibrant
operad in spaces. In particular, we require that the underlying symmetric sequence of O[n| be
Y-cofibrant (see, e.g., [1, §9]) and that the terms O[n] be (—1)-connected for all n > 1.

2.5 Use of restricted totalization
We systematically interpret Tot of a cosimplicial diagram to mean restricted totalization (see also
(20, §8])
res Spt . Spt ° A
Tot := Tot™ = Mapaw: (A®, —) := (Map PHA ,—)) .
Here, A denote the usual simplicial category of finite totally-ordered sets [n] :={0 <1< --- <n}
and order preserving maps, A" C A is the subcategory obtained by omitting degeneracy maps,

and A® denotes the usual cosimplicial space of topological n-simplices. For convenience, if C*® is
cosimplicial object, we will write Tot C'* instead of the more technically correct Tot(C®|ars).
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Diagrams shaped on A™* are referred to as restricted cosimplicial diagrams. Importantly the
inclusion A™ — A is homotopy left cofinal' and so if C*® is a cosimplicial diagram in Alg, which
is levelwise fibrant (as opposed to the stronger condition of Reedy fibrancy), there are equivalences

holima C*® ~ holimares C® >~ Tot C°.

2.6 Truncations of O

For n > 0 we define 7,,: SymSeq — SymSeq to be the n-th truncation functor given at a symmetric
sequence M by

(T M)[K] =

Mkl kE<n
* k>n

with natural transformations 7, — 7,,_1. We let i,, be the fiber of 7, — 7,1, i.e., i, M[k] = * for
k # n and i, M[n] = M[n] in which case we say i, M is concentrated at level n.
For M = O the truncations 7,0 assemble into a tower of (O, O)-bimodules which receives a
map from O of the form
O— - =130 =10 —=10. (2.4)

The tower (2.4) is well studied and plays a central role in examining the homotopy completion of
a structured ring spectrum as in [36]. Note as well that O — 7,0 is a map of operads and there is
a well-defined composite 71O — O — 7,0 which factors the identity on 7 O.

2.7 Change of operad adjunction

Associated to a map f: O — O of operads there is a Quillen adjunction of the form (see, e.g., [50])

I+
Algy " Algy,
=

in which the left adjoint f, is given by the (reflective) coequalizer
Fo(X) = 0 06 (X) = colim ( O 000 (X) —Z 0 o (X) )

and the right adjoint f* is the forgetful functor along f. If f is a levelwise equivalence then the
above adjunction is a Quillen equivalence and furthermore the left derived functor Lf, may be
calculated via a simplicial bar construction as follows (see, e.g., [34])

Lf.(X) := O o (X) ~ | Bar(0', 0, X°)|.

2.8 Stabilization of O-algebras

In order to have a well-defined calculus of functors on Alg, it is necessary to understand the
stabilization of the category of such algebras. Note that Alg, is tensored over simplicial sets (see,
e.g., [20, §7]) and thus one can define Sp(Algy ), the category of Bousfield-Friendlander spectra of
O-algebras, which is Quillen equivalent to the category of left O[1]-modules, Modpyy) (see, e.g., [5]
or [49, §2]).

IThe main property we are interested in here is that such functors induce equivalences on homotopy limits.
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The stabilization map for O-algebras is thus equivalent to the left adjoint of (2.7) with respect
to the map of operads O — 1,0, i.e.,
Ef\?goX ~ 71(9 (976 (X)

for O-algebras X. By analogy, Q,‘i‘fgo gives an O[1]-module trivial O-algebra structure above level
2. Moreover, if O[1] 2 S, then the stabilization of Alg, is equivalent to the underlying category
Spt.

As in [20], we replace 710 by a “fattened-up” operad J to produce an iterable model for TQ-
homology with the right homotopy type. That is, let J be any factorization

o L0
in the category of operads, where h is a cofibration and g a weak equivalence. There are then
change of operads adjunctions

Q g
Algp -~ Alg; <——Alg, » = Modo (2.5)

*

g9

such that (g.,¢*) is a Quillen equivalence and, notably, U preserves cofibrant objects (see [36,
5.49]). We refer to the pair (Q,U) as the stabilization adjunction for O-algebras and use Alg; as
our model for the stabilization of Alg,.

2.9 TQ-homology

The total left derived functor LQ(X) =: TQ(X) is called the TQ-homology spectrum of X and
the composite RU(LQ(X)) is the TQ-homology O-algebra of X. We note that the TQ-homology
spectrum of X may be calculated in the underlying category Spt as

LQ(X) ~ | Bar(J, 0, X°)| ~ | Bar(r.0, O, X°)|.

For simplicity, we will assume the O-algebras we work with are cofibrant by first replacing X by
X<, where (—)¢ denotes a functorial cofibrant replacement in Alg,.

2.10 The Bousfield-Kan resolution with respect to TQ

Associated to the stabilization adjunction for O-algebras (Q,U) there is a comonad K := QU on
Alg;. Given Y a K-coalgebra, we let C(Y") denote the cosimplicial object Cobar(U, K,Y).
For X € Algy, let X — C(X) := C(QX) be the coaugmented cosimplicial object given below

X = (UQX) == (UQ)*(X) == (UQ)*(X) -+ ) (2.6)
%(JOO(X):;JO()JOO(X)E;)JOOJO(’)JOO(X)”')

Coface maps d* in (2.6) are induced by inserting O — J at the i-th position, i.e.,
JOO...OojgJOO...OOOOO...OOJ_)JOO...OOJOO...OOJ
and codegeneracy maps s/ are induced by J op J — J oy J = J at the j-th position.

Remark 2.4. The totalization of the diagram (2.6) above is called the TQ-completion of an O-
algebra X, defined by

X7q = Tot C(X) =~ holima C(X).
It is known that X ~ X{, for any O-connected O-algebra X (sce, e.g., [19]).
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2.11 Cubical diagrams

Let P(n) denote the poset of subsets of the set {1,...,n}. A functor Z: P(n) — C is called an
n-cube in C or also an n-cubical diagram. We use the following notation Py(n) := P(n) \ {@} and
Pi(n) :=P(n)\ {{1,...,n}} and refer to diagrams shaped on either Py(n) or Pi(n) as punctured
n-cubes. The total homotopy fiber of an n-cube Z, denoted tohofib Z, is defined to be the homotopy
fiber of the natural comparison map xo: Z2(9) — holimp,(,) Z. If the comparison xq is a weak
equivalence (resp. k-connected) we say that Z is homotopy cartesian (resp. k-cartesian).

Dually, the total homotopy cofiber of Z is the homotopy cofiber of x1: hocolimp, () Z —
Z({1,...,n}) which we denote by tohocofib Z. If x; is a weak equivalence (resp. k-connected)
we say that Z is homotopy cocartesian (resp. k-cocartesian). We note that the total homotopy
fiber (resp. cofiber) of a cube may be calculated by iterated homotopy fibers (resp. cofibers), see
e.g., [7, 3.2].

0
Example 2.5 (Coface n-cube). Let Z~1 4, Z* be a coaugmented cosimplicial object. There
are associated coface n-cubes Z, whose subfaces encode the relation on coface maps (see, e.g.,
Ching-Harper [20, §2.3]). We demonstrate Z; and Z3 below

d° d°

z-1 > Z0 Z_} > Z0
o Y{
N
0 0 1
d d d° 20 % z1
% ) at d°
z0__ 4 A1 v 2
z0 —& >zl d
2

zZt— -z

2.12 Higher stabilization for O-algebras

For k > 0, let AS* denote the full subcategory of A comprised of sets [(] € A for £ < k (note
AS~! = ). There are inclusions of categories

F=AST1 5 ASO S AS 5 S ASEF L S A

and moreover holima Y may be computed as limit of the tower {holima<» Y} (see, e.g., [20, §8.11]
for a detailed write-up). There is a natural homotopy left cofinal inclusion Py(n) — AS""1 which,
in particular, allows us to model the comparison X — holima<»-1 C(X) via the map xo (see
Section 2.11) for the coface n-cube associated to X — C(X).

By careful examination of the connectivities of these maps, Blomquist is able to obtain the
following strong convergence estimates as a corollary to [10, 7.1] (see also Dundas [25] and Dundas-
Goodwillie-McCarthy [26]).

Proposition 2.6. Let O be an operad in Spt whose entries are (—1)-connected, X € Algy k-
connected, and C(X) as in (2.4). Then, for any n > 0 the induced map X — holima<n-1 C(X) is
(k4 1)(n + 1)-connected.
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These estimates show, in particular, if X is O-connected then X — X?Q (see also Ching-Harper
[19]).

3 Functor calculus and Goodwillie derivatives in Alg,

Functor calculus was introduced by Goodwillie in a landmark series of papers [31, 32, 33] as a
means of analyzing homotopy functors to or from Top, or Spt. Since, the theory been recognized
as a general phenomenon which, in particular, relates a suitable model category to its stabilization.
We refer the reader to [3] for an overview and exposition of some recent applications of the theory.

In this document we will only consider functors of structured ring spectra described as algebras
over a reduced operad O in Spt. We refer the reader to Pereira [49] for a more detail on functor
calculus in categories of structured ring spectra.

3.1 The Taylor tower

A central construction in functor calculus is that of the Taylor tower (sometimes referred to also
as the Gooduwillie tower) of n-excisive approximations associated to a functor F': Alg,, — Alg,, as
follows

D, F (3.1)

|

F P, F Py F——>...— > PF.

The functor P, F is called the n-th excisive approximation to F and is initial in the homotopy
category of n-excisive functors receiving a map from F'. In this work, all of our approximations are
based at the zero object * € Alg,. The functor D, F' is called the n-th homogeneous layer and is
defined as

D, F :=hofib(P,F — P,_1 F).

Note that PyF is a constant functor taking value F'(x). We call F' reduced if F(x) ~ % and note
that for reduced functors we have PiF' ~ Dy F. We refer the reader to [32, §3] for the definition
and overview of the theory of n-excisive functors; though remark that such functors share similar
properties as the n-th Taylor polynomial associated to a function from calculus of one variable.

3.2 Analytic functors

If F satisfies additional connectivity conditions on certain cubical diagrams (e.g., if F' is suitably
stably n-excisive for all n as in [32, 4.1]) we call F' analytic, or more specifically p-analytic: a key
feature being that an analytic functor F' may be recovered as the homotopy limit of the tower (3.1)
on p-connected inputs X, i.e.,

F(X) ~ holim,, P, F(X).

For instance, the identity functor on Top, is 1-analytic by the higher Blakers-Massey theorems
(see, e.g., [32, §2]) and the analogous results for structured ring spectra of Ching-Harper [19]
demonstrate that the identity functor on Alg, is 0-analytic.

3.3 Cross effects and derivatives
Let S, (X1,...,X,) denote the n-cube

T \/ Xy, for T € P(n).
t¢T
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The n-th cross effect of G is the n-variable functor defined by
cr, G(X1, ..., X,) := tohofib G(S, (X1, ..., X))

Our work concerns the derivatives of a functor F', which are certain spectra which classify the
homogeneous layers D,, F' (under some mild conditions on F') and are computable via cross effects.
We recall first that a functor G is n-homogeneous if G is n-excisive and PyG ~ * for k < n and
that G is finitary if G commutes with filtered homotopy colimits.

A major triumph of functor calculus is the classification of n-homogeneous functors. Proposition
3.1 below is summarized from Goodwillie [33] (for functors of spaces) and Pereira [49] (for functors
of O-algebras) and highlights the relevant properties of the homogeneous layers D,, F' and derivatives
On F' associated to a functor F'. For notational convenience we let TQ denote the composite g, TQ ~
710 0p ().

Proposition 3.1. Let F': Algy, — Algy be a homotopy functor, X € Algy,, and n > 1. Then:
(i) D,F is n-homogeneous.
(ii) There are n-homogeneous functors D,, F' and ]f);F such that the following diagram commutes

g«

Q
Alg,, Alg Modop] (3.2)

anF \LDWF lﬁ;p

Algo U Alg y = Modoy

(iii) Thereis a (J, J)-bimodule 0, F, whose n-th entry 0, F is called the n-th Goodwillie derivative
of F', and such that there are equivalences of underlying spectra

D, F(X) 2~ i, (0, F) o (TQ(X))

(iv) D, F is characterized by an (O[1], O[1]")-bimodule? dpF which has underlying spectrum
equivalent to that of 9, F.

(v) There are equivalences of underlying spectra
Dy F(X) = (9 F Aoy TREON s, = 9 F Ay TQIX)N™ (33)
(vi) The n-th derivative may be calculated via n-th cross effects cr,, as
O F =~ 8,F ~ cr, D, F(O[1],...,0[1])

with right O[1]"-action granted by permuting the inputs.

2That is, a left module over O[1] and right module over O[1]!" (see Definition 3.3 for the definition of the wreath
product O[1]'")
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Remark 3.2. The above equivalence (3.3) hold in general for finite cell O-algebras X and, if F
further is finitary (i.e., F' commutes with filtered homotopy colimits), then the equivalences may be
extended to arbitrary O-algebras X. The notation AL and o" denote the derived smash product and
circle product, respectively. We will often omit the latter notation and understand our constructions
to be implicitly derived.

The careful reader might note that the n-th Goodwillie derivative of F is only defined up to weak
equivalence, and so the choice 0, F vs. 0, F may seem a pedantic distinction. For our purposes,
this distinction is beneficial to the readibility of several of the upcoming proofs. Further, there are
equivalences . .

LgsOnF ~ 0, F and 9, F ~ Rg*0, F,
and for concreteness, the model for the derivatives of the identity we employ is as a (J, J)-bimodule,
Tot C(O) (see (4.6)).

Of note is that the choice of D, F' (resp. Hf)TnF) may be made functorial in F' by a straightforward
modification of the argument presented in [1, 2.7]. In particular if F' is finitary, then for any
Y € Modp(y) we have

D, F(Y) = 8, F Aoppm Y (3.4)

3.4 A note on wreath products

We use O[1]" to denote the twisted group ring (i.e., wreath product) (X,)+ A O[1]"™. We recall
some pertinent details of wreath products of ring spectra below.

Definition 3.3. Given a ring spectrum R we define
R™ =%, RN = (X,) AR

with multiplication given by
(cANZ)AN(TAY) = oT Axo(y).

Our main use of such objects stems from the following proposition (see also [42, Lemma 14],
[40, §2]). Note that a right R¥-module is a (right) X,, object via the unit map I — R.

Proposition 3.4. Let R be a ring spectrum, X a left R-module and M a right R-module with n
commuting actions of R (i.e., right R""-module). Then, there is an isomorphism

(M Agan XN)s, & M Agen X

Remark 3.5. The right-hand equivalence of (3.3) is an instance of this equivalence. Of note is
that if X is a cofibrant O-algebra, then TQ(X) is cofibrant in Mode;) and therefore Proposition
3.4 provides that TQ(X)"" is a cofibrant as a left O[1]""-module.

In addition, the (O[1], O[1]")-bimodule structure on the derivatives 8, F for all n > 1 induces
(110, 710)-bimodule structure on the symmetric sequence 9, F which is further compatible with the
(J, J)-bimodule structure on 9, F via the (g., g*) adjunction. In the simplified case that O[1] = S,
an (S, S™)-bimodule is just a spectrum with a right action by ¥,, and (3.3) reduces to an equivalence
of underlying spectra - .

D, F(X)~0,F As, TQ(X) "
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3.5 Taylor towers of certain functors Alg, — Algy

Let M be a cofibrant (O, O)-bimodule with M[0] = % whose terms are (—1)-connected. We define
a functor Fis: Algy, — Algy at X € Algy by the simplicial bar construction

Fr(X) = |Bar(M, O, X)| ~ M of) (X). (3.5)

Note Fjs is finitary and the left O action on M induces a left O action on Fp(X). The
following proposition may be summarized from Harper-Hess [36] and Kuhn-Pereira [40, §2.7] and
further provides a model for the Taylor tower of functors Fj;. For completion, we sketch proofs of
the relevant details.

Proposition 3.6. Let M and F); be as described above. Then there are equivalences (natural in
M)

(1) PnF]M ~ TnM 0?9 (*)
(ii) DypFa =~ inM oYy (=) ~ i, M o' (TQ(-))
(i) Dy Far(=) = M(n] Aypypn ()"

(iv) OnFyp ~ M(n]
such that the Taylor tower for Fj; is equivalent to

inM o ()

|

Fag —— -+ 7y M ofy (=) ——= Ty M oy (=) —> - —= M o}y ().
Proof. We will write o for o and A for AL. The equivalence (i) holds as 7, M op (—) is n-excisive
(see, e.g., [49, 4.3]) and by a connectivity argument (see [36, 1.14]). For (ii) we note that morphisms
TnM — T,_1M give rise to the comparison maps on excisive approximations P, Fs n, P,_1Fy

and moreover the fiber sequence
inM — 7, M — 11 M

identifies i, M oo (—) with the fiber of ¢,,. Moreover, as the right O-action on i,, M factors through
710 there are then equivalences of underlying spectra

DnFM(X) ~ (lnM om0 7'10) [eT0) (X)
~ inM Or0 (7'1 *76) (X)) ~ inM oy (TQ(X))
Note that (iii) follows from the observation that any Y € Modoy;
inM om0 (Y) ~ M[n] /\omzn Y/\n.

The proof of (iv) follows from the equivalence cr,, F' ~ ct™ F' between cross-effects and co-cross-
effects of functors landing in a stable category as in Ching [16] (see also McCarthy [46]), where
latter is defined dually to cr,, as follows

" G(Xy,...,X,) = tohocofib (’P(n) 5T~ G (H Xt>> .

teT



Derivatives of the identity 133

In particular, taking co-cross-effects will commute with Aoy and so
ety D Fyy = crn (M[n) Aoy (—)) = M[n] Aoppm cra((—)").
Via the computation cr,, ((—)"") ~ (£,)+ A ()"
O Far = M[n] Aopyem O[1]" ~ M(n).

we then obtain

Q.E.D.

Definition 3.7. For functors of the form Fj; we take as our models for P, F;, D, Fy; and évFM
those from Proposition 3.6. A map M — M’ of cofibrant (O, O)-bimodules induces natural trans-
formations P, Fy — P, Fy and D, Fpy — D, Fyr, and also that 3 Fy — o, n Far is equivalent to
Mn] — M'[n].

3.6 The Taylor tower of the identity on Alg,

Note that for M = O, the functor Fp is equivalent to the identity via Oop (—) >~ Idajg,. Moreover,
there are natural transformations Idaig, —+ 7,0 oo (—) provided by the unit map of the change of
operads adjunction (Section 2.7) applied to the map of operads O — 7,,0. The Taylor tower of the
identity in Alge, then is equivalent to

inO o0 (—) (3.6)

|

Ldag, —> —> 1000 (=) —= 71000 (=) — - —> 11000 (-)

This tower (3.6) has previously been studied by Harper-Hess [36] in relation to homotopy com-
pletion of O-algebras (see also Kuhn [41] and McCarthy-Minasian [47]). Moreover, Ching-Harper
provide Alg,, analogues of the higher Blakers-Massey theorems in [19] which in particular show that
Idalg, is O-analytic. That is, for O-connected X the following comparison map is an equivalence

X — holim,, 7,0 oo (X).
As a corollary to Proposition 3.6, we obtain equivalences of underlying spectra (see also [36])
DnIdAIgo (X) ~ 3,0 op (X) ~ O[n] /\(9[1]1’" -FQ(X)/\n

and also observe that E);IdAh%o ~ Oln] as a (O[1], O[1]"*)-bimodule for all n > 1. Therefore, with
a view toward the operad structure on 0,Idtep, constructed by Ching in [15] we are lead to the
following question, found in Arone-Ching [1].

3.7 Main question

Is it possible to endow 0, Idaig o With a naturally occurring operad structure such that 0:Idaig o0
as operads?

A key idea to our approach is taken from Arone-Kankaanrinta [4] where they show that 0, Idtop,
may be better understood by utilizing the cosimplicial resolution from the stabilization adjunction
(X°°,0°°) by means of the Snaith splitting. Within the realm of 0-connected O-algebras, the (Q,U)
adjunction between Alg,, and Alg; (the latter, recall, is Quillen equivalent to Modp(y)) is the exact
analogue of stabilization. We provide an Alg,, analogue of the Snaith splitting in Section 4.2.
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4 A model for derivatives of the identity in Alg,

The aim of this section is to describe specifically the model for the derivatives of the identity we
employ, as Tot of a certain cosimplicial symmetric sequence C(Q) which may be motivated as the
totalization of the cosimplicial object arising from a calculation of the n-th derivative of (QU)* via
the Snaith splitting in Alg,. We are further motivated by work of Arone-Kankaanrinta [4] which
utilizes the Snaith splitting in spaces (4.1) to provide a model for the derivatives of the identity in
spaces.

4.1 The Snaith splitting

We first recall the Snaith splitting in Top,, that is, the existence of an equivalence (see, e.g., Snaith
[52] or Cohen-May-Taylor [22])

QPN ®(X) ~ \/ T2Xg" = \/ S Ag, BEXM (4.1)
n>1 n>1

where X, acts on S trivially. We interpret the above to mean that the Taylor tower for the
associated comonad to the suspension adjunction, 3°°Q, splits on the image of ¥°°(—) as the
coproduct of its homogeneous layers and moreover that 9,(2°0Q%) ~ § with trivial X,-action.
Via this splitting in spaces one obtains

8n(QOOZOO)k+1 ~ ﬁok[n]

where S denotes the reduced symmetric sequence with S[n] = S with trivial ,, action. Further-
more, S inherits a natural cooperad structure and 0,Idtop, is equivalent to the cobar construction
on S (see [4], [15]).

Remark 4.1. In the sequel to this work [21], we describe a [J-monoid (see Definition 5.5) C(S) €
SymSeqSApt whose totalization is equivalent to the cobar construction on S. This allows for a new
description of an operad structure on 0, IdT,,, using the methods from this document and addresses
item (i) of Section 1.1.

4.2 The Snaith splitting in Alg,

There is an analogous result for O-algebras, wherein the adjunction (%°°, Q) is replaced by (Q, U)
from (2.5). Let B(O) be the (J, J)-bimodule

B(0) = J o}, J =~ |Bar(J,0, J)|
and note that given Y € Alg; cofibrant there is a zig-zag of equivalences.
QU(Y) <= |Bar(J,0,Y)| = |Bar(J,0,J)|os (Y) = B(O)o; (V).
The Algy, Snaith splitting is then the equivalence
QU(Y)~ B(O)oy (Y). (4.2)

Remark 4.2. At first blush, (4.2) may not seem like a proper “splitting” in the style of (4.1).
This is more an artifact of our use of Alg; for the stabilization of Alg,. Indeed, given instead
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Y € Modpyij, the associated comonad arising from the adjunction (g.Q,Ug*) between Alg, and
Modp[1) has a natural splitting

9:QUg* (V) ~ \/ B(O)[K] Noppr Yk
E>1

such that B(OQ) = 7,0 oy, 710 ~ | Bar(n 0, 0, 710)| ~ | Bar(J, 0, J)| ~ B(O).

4.3 Cooperad structure on B(O)

It is known that B(O) (resp. B (0)) is a coaugmented cooperad, at least in the homotopy category
of spectra (see, e.g., Ching [15] for the topological case, Lurie [44, §5] for an co-categorical approach,
or Ginzburg-Kapranov [30] for the chain complexes case) via the natural comultiplication

Joly J o Jol Ooly J — Joly Joby J o (Joly J)oy (Jop J).

We would like to say that the Alg, Snaith splitting allows one to immediately recognize 0. Idajg,,
as the cobar construction on B(Q), however the splittings provided seem to be too weak to justify
this claim (a similar problem is enocuntered in Arone-Kankaanrinta [4] for the classic Snaith split-
ting). As such, one benefit of our work is that we do not require any more rigid cooperad structure
on B(0O) to produce our model for 0,Idag,,-

Also of note is that the Alg, Snaith splitting may be interpreted to say that any ¥ € Alg;
(resp. Y € Modpj1)) is naturally a divided power coalgebra over B(O) (resp. B(0)), at least in the
homotopy category, and that the functor X — TQ(X) underlies the left-adjoint to the conjectured
Quillen equivalence (i.e., Koszul duality equivalence) between nilpotent O-algebras and nilpotent
divided power B(O)-coalgebras from Francis-Gaitsgory [29] (which has since been partially resolved
by Ching-Harper [20]).

4.4 Interaction of the stabilization resolution with Taylor towers

We now provide the explicit model we employ for 0.Idaig,. Our argument is essentially to show
that one can “move the 0, inside the holim” on the right hand side of (2.6) by higher stabilization
and then use the Alg, Snaith splitting to recognize the resulting diagram. Let us write Id for
IdAlgo-

Proposition 4.3. Let k > n > 1, then P,Id = holima<s—1 P,((UQ)**1).
Proof. The estimates from Proposition 2.6 suffice to show that the map
¢k: Id — holima <x—1 C(—)

agrees to order n on the subcategory of 0-connected objects (see [33, 1.2]) in which case P, (cy) is
an equivalence via [33, 1.6]. Further,

Py (holimp<i—1 C(—)) ~ holimp <r—1 P, ((UQ)**1)

as P,(—) commutes with very finite3 homotopy limits by construction (cf. Section 2.12). Q.E.D.

3Recall that a very finite homotopy limit is one taken over a diagram whose nerve has only finitely many nonde-
generate simplices, and that such homotopy limits will commute with filtered homotopy colimits. Homotopy limits
over n-cubes and punctured n-cubes are very finite
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Since D, (—) and 0,(—) are built from P,(—) by very finite homotopy limits, Proposition 4.3
extends to an equivalence on homogeneous layers and derivatives as well. Moreover, the restriction
map

holima P, ((UQ)*™") — holima<k—1 P,((UQ)**)

is an equivalence for £ > n > 1 as the objects as a corollary to the higher stabilization estimates
from Proposition 2.6 (resp. for D,, and 9,).
Let M be an (O, O)-bimodule. For notational convenience, for k > 1, we set

M® = Moy 00 M. (4.3)
| —
k

Note that J*) is a cofibrant (O, O)-bimodule with (UQ)**1(X) = J*+1) o4 (X). By Proposition
3.6, there are then equivalences

Pu1d S holimazis ( Pa(UQ) == Pul(UQ)?) ==5 P((UQ)) -+ )
~holimpzi-s (72T 00 (=) =% 7@ 00 (=) =F 1 I 00 (=) -+ )
and
D,1d S holima i ( Da(UQ) =% Du((UQ)?) =% Do((UQ)Y) -+ )
~ holima <x_» ( ind M 00 (=) =2 inJ® 00 (=) == inJ® 00 (=) -+ )

whenever k£ > n > 1.
Note there is an equivalence of restricted diagrams

(10 T 00 (<))l aze—1 = Pu((UQ)* ) i

(resp. (inJ®HD 0o (=))|a<i—1 =~ D (UQ)*T1)| a<k—1) by first replacing the coface k-cube associ-
ated to
Id— (UQ)*H

by the k-cube Zj (see (4.4) below) and then applying 7,, (resp. i,) objectwise.

J 1€T

O i¢T (4.4)

{P(k) 5T +— Zk(T) = (Z1 op - 00 Zk) (o756} (—)} such that Z; = {

We then use the corresponding models for ]If)Tn from Proposition 3.6 and compute the n-th
derivatives via cross effects to obtain equivalences

116 S bolim et ( D,(0Q) == 0,(UQ) =E3,(0Q)) ) (45)
~ holim <1 ( (nO0)V[n] == (n0)@[n] =% (nO)®n] --- ) :

for k >n>1.
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Example 4.4. We sketch this process for K = n = 2. Note, there is an isomorphism of square
diagrams of the form

0

14— U0 (000 0) 00 (=) —L= (000 J) 00 (~)

e

UQ—~UQUQ  (Jop0)oo (=) —L= (Joo J) oo (—).

1%

Taking 2-homogeneous layers, we obtain an equivalence of homotopy pullback squares

DoTd—% + DyUQ) i2(0 00 0) 00 () —L= i5(0 00 J) 00 (~)
ld” ldo = ldo J/d"
Do(UQ) —2> Dy (UQUQ) s 00 O) o0 (=) —2is(J 00 J) 00 ().

The associated lifts ﬁ;(—) to functors on Modp(y) from Proposition 3.6 then fit into a homotopy
pullback square

dO

DyId (000 110)[2] Aoppz (=)

; -

(110 00 O)[2] Aop)e (—)"2 s (110 00 T10)[2] Noppe ()"

which by taking cross effects cro then provides an equivalence of homotopy pullback squares

&h1d—L ~ 5,U0) Bhid— 2~ 1 0[2 81d—L g

e T

BHUQ) —L > BHUQUQ) mOR —L= (0o nO)2 T2 —4> (Joo J)[2I.

Remark 4.5. It follows then that d,Id is obtained as holima C(O) ~ Tot C'(O), where C(O) is
the following cosimplicial diagram (showing only coface maps)

C(O)z(JOOOHHJooJOOOﬁﬁ; JO(’)JOOJO(’)O"'> (4.6)
E(J:>>JOOJ—>4)JOOJOOJ~~),

with coface maps as in (2.6), i.e., C(O) = J*+1. In other words C(O) provides a rigidification of
the diagram 9,(UQ)* ! whose terms are a priori defined only up to homotopy.

5 The box-product of cosimplicial objects

The aim of this section is to introduce the box product O for cosimplicial objects in a monoidal
category (C, ®,1) as first introduced by Batanin [6]. For nice categories C (e.g., C closed, symmetric
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monoidal), the box product endows C2 with a monoidal structure, and cosimplicial objects which
admits a monoidal pairing with respect to (I inherit an A,.,-monoidal pairing on their totalizations
(see, e.g., McClure-Smith [48, 3.1]).

Our use of the box product will be to produce a homotopy-coherent (i.e., A-) composi-
tion on the derivatives of the identity, modeled as Tot C(O), by demonstrating a natural pairing
C(0)dC(0) = C(0) (Example 5.3).

Definition 5.1. Let (C,®,1) be a monoidal category and X,Y € CA. Define their boz product
X0y € C2 at level n by

(Xay)" :=colim [ [ X*evi=— ][] X oY’

p+qg=n r+s=n—1

where the maps are induced by id ® d° and d"t!' ® id. The object XY inherits cosimplicial
structure via coface maps d*: (XOY)" — (XOY)" ! induced by

Xp®yqﬂ>Xp+l®yq i<p

XP oy 924" xp g yaet! i>p
and codegeneracy maps s/: (XOY)" — (XOY)" ! induced by

XPoye 2% xp-1gya j<p

XPoye 98" xp g ya-l i>p

see also Ching-Harper [20, §4].

Remark 5.2. Note, (XOY)? = X®Y? (XOY)! and (XOY)? may be computed as the colimits
of
X'@y! X'®Y?

id®dOT id®dOT

X0®YO - X1®Yo and X0®Y1 5X1®Y1

d'®id d'®id
id®d°T

X1®YOMX2®YO
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respectively, and in general (XOY)™ may be computed as the colimit of the staircase diagram

X'@yn (5.1)

Xn—l ®Y1

id®d0T

Xn—l ® YO dn®id§ xXn ® YO

In particular, if (C,®,1) is closed, symmetric monoidal then [J defines a monoidal category
(C®,00,1), here 1 is the constant cosimplicial object on the unit 1 € C (see, e.g., Batanin [6]).

Example 5.3. Recall the cosimplicial symmetric sequence C(0) = J(*+1) from (4.6). We observe
that C'(O) admits a pairing C(O)JC(0) 2 C(O), where [ denotes the box product in SymSquApt,
induced as follows. Let ¢ denote the operad composition map c¢: J o J — J. Then,

(C(O)AC(0)° 2 JoJ S J=C(0)
For level 1 we observe that there are maps
moa:JoJopJ = JopJ and myg: JopJoJ = Jop J

induced by J o J — J which induces m via the following commuting square

JoJooJ —21s Jop J (5.2)

we] ]

d'oid
JoJ——>JopJoJ
More generally, there are maps of the form
Mpq: JP o J@D — JOTD for p+g=mn,p,qg>0

induced by ¢, which induces the pairing m at level n.

Remark 5.4. The above construction is entirely analogous to the following example found in
McClure-Smith [48] that the based loop space QX of X € Top, admits an A, composition induced
by an underlying O-pairing. In this case, 2X is modeled as the totalization of the cobar complex
¢(X) built with respect to the natural comultiplication (with coaugmentation) given by the diagonal
6: X - X x X.
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It follows that ¢(X)P = X*P and the pairing ¢(X)Oc(X) — ¢(X) is induced by the natural
isomorphisms X *? x X*? = X*PT4_ Further, McClure-Smith show that Totc¢(X) is an algebra
over the (nonsymmetric) coendmorphism operad on A®, i.e.,

Aln) = Mapkﬂs (A'7 (A')D”)

which satisfies A[0] = * and A[n] =5 % for n > 1 (in fact A” and (A®*CJA®)" are homeomorphic),
and that with respect to this structure Tot ¢(X) ~ QX as Ao-monoids.

5.1 The box product in SymSeq®

Our aim now is to build a framework in which we can work with the structure captured by Example
5.3, e.g., by considering the box-product in the category of cosimplicial objects in (SymSeqc, o, I)
of symmetric sequences for (C,®,1) some closed symmetric monoidal category.

The main difficulty is that the composition product of symmetric sequences does not always
commute with colimits taken in the right hand entry. That is, for B: Z — SymSeq a small diagram
and A € SymSeq, the universal map

colim;ez(A o B;) = Ao (colim;ez B;) (5.3)

is not an isomorphism in general. Thus the box-product fails to be strictly monoidal in this setting.
Let us write SymSeq = SymSeq. and O for the box-product in SymSeq® (in words we refer

to O as the boz-circle product). Let X,Y,Z, ... be cosimplicial symmetric sequences. We will

systematically interpret expressions of the form X OYOZ to be expanded from the left, i.e.,

XOYOz .= (XOY)0Z, XOYOZOW = (XOY)DZ)0OW, ...

and note that via the universal map in (5.3) there is always a canonical comparison map 6 of the
form

0: XOYOZ = (XOY)0Z — XO(YOZ) (5.4)

which likely fails to be invertible. However, 0 is sufficient to provide a suitable description of
monoids with respect to [J, i.e., Definition 5.5, below. First, we note that the unit I € SymSeqc
induces a unit I € SymSeqc as the constant cosimplicial object on [ in that there are isomorphisms

X0l >~ X ~0X.

For instance, the right isomorphism is obtained by noting that for any p, ¢ the map d?*!oid in
the following

lp o Xet1

idodOT

p+1;
IP o X4 uilm-l o X1

is just the identity (and hence has an inverse). Therefore, the inclusion of the vertex I 96 X" into
the diagram defining (X0IX)™ is right cofinal (i.e., induces an isomorphism on colimits).
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Definition 5.5. By O-monoid in SymSqu, we mean a cosimplicial symmetric sequence X" together
with maps m: XOX — X and u: I — X so that the following associativity (5.5) and unitality
(5.6) diagrams commute

xO0x0x —2 s xO(x0x) 492 vOx (5.5)
(xOx)BOx 09 ey Jc
and
X0 24P yop 2294 ey (5.6)
X

Remark 5.6. We remark that in the language of Ching [17] (see also Day-Street [23]), I admits
a normal oplax monoidal structure by defining

X0 0X = (- (X 0X)0X3) - -0,

and obtaining grouping maps from the universal map in (5.3). Our notion of [J-monoids are normal
oplax monoids with respect to such structure by appealing to Ching [17, 3.4], noting in particular
that four-fold and higher associativity diagrams are known to commute given the commutativity
of (5.5).

Proposition 5.7. The cosimplicial symmetric sequence C(O) (see (4.6)) admits a natural 0-
monoid structure, i.e., there are maps m: C(O)0C(0) — C(O) and u: I — C(O) which satisfy
associativity and unitality.

Proof. The map m is that constructed in Example 5.3. The unit I — J provides a coaugmentation
I — C(O) which in turn induces a map u: I — C(O).
Associativity (5.5) follows from a routine calculation, observing that

d°: (C(O)OC(0))? — (C(O)TC(0))at?

is induced by d° oid: C(0)" o C(0)* — C(O)™*1 o C(0O)? for r + s = g. Similarly, the right-hand
triangle from the unitality diagram (5.6) is granted by the following commuting diagrams

I 0 C(0)7 24 C(O)P 0 C(O)"

\LZ imp,q
o o

C(0)y1 —L T, c(oyrta

for all p,q. A similar argument provides the commutativity of the other side of the unitality
diagram. Q.E.D.
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Theorem 1.1(a) is then obtained as a corollary to the following proposition, the proof of which
is deferred to Section 8.1. As such, the aim of the following sections is to set up a precise framework
to describe what is meant by A..-operad.

Proposition 5.8. If X' is a [J-monoid in SymSquApt, then Tot X' is an A.-monoid with respect to
the composition product (i.e., A-operad).

6 N-colored operads with levels

In this section we develop our theory of N = {0,1,2,... }-colored operads with levels, which we refer
to as Nje,-operads. The motivating principle behind our constructions is to provide a framework
to fatten-up the usual notion of operads and their algebras. For this section (C,®,1) will denote
a given cocomplete closed, symmetric monoidal category with initial object x. We first recall the
classical theory of colored operads.

6.1 Colored operads

Colored operads (sometimes also referred to as multicategories) offer a generalization of operads to
encode more nuanced algebraic operations on their algebras. We give an overview of their pertinent
details below and refer the reader to Leinster [43] or Elmendorf-Mandell [27] for more information.
As before, we will only need to consider colored operads in the category of spectra.

Definition 6.1. Let C' be a nonempty set, i.e., a set of colors. A C-colored operad M in C consists
of

e Objects M(cy,...,cn;d) € C for all (cq,...,cn;d) € CX™ x C and n >0
e A unit map 1 — M(c;c) for all c € C
e Composition maps of the form
M(er, .oyl )QMD11s - D1k C1) @ @ M(Drty - vy Pk Cn)
= M(P1,1s-- s Pnken;d)
subject equivariance, associativity and unitality conditions (see, e.g., [27, 2.1]).

An algebra over M is a C-colored object, i.e., X = {X_.}.cc such that X, € C for all ¢ € C,
together with maps for each tuple (c1,...,c,;d) € C*™ x C of the form

M, o yen;d) @ Xy @+ @ X, — Xa

the collection of which is required to satisfy equivariance, associativity and unitality conditions.

Berger-Moerdijk provide a list of examples in [9, §1.5]; of note is that for C' = {x}, a one-colored
operad is just an operad in the classical sense. The following constructions are also motivated by
White-Yau [53] wherein a composition product for C-colored operads is provided.
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6.2 Nj,-objects

The purpose of this section is to introduce the notion of a nonsymmetric, N-colored sequence with
levels in C. We will refer to these as N, -0bjects. In our framework, N,-objects will play a role
analogous to symmetric sequences for classical (one-color) operads, though we note that we do not
yet impose any symmetric group actions on our Nj,-objects. Let s denote the set {1,...,s} (note
that 0 = @).

Definition 6.2. For k > 0, let N°* denote the set of tuples of orbits

NoF {(nl,(n‘f,--~ 2 )y (ke mE L )s ) nd > ow,j}

. j—1 . ~
where n’ is inductively defined as 27;1 n] and we set n® := 1. We then treat N°F as a category

with only identity morphisms.

Note that the superscripts in Definition 6.2 are used for indexing and are not powers, we will
adhere to this convention throughout the document. Elements p € N°* will be referred to as profiles,
we will often suppress the orbit subscript and write (n1,...,ns) for the orbit (ny,...,ns)s,.

Definition 6.3. Given p = (n',..., (nf);cnc-1) € N°%, we define the weight of p to be the integer
nk =3, k-1 nk. For t € N, we write N°*[¢] for the set of profiles p € N°¥ of weight ¢.

Example 6.4. Computing small examples we see
NGO :{@}’ N62’£{(n’ (k1a7kn)) ‘N, k’i 20}7
N°! ~ N, N3 = L{(n, (k1y .o kn)s (bryeesty) ke =ky 4+ kp,ym, Ky, t > 0.

Remark 6.5. Note that profiles in N° are in bijective correspondence to indexing factors of ¢-fold
iterates of 6 from (2.3), therefore objects indexed on N°¢ naturally arise when evaluating ¢-fold
iterates of the composition product of symmetric sequences (Definition 2.2) from the left.

Given p = (n', (n?)ien1 ..., (n)icne-1) € N°‘[¢], the term
(X10---0Xy)[p]

is the collection of factors in (Xj o -+ o Xy)[¢] corresponding to the indexing tuples
(n{, . ,nfbl)szl S SumZ;_l,
forj=1,... ¢

Definition 6.6. Given profiles p,q € N° we define their amalgamation p Il g to be the orbit of
the levelwise disjoint union of the two profiles. In other words, given

= (TL17 (nzz)iEnlv (ng)ien% ) (nf)ienk_l)a

q= (mla (m?)jemlﬁ (m?)j6m27 ceey (m?)jEmkfl)’

3

then p Il g is given by

BH q = ((nl’ m1)> ((n?)ienl il (m?>j€m1>> BN ((ni?)ienk*l nl (mé?)jemkfl)) .



144 D. A. Clark

Remark 6.7. Note that p Il g is not an element of any N°F as its first entry is not a singleton.
However, if p, € N°¥[t;] for i = 1,...,n then
(n,ZAH~~~H&) e NOFHL 4o 4 t,].
For instance, if p = (2,(2,3)) and ¢ = (3,(2,3,4)) then
(2,pIq) = (2,(2,3)5,,(2.3,2,3,4)x,) € N3[14).
Definition 6.8. An N, -object P in a symmetric monoidal category C is a functor
P: [[N*xN-C
£>0

Equivalently, P = (Py)r>0 such that Py is a functor N x N — C. We also refer to Nje,-objects
as N-colored objects with levels. We further say an N,-object P is reduced if

o For £ > 1, Py(p;t) = * if p ¢ N°[¢]
o Py(;1)=1
o Po(T;n) =xforn # 1.
Recall that * denotes the initial object of C.

Note if P is reduced then P is determined by a functor [[,-,N® — C. We will mostly be
concerned with reduced Nje,-objects, but benefit from this more general definition when we discuss
algebras in Section 6.9.

6.3 A composition product for Nj-objects

The aim of this section is develop a monoidal composition product for Nj,-objects so that we may
encode Nje,-operads as monoids.

Definition 6.9. Let p = (n', (n?);en1, ..., (nF)icni-1) € N and let ¢1,...,¢; > 0 be given. Let
Q@ denote a collection of unordered sequences of profiles (g{, cee QZL ;1) for 5 =1,... k such that
gz € N°4 [n?].

We define the composite of p and @ to be the profile po @ € No(+-+8) given as follows

BOQ:: (i’Q?HHQZN ’gfﬂﬂgik—l)
Let
INELEY H NOA s ... 5 O
Ly, 0,20

be the collection of all pairs (p, @) such that

pP= (nla (nzz)iEnla ceey (nf)iEnk_l)a Q = (ﬂ PR (g?)jerlk—l)

so that the composite p o @ is defined (i.e., g{ e N4 [pd]).
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9

family of planar rooted trees (see, e.g. [15]) with ¢ leaves and k levels. More precisely, the numbers
n] describe the valence (number of input edges) to the i-th node at the j-th level, and a tree in this
family is determined by a family of morphisms ¢;: nd — nd=! for 1 < j < k such that |g0;1(z)| = nz
for all ¢, 5.

Let @ be so that p o @ is defined. From this perspective, a tree in the family corresponding to

Remark 6.10. It is convenient to think of an element p = (n,..., (n¥)) € N°¥[t] as describing a

poQis build by “blowing up” each node nf from p by a tree from the family corresponding to the
profile ¢] from Q.

Definition 6.11. We define the tensor & of reduced Nje,-objects Q',---, QF to be the left Kan
extension of the following

s s s Q's--8Q"
so (N 5o (I, om0 N0 X o x N fk)) 9o ¢ (6.1)
l@’Q)HpoQ
~ 1 A...A k
HZZO Nog QR -®Q C

left Kan ext.

such that if p o Q € N1+ [¢] then

(Q'6-- 50" (po@it) =0} (¢'in") @ Q) Q,(¢%nd) @ K F,(¢"nf

ienl i€Enk—1

Note then that (Q®k)@ o H21+--~+€k:é Qy,6---06Qy, , more specifically:

@z I II ¢ Q)(poQ;t) (6.2)
L+l =L p= BOQ

where we note that the summands ¢; are ordered.

Definition 6.12. Let P and Q be reduced Nje,-objects in C. Their nonsymmetric composition
product ® is defined as the coend P_ @y Q®~ where N denotes the category of finite sets n for
n > 0 with only identity morphisms. That is,

(PeQ)r = [ Pud(Q%*)..

k>0

We use the notation ® to designate the product Py (Qp,6---6Qy, ) is evaluated at a profile
(p;t) as follows

(Pr&(Qe,6---6Qu))(pst) = [ Pulpss) ®(Q'6---8Q%)(poQs1)

p=p’oQ

where p’ € N°*[s'] and Q is a family (¢7) as in (6.9) with ¢/ € N°% [s7].
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We necessarily then have

and can further describe PO Q as

Ptz JI  II P@:she@ &) Q,(dind) (6.3)

Lyl =L p=p’0Q Jj=1 \iens

=

Example 6.13. We will evaluate (P®Q)3 at
p = (n, (ki)ien, (t;)jex) € N[t]

for P, Q reduced Nj,-objects. Set k :=ky + - - - + k,,, we observe

(P2(218Q2)) (p5t) = I Pa(n, (s1,--,8n);t) ® (Ql(n;n) © @) Qa(g;; Si))
p=(n,(g,1I---1g )) ien
where ¢, € N©2[s;].
Using the language of Remark 6.10, we think of the above as partitioning the set of nodes
(tj)jex from p into n sets of size ki, ..., kn, e.g., by defining a map ¢: k — n such that [¢~*(i)| =

k; for i = 1,...,n. Such a partition determines n profiles ¢, = (ki, (t;)jep-1(1)) € N©2[s;] for
i = 1,...,n where necessarily s; is the sum Zjegp,l(i) t;. This precisely determines all possible
ways of expressing the family of trees associated to p by a “vertex blowup” of the form p = p’ 0 Q,
where p’ € N°2[t], ¢ N°1[ | and each q € N°2. The term (P2®(Q16Q2)) (p;t) is then obtained
by using P to evaluate p' and Q to evaluate the profiles from Q.

Similarly,

(P2®(Q2691))(]3§ t) =Py (k, (tj)jex:t) ® | Qa(n, (ki)iens k) ® ® Q1 (t; )

j€k

(P1®Q3)(p;t) = Pi(t;t) @ Qs(p;t),

(Ps®(916016Q1))(p;t) = Ps(p; t) @ | Qi(n;n) ® ® Q1 (kis ki) ® ® Q1(ty;t5)

ien j€k

Proposition 6.14. The category of Nje,-objects equipped with the composition product © is
monoidal.

Proof. 1t is straightforward to verify that © has a two-sided unit, Z, given by Z;(n;n) = 1 and
Z = % otherwise. For Nje,-objects P, Q, R, there is a natural isomorphism (POQ)OR = PO(QOR)
induced by the natural isomorphisms

(m@(gkla-~6an))®(ml,la~--men,kn) (6.4)
20 ((QnB(Rey 10+ 0Re, )0 +6(Qh B(Re, 10+ 6Re, )
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obtained by a tedious but ultimately straightforward calculation. The remainder of the monoidal
category axioms follow from similar observations. Q.E.D.

Definition 6.15. A nonsymmetric Njoy-operad is a reduced Ne,-object P which is a monoid with
respect to ®. That is, there are unital and associative maps of Nje-objects &: POP — P and
e: T — P, i.e., such that the following diagrams commute

id®e e®id

POPOP 22 pop PeT POP IoP
J{idQE li N l& -
POP — =P P

6.4 Algebras over a nonsymmetric N, -operad

Let (=) denote the inclusion of N-colored objects to Nie,-0bjects given by
Xo(@;n) = X|[n] and X, = for k> 1.

Note that X is not reduced, but a straightforward modification of Definition 6.11 provides that

()A(@’")O &~ X" and (X®")k > x for k > 1. Similarly, (—) is left adjoint to Evy which takes values
in nonsymmetric sequences and is defined at an Nj,-object P as

(EV()P)[TL] = ’P(](Q; n)

If P is a nonsymmetric Ny -operad then P X remains concentrated at level 0 and hence defines
a monad on N-colored objects R
PO(=): X = Evo(POX).

Definition 6.16. We say that an N-colored object X is an algebra over an nonsymmetric Ne,-
operad P if there is an action map
PO(X) t= X

which is associative and unital in that the following diagrams commute.

POPO(X) 5iii??@(X) POX) —=X

Jiaon i |

PO(X) —L X Io(X)

IR

We denote by Algs, (P) the category of algebras over a nonsymmetric Nje,-operad P along with
‘P-action preserving maps. Note that an action map p consists of pieces

i Pe®(X°F) —» X

for k > 0 and that Algj., (P) is complete and cocomplete and moreover that limits are built in the
underlying category of N-colored objects.
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6.5 Change of N\, -operads adjunction

Given a map of nonsymmetric Ne,-operads o: P — Q and a P-algebra X we define QOp(X) by
the reflexive coequalizer

Qop(X) := colim ( Qo(X) T QoPe(X) ) .

Hp

The top map above is given by PO(X) —— X and the bottom is induced by the composite

0eP 197, 0pg £2, Q.

The resulting object Q®p(X) inherits a natural Q algebra structure and the construction fits
into an adjunction as in the following proposition.

Proposition 6.17. Given a map of nonsymmetric Nje,-operads P — Q there is a change of
nonsymmetric Nje,-operads adjunction

" Qop(-) "
Algpe, (P) -~ Algje, (Q)

(o8
with right adjoint ¢* given by restriction along o.

6.6 A forgetful functor to N-colored operads

We describe forgetful functor U from Nje,-operads to N-colored operads (specifically, nonsymmetric

N-colored operads). Given p = ((n',--, (nf);cnt-1) € N°, we set s(p) to be the unordered list of

the elements of the levels of p, i.e., B

s(p) == {nf cje{l,---,n}ic nj}.
Given an Nj,-object Q we define UQ by

(UQ)(ers .. exit) == H Qu(p;t) (6.5)

s(p)=(c1;--,Ck)

where the coproduct ranges over p € [],~, N°¢. We leave the proof of the following proposition to
the reader. a

Proposition 6.18. If P is an Nj,-operad then UP is a (nonsymmetric) N-colored operad. Fur-
thermore, the categories Algi., (P) and Algyp are equivalent.

6.7 Symmetric N\-objects

We now impart symmetric group actions on our Nj-objects in a way that captures operadic
composition. Denote by Z* the Ny, -object in (C,®,1) with

Xn] L=1p=n=t
* otherwise

I (pit) = {
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Recall here that ¥[n] =[],y 1. Note that 7% is a nonsymmetric Nje,-operad whose compo-
sition maps are induced by the block matrix inclusions

Y X (Zkl X X an) — Ekl+...+kn.

1

Moreover the data of an algebra over I is precisely that of a symmetric sequence; i.e., Algis
SymSeq.

Definition 6.19. An N-object P symmetric if P has compatible right and left actions of Z* in
that the following diagram must commute

ISopers 9 | porT
J/id@p,r lur
eP - P

where jip (resp. p,) denotes the left (resp. right) action map of Z* on P.

In other words, a symmetric Nje,-object is an (Z*,Z%)-bimodule. Note that Z*®(X) = ¥-X is
the free symmetric sequence on X (see also Remark 7.7).

6.8 Symmetric Nj,-operads

Definition 6.20. Let P, Q be (Z¥, Z%)-bimodules. We define their symmetric composition product,
denoted POxQ, as the (reflexive) coequalizer (calculated in symmetric Nie,-objects)

PQZQ = P@IEQ = COlim ( P@Q - P@IZGQ )

where the two maps are induced by the left and right actions actions of Z* on Q and P.

Note that P®xQ inherits left and right Z* actions by those on P and Q respectively, and so
remains an (IE,IZ)—bimodule. Moreover, Z* is a two-sided unit for @y, and symmetric N, -objects
equipped with the product (®x,Z%) is a monoidal category.

Remark 6.21. Since 7% is concentrated at level 1, is it possible to further describe the object
PoOsQ in terms of its constituent parts. In particular,

(POxQ), = H H Pr@5(Qp, 6+ 6Qy, )

E>0 014+ =F

where Pp®5(Qp,6---6Qy,) is obtained as the coequalizer

colim | Puéo(Qu,0+-+5Qy,) T (Pr(IF6 - 6TF)) Qe 6+ 6Qy,)
—_———
k
such that the top is induced by the right action of Z* on P and the bottom map is induced by the
isomorphism (6.4) and the left action of Z* on Q.

Definition 6.22. A symmetric N, -operad is a reduced symmetric Nje,-object P, which is a
monoid with respect to ©®x. That is, there is a multiplication map £: POxsP — P and unit map
£: I* — P that satisfy the usual associativity and unitality conditions.
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6.9 Algebras over symmetric Nj,-operads

We now define an algebra over a symmetric Nj,-operad P. Note than algebra over a symmetric
Ney-operad is a symmetric Nje,-object concentrated at level 0, that is, an Z>-algebra or symmetric
sequence. As before, given a symmetric N,-operad P, let

Pos(—): X — EV()('P@EX)
be the associated monad on SymSeq.

Definition 6.23. A symmetric sequence X is an algebra over a symmetric N,-operad P if there
is an action map p: POx(X) — X which is associative and unital (as in Definition 6.16 with ®
replaced by ®x q.v.)

We denote by AIgE\, (P) the category of symmetric P-algebras with P-algebra preserving maps;
for simplicity we will frequently use Algy instead when there is no room for confusion. We note
that p consists of maps A

L Pk®2(X°k) — X

where the action of Z* on X°F agrees with that for symmetric sequences discussed in Section 2.1.

Furthermore, A
po: I =2 PoRs(XY) = X

gives a unit map for X € Algp and we note that an algebra X over P will always be reduced, i.e.,
X[0] = *.

Example 6.24 (Free symmetric P-algebra on a symmetric sequence). Given a symmetric sequence
X, the object POx(X) is the free P-algebra on X and fits into an adjunction

PoOs(-)
SymSeqc <~ Algp
u

where U is the forgetful functor. In particular, Oper©x(X) (see Definition 7.1) is the free operad
on X (see, e.g., [1, 9.4]).

We leave the proof of the following to the reader as it follows from standard arguments as in
34, 3.29] or [12, 4.3].

Proposition 6.25. If (C,®,1) is closed symmetric monoidal which contains all small limits and
colimits, then all small limits and colimits exist in Algp. Limits and filtered colimits are built in
the underlying category of symmetric sequences and are further reflected by the forgetful functor
U.

General colimits shaped on a small diagram D are constructed by the following (reflexive)
coequalizer (whose colimits are constructed in SymSeq):

COlimdep X4 = colim ( Pox (colimdep Xd) = POs (COlimdep PoOs (Xd)) ) .
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6.10 Modules over P-algebras

Definition 6.26. Let P be a symmetric Njg,-operad and W be a P-algebra. Let M be a symmetric
sequence. We say that M is an W-module if there are maps of the form

ne: Pe®x <W6(5’1)6M> — M
for ¢ > 1 that satisfy associativity (6.6) and unitality (6.7). If M is concentrated at level 0 we say
that the object M[0] is a W-algebra.

Set £: POxP — P to be the multiplication on P and p: POs (W) — W the action map on W.
Let ¢ := ¢1 + --- + {;. Associativity and unitality amounts to the commutitivity of the following
diagrams

£ ®xid

(Pr@s (P, 8- 6Py, )) ©@x (WPE—DeM) Pecs, (WeEDs ) (6.6)
Pr@s ((Pe, @sW)6 - - 6(Py, @ (W16 M) ne
lidéﬁz(#el 8:-+8pug, 1 6me,,)
Pr@s | Wo--- WM i M,
k—1
and
. . R . id®s (1odm1 . ~
Paios (PodsW0)(Py&sM)) 2 p g (WaM) (6.7)
(P2&x(PodPy)) s M 12
J/&@zid
P1&os M & M.

Recall that po: I = Py W — W is the unit map for W.

Remark 6.27. We encourage the reader to compare the above definition with that of modules over
algebras over an operad, e.g., as in May [45, Definition 3]. In [9, 1.5.1] an example of a 2-colored
operad whose algebras are pairs (A, M) of an O-algebra A along with an A-module M is provided.
The pair (W, M) can be described analogously as an algebra over an N := {%,0,1,2,... }-colored
operad with levels, though we will not require such description.

Definition 6.28. We say a map P — Q of (symmetric) Nje,-operads in some symmetric monoidal
model category C is an equivalence if for any p € N°*[t] the induced map Py (p;t) — Qr(p;t) is
a weak equivalence in C. We write P ~ Q if there is a zig-zag of equivalences of (symmetric)
Niev-operads connecting P and Q.

In the special case that P ~ Oper then we say that a P-algebra W is an A, -operad and that
modules over W are A -algebras.
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7 Examples of symmetric Nj,-operads
In this section we describe some examples of symmetric Nj,-operads of interest, specifically the
coendomorphism Nje,-operads on a given cosimplicial symmetric sequence. We begin by describing
Oper — the symmetric Nje,-operad whose algebras are (one-color) operads as some of its properties
will be essential in what is to come. Our eventual goal is to prove that the coendomorphism Njg,-
operad on a Y-free symmetric sequence X (see Remark 7.7) is indeed a symmetric N)e,-operad;
with the particular example of A = coEnd(X-A% ) in mind (see Section 7.4).

Though we write most of this section for a general closed cocomplete symmetric monoidal
category C, we invite the reader to think particularly of the cases when C = Spt or Top,.

7.1 The symmetric N, -operad Oper
We begin by describing Oper for the category Set of sets.

Definition 7.1. Let ¥ denote the symmetric sequence in (Set, x, %) with X[n] = X,, and define a
reduced Nje,-object as follows. For p € NCF[t] we set

Oper, (p: 1) := hom (E[t], zﬁz[p})zt

Remark 7.2. Note there are isomorphisms
o " ~ o ~ JO
Oper,(p; t) = hom (X[t], & E[B]) = hom (x, X 5[12]) =) Z[B]. (7.1)

Computing some small examples of Oper, we note that

Opery(2;1) = x Oper;(@in) =@ (n#1)
Oper;(n;n) 2%, (n>0) Oper;(n;m) 2@ (n#m >0)
Oper2 (n, (kh ey k‘n), k) =3, Xgpl XXy, Yk
where pq, ..., pmn denotes the multiplicities of distinct integers among ki, ..., k,, k = Z?Zl k;, and
Yp, X o X Xy, acts on X, e.g., by permutation of block matrices
Zkl X oo X Ekn ng.
Similarly, let ¢1, ..., ¢ denotes the multiplicities of the distinct integers among t1,...,t; and set

p=(n,(ki,....kn), (t1,...,tx)) € N°3[¢].
Then

Operg(p;t) = Xy X5, xoxx,,, Sk X5, 5 x5, St

Proposition 7.3. Oper is a symmetric Nj,-operad.

Proof. As we will see, Oper is particularly special as the structure maps

& (tr,....00) - Oper,@x(Oper, &---50per,, ) — Oper, (7.2)



Derivatives of the identity 153

which comprise §: Oper©sOper — Oper consist of isomorphisms once evaluated at a profile p €
NI

That Oper is symmetric follows from the first part of the proof of Proposition 7.8. The unit
map e: Z¥ — Oper is obtained via the identity morphisms

¥ (nyn) = %, — %, = Oper, (n;n)

and the initial morphism elsewhere. Let us now produce the desired map (7.2) at a profile p € N°¢[t].

For the reader who finds the following constructions a bit opaque, we first provide the following
intuition: for £ > 0 let o,: SymSeq™* — SymSeq be the functor op(Xy,...,Xp) = Xy0---0X,.
Since o is strictly monoidal, there are isomorphisms

Eky(r, )¢ Ok (06577 500,) = Opy 4ontpy, (7.3)

such that o, is a nonsymmetric functor-operad (see, e.g., McClure-Smith [48, §4], omitting the
requirement of symmetric group actions). Moreover, the composition maps &k, (¢1,...,,) are precisely
the morphisms which prescribe the equivariance of the isomorphism Zj (4, .. ¢, ) once evaluated at
a particular string of inputs, given that evaluation at a profile in N° is the same as evaluating
a symmetric sequence from the left. For instance, 3 (2,1 3) provides the isomorphisms (natural in
Xla cee 7X6)
(X10X2)oX30(Xg0X50X5)=Xj0-:-0Xg

and moreover, given p € N°¢[t], the desired map &k, (tr,...,00)[P] may be thought of a precisely arising
from the isomorphism

(2021 6.0 Eoék) [B] i Zoé@]‘

We describe &5 (1,2 first and note the general case follows a similar argument. Let p € N©3[t]
and note that

Oper,@s(Oper;60pers))[p] = 11 Oper,@x(Oper;50per,))[(n, (- -,p ))]-

© p=(n(p,1Ip )

Fix p, € N®%[s;] for i = 1,...,n such that p = (n, (p1 IL--- I p,)) and set p’ = (n, (s1,...,5,)) €
N°2[t]. We then observe

(Oper,@x (Oper;60per,))[(n, (p,;---,p, )] (7.4)
2 222 [p'] X gy (Z‘[n] X (£2[p,] X -+ x 202[]3n])
= 2%(n, (p,,- - »p,))] = %[p] = Opers(p; t)

such that S(p') = ¥, x [[,_; Xs, and ¢ is the natural inclusion obtained from the assumption

p=(n,(p, - IIp ).
The desired map &3 (1,2)[p] is induced by the coproduct of composites (7.4) for all p = (n, (Bl’ . ,Qn)).
Note further that as sets there is an isomorphism

1T S%(n, (py,--+ p,))] = %]

p=(n.(p, 11--1Ip )) -
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since o is strictly monoidal in the category of symmetric sequences of sets. Thus, & 1,2)[p] is
invertible and more generally & (¢, ... ¢,) evaluated at any profile in N°¢ is also invertible.

Associativity of ¢ then follows from the associativity = as in (7.3). That is, for (n, (k1,...,kn)) €
N°2[k] and for i = 1,...,n, q;, = (ki, (bin, - lig,)) € N©2[t;] the associativity relation

b (trrr tnn) Enuhr, e o) Pmid)
= St t) (1908 (Ehr (10, .00.0)0 " Okl b))

evaluated at some p € N°¢ follows from the commutative square of isomorphisms

((Eo‘glylo e OEOZLIcl) oO-++0 (Eoenylo e ozoen,kn)) [B] [N (EOtlo .. QEOtn) ]

l -

(2041,10 - oz]oemkn,) [B] ¥t [B]

Similarly, the unitality condition is satisfied by the more obvious isomorphisms

(oo [[pl=X"p= [ (E)o---o(%) | [p]

for all n > 0 and p € N°! (i.e., p=p > 0). Q.E.D.

Remark 7.4. Let (C,®,1) be a closed symmetric monoidal category with finite coproducts. We
write Oper® for the image of Oper in C under ¥, XY[n] = [[,cx, 1. That is, given a profile

p € N°F[t] we set
Oper(p; t) = Map© (£[1], £°*[p]) ™

Before showing that Oper encodes (one-color) operads as its algebras we first demonstrate an-
other class of symmetric Ny, -operads.

7.2 Coendomorphism symmetric N, -operads

Recall as in Section 6 that (C,®, 1) denotes a closed cocomplete symmetric monoidal category and
¥ is the symmetric sequence in C with X[k] = [[, 5, 1.

Definition 7.5. Let X' € SymSeq® and set coEnd(X) to be the reduced Nie,-object given at
(5:t) € N*[f] by

COENd(X)(p; t) = Mapae (X[1), X7 [B})E’

Example 7.6. Unravelling the above definition, coEnd (X)1(k; k) consists of all Xj-equivariant
cosimplicial maps X'[k] — X[k]. Let (¢;k) = (n (kl, . kpn); k) € N°2[k] and recall the description
of H(ki,...,k,) < ¥ from Definition 2.1. Then coEnd(X)g(q k) consists of all Xi-equivariant
cosimplicial maps of the form a

X[k] = (X0X)|g) = Zk] @k, gy X)X ] @ -+ @ X[kn]).
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Further, coEnd(X) is quadratic in that it is generated by its first two levels as follows: let
p = (n, (ki)ien, (tj)jex) and set k := 37" | k; and ¢ := Z?:l tj. Then, coEnd(X)3(p;t) consists of
cosimplicial maps 1 that fit into the following 3;-equivariant diagram

X[ﬂ XDX kv JGk

\ lmd

(XOX0X)[n, (ki)ien, () jex)-

such that 1y € coEnd(X)a(n, (k1. .., kn): k), Le., o: X[k] = (XOX)[n, (ki,. .., kn)] is Sp-equivariant.
Said differently, there is an isomorphism

coEnd(X)3(p;t) = coEnd(X)2(n, (Ki)ien; k) ®x, coEnd(X)a(k, (t;) ex;t)

where X acts by shuffling the factors t1,..., ¢, of Xa(k, (t;)jek;t) in accordance to the ¥ equiv-
ariance of maps in Xa(n, (k;)ien; k). In general, given a profile

1, (n?)ietll, ceey (nf)iEnl—l) S Néé

p=n
the object coEnd(X),(p;n’) is isomorphic to

COEnd(Xh(nl, (nf)ienl;HQ) D25 NPRRER ) N COE“d(X)2(ne717 (nf)iEn"’—l;nz)- (7.5)

Remark 7.7. We would like to be able to say that coEnd(X) is a symmetric Nje,-operad for any
cosimplicial symmetric sequence X', however this seems to not be the case. The issue seems to be
based on the potential non-invertibility of 6 (as in (5.4)) and similarly how [J fails to be a strictly
monoidal product for cosimplicial symmetric sequences. However, there is a class of cosimplicial
symmetric sequences on which we get the desired symmetric Nje,-structure on coEnd(X).

Let us say that X' is X-free if there is a sequence {Y[n]},>o of cosimplicial objects in C with

Xn] =3, Y[n] = Z[n] @ Y[n]

and such that the X, action on X[n] is trivial on Y[n] for all n. In such case we write X = X-).
The benefit for us is that if X' is Y-free, then 6 has an inverse (which is constructed in the following
proposition), and so 0 is a monoidal product when restricted to X-free cosimplicial symmetric
sequences.

Proposition 7.8. If X € SymSeqCA is X-free, then coEnd(X) is a symmetric N\, -operad.

Proof. This argument is rather long and somewhat tedious, so we break it up into several steps.
The first step is to show that coEnd(X) is symmetric, in fact ¥-freeness is not required for this
part.

Let £ > 0. The left action of Z* on coEnd(X), is obtained by ¥; action on the maps X[t] —
XB[p] which comprise coEnd(X),. The right action of 726+ --6Z% on coEnd(X), is obtained, e.g.,
, at £ = 2 as follows. For a profile ¢ = (n, (k1,--- ,ky)), we observe

(T78T%)(qs k) 2 Sy % (g, X -+ x By, ) < Xy,
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acts via the Xg-equivariance of
X[k] = Z[k] @n (ks o) X [PIO(X[F1] @ -+ @ X[ken]).

The general case follows a similar argument.
Second, we produce a multiplication map

&: coEnd(X)®xcoEnd(X) — coEnd(X).
Two ingredients are crucial to this step. First, is the existence of maps
fr o XA XDy p 0 (7.6)

for each tuple £1,..., ¢ such that ¢; + --- + ¢ = £ which are inverse to the induced map by 6 (see
(5.4)). It is this step for which Y-freeness of X seems essential and such maps p are granted by

utilizing the structure of Oper. Write X = .Y and for p= (n',- -+, (n¥);cnk-1) set
Y= <®3’ )D'"D ® Vi
i€nt i€nk-1

Note in the above, we are utilizing the box product for CA which is strictly monoidal.

For simplicity we describe the map py2: X D(X 0x )= X U3 and note the general case follows
from a similar argument . Note that Xﬁ(XﬁX) takes as inputs profiles of the form (n, (p1,--- ,pn))
for some unordered list of profiles p; € N°2,

Fix a specific profile (n, (p1I1---1Ip,)) = pand for i = 1,...,n, write p; = (ks, (ti,1,--- ,tix,)) €
N°2[t;]. There is an inclusion induced as follows

XO(XOX) . (1, pu)] (7.7)
= (B[] @ YO (57 pa] © Y1l ) @+ @ (22[pal © Y2pul ) )

I

i) @, ([[M0 @, cnm, T2 % x 220pa)) | @ Y]
T

) Eo?,[n7 (pih )&)] yD3[ ] _)> 203[ ] yD3[B] %JXEIB[B]

where  runs over all ¥,, permutations of t1,---,¢, and (x) is induced by the natural inclusion
L2 X%%n (p1,-pn)] — 203[ ]. Moreover, the map f12 at profile p is then induced from the
1nclublon described above via the isomorphism

(X0(x0x) ) [p] = I1 (XOX0X) ) [, (1, )
(n,(p11I---IIpn ) )=p

A straightforward computation then shows that ;o is inverse to 6.
The second ingredient to producing ¢ is a map

. . RN !
coEnd(X),,6 - - 6 coEnd(X)y, —— Map pre (XD’“7XD[1D~-~DXD€’C) (7.8)
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which we construct as follows. Let a;: X — X0 for § = 1,...,k. The map I is induced by the
assignment (ov, ..., o) — aq---Ooy, where, e.g., if k =2 and p = (n, (t1,- -+ , ) € N°?[t] then

(a1 Das)[p]: XP2[p] — (X4 CIX%)[p]

is obtained levelwise by the maps a;[n]: X[n] — Xt [n] and aq[t;]: Pl [ti] fori=1,...,n.
With these two ingredients in place, the composition £ is obtained via the composition

N NS> N>

Map res (X,Xuk) s (MapAres (X,Xml) 6.6 Mapre (X,XDZ’“> >
id®sT o) > Ok 306 ST

ML Nap pre (X,X ) Sy Map pre (X Y O Y k)

= ) o = E

P Map are (X, X000 D)
. BN
—>(Ml """ o) Map  res (X,XDZ> .

Fortunately, the unit map is simpler to describe. We obtain £: Z* — coEnd(X) as the morphism
[n] — Map e (X[n], X[n])>"

adjoint to the action map X[n] ® X'[n] — X[n] which expresses the %,, equivariance of X'[n].
Showing that & and e satisfy the appropriate associativity and unitality conditions is a tedious

though ultimately straightforward and may be adapted from the (somewhat simpler) proof of

Proposition 5.8 found in Section 8.1. Q.E.D.

7.3 Oper-algebras are operads
Our aim is now to show that Oper-algebras indeed model (one-color) operads.

Proposition 7.9. There is an equivalence of categories between algebras over Oper® and operads

in C.

Proof. We show that a symmetric Oper-algebra is necessarily an operad and note that the argument
is readily reversed to show the converse statement. Suppose W is a symmetric Oper-algebra. Note,
Oper2®gVV°2 — W consists of maps

Opery(n, (k1, .-, kn); k)@s W] @ Wki] @ - - - @ W[k,]) — WIK] (7.9)

for each p = (n, (k1,...,kn)) € N°2. Fix such a profile p and let p1,...,p, be the multiplicities
of the distinct factors dy,...,d,, among k,...,k,. Coequalizing the actions of Z* identifies the
symmetric group actions (resp. with k; replacing n)

3[n] @ Wn| — Win|

with the right action of Z* given in the proof of Proposition 7.8. Thus, (7.9) yields ¥j-equivariant

map of the form
Sk @b ks, ko) W] @ Wk1] @ - @ Wkn] = WIk] (7.10)
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which moreover obeys the correct equivariance, e.g., as described in May [45]. Said differently,
(7.10) is the factor WoW)[n, (k1, ..., k,)] (as in Definition 2.2) and the collection of all such maps

then pieces together to form
m: WoW = W.

Since W € Algg,,, there is a commutative diagram of the form

(Operys: (Oper, 60per,)) & (W) —=> Oper,&x: ((Oper; @x(W))8(Opery & (W)

lidébz(méuz)
€a,(1,2)®xid Opery,@s (WaW)
iﬂz
Oper;®x (W) i~ W.

The composite of the right side maps describes
Wo (WoW) 2% wow 5w
and by construction the bottom map describes
WoW)oW 224 wow s W,

Associativity of m follows as &5 (1,2) is an isomorphism.
To produce the unit u: I — W we first recall that

po: I = Po@s (W) — W

provides the unit map uw on W. There is then a commuting diagram

) . . . id& Ky . R
Oper, &y, ((Operg@s (W))5(Oper; & (W) 21 Oper,&x(WeW)

lg

(Opery,®s (Opery0per, ) @x (W) p2
lfl@):id
Oper; s (W) m W

the composite of top and right arrows of which results in
ToW woid WoW m W

and the left and bottom arrows are all isomorphisms. Commutativity of the other unitality diagram

follows a similar analysis. Q.E.D.
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Corollary 7.10. Let W be an operad, i.e., Oper-algebra. Let M € C and denote by M the
symmetric sequence concentrated at level 0 with M[0] = M. Then, M is an W-algebra (in the
sense of Definition 6.26) if and only if M is an W-algebra in the classic sense.

Proof. As in Definition 6.26, a WW-algebra consists of maps
Oper, @y (W =Y6N) — M.

Note, since M is concentrated at 0, the only nontrivial contributors to such maps will have
profiles which end in a string of 0. In particular, for £ = 2 there are maps of the form

Opery(n, (0,...,0);0)®s (W[n] @ M®") — M.
Since Opery(n, (0,...,0);0) = X[0] = 1, the above maps descends to
W[n] (29> Me™ 5 M

after coequalizing. Associativity and unitality follow a similar argument as the proof of Proposition
7.9. Q.E.D.

Remark 7.11. Though our description of Oper is new, descriptions of an IN-colored operad whose
algebras are operads is not new. Berger-Moerdijk describe an N-colored operad Mo, in terms
of trees whose algebras are operads in [9, 1.5.6] (see also Dehling-Vallette [24]). Applying the
forgetful functor U from Section 6.6 to Oper yields an isomorphic N-colored operad to that of
Berger-Moerdijk, i.e., UOper = Mq,.

7.4 A model for A,.-operads

We will now focus on a particular coendomorphism Nje,-operad in Top, namely that on the cosim-
plicial symmetric sequence X-A® with ¥-A®[n] = X,,-A°.

Proposition 7.12. There is an equivalence of Nj,-operads coEnd(X-A®) — OperT°p.

Proof. Note that equivalences of Nie,-operads are computed levelwise (Definition 6.28) and that a
morphism f: X — Y of cosimplicial objects in Top induces a map (X-X)5* — (2.Y)PF for k > 1.
If additionally there is a retract r: Y — X of f there is a map coEnd(3-X) — coEnd(X-Y) on
coendomorphism operads induced by post-composition with f and pre-composition with r.

Since there are morphisms * — A™ = % for all n > 0 (i.e., by inclusion at a vertex) we then
have

- > o P
Map e (E-A‘,(E-A‘)D’“) D, Map e (Z-i, (z-i)Dk) =~ Map (2, 5°%)”

for all k£ > 0, where x denotes the constant cosimplicial object on * € Top. Moreover, since
x* — A™ — x consists of weak equivalences between fibrant and cofibrant objects for all n, the
indicated map (T) is a weak equivalence in Top. Q.E.D.

Note that for p € N°*[t], Oper[°®(p;t) is just the discrete space $°F[p]. Similarly, Oper '+ =

Oper_TiroID will encode operads in (Top,, A, S?) and thus also in Spt via the tensoring of Spt over Top,.



160 D. A. Clark

Remark 7.13. Note the functor (=) : (Top, x,*) — (Top,, A, S°) which adds a disjoint basepoint
induces isomorphisms of pointed spaces
Top ° ° |f|]<; = Top ° ° |jkr ¥
Map P (E~A+, (3-A%) ) > Map %, (E-A L (T-A®) )+.

Thus, there is an isomorphism
coEnd(X-A%) = coEnd(X-A®)

of Nj,-operads in Top,. For ease of notation we write A for this Nj,-operad and note that
Proposition 7.12 provides a map p: A = Oper™P«_ie., Ais a suitably “fattened-up” version of
Oper which will encode A,-operads as its algebras, similar to A encoding A.,-monoids in Example
5.4.

8 A-operad structure on the derivatives of Idag,

The aim of this final section is to prove Theorem 1.1. We begin by proving Proposition 5.8 which
as a corollary provides a proof of the Theorem 1.1(a). In Section 8.2 we prove Theorem 1.1(b).
8.1 Proof of Theorem 1.1(a)

Since C/(O) is a C-monoid (see Proposition 5.7), Theorem 1.1(a) will follow from Proposition 5.8,
which we prove below.

Proof of Proposition 5.8. Let X be a [J-monoid in SymSeqSApt whose multiplication we denote by

m: XOX — X. We aim to show that Tot X is an algebra over A. We define maps Ay as follows
(note the notation A as ® from Definition 6.12 for the monoidal category (Spt, A, S))

Ao: .Az/\g(TOt X)éé — Tot X

For simplicity we first describe the ¢ = 2 case. Let p = (n, (k1,...,k,)) € N°?[k]. Let ¢ €
Az(p;t), and let o, f: 3-A% — X be maps of cosimplicial symmetric sequences. Define v at level
k by the composite

aln]0 ook >
MQ(){D?)[”, (k1, ... k)]

lm*

> X[k]

(2-A)P2(n, (k1, ..., k)]

w[k]T

(5A%)[K] "

where a[n]i]ﬁ[k‘l, ..., kp] is provided via the map I' from (7.8), the construction of which may be
readily altered to give a map

e (Mapfh (5:00.20)°) " > Maph (50107, 4%)”.
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In general, )y is given by the following composite (compare with [2, (1.13)])
Map P (EA; (z.A;)W)Z As (Mapsgfes (S-A, X)E)M
S Mapfet: (34, (289)7) As MapZh (5407, 47)”
SOmPO, Mapil (Z-AY, XW)E
RN MapAreS (E A, )
where the composition map is adjoint to the composite of evaluation maps
SAS A Map® (A%, (S-A%)79% 5 (2.A%)2, (8.1)
(2-A%) P Ag MapSh, ((5-A%)2¢, X0 0

and m, is induced by the 0-monoid structure on X.
To show that A is associative we consider the following diagram, with ¢’ € A,,, 1; € Ay, for
i =1,...,n such that the composite £(¢'; 91, ...,1%,) = € Aj.

E A' m] XDk
(S-AS)IR . O(2AS )Tk XUk Q... Ox Dk
wlémmnT maL)Lim.
(S-A%)En x0...C
o | -
.. L 1
o

Note here that m, is induced by repeatedly applying the pairing m: X OX — X from the left, i.e.,

mOid0---Oid mOid0id mOid

x0x0---0x xoxox =S xox I x.

The dashed morphisms y and 4" are induced, respectively, by A&, (x, ,...,k,,) and A (1d@s (g, 6+ - Ok, ).
Note as well that py, .., is as in the proof of Proposition 7.8, and 0, is the grouping map induced
by 6 (see Section 5.5), by which it follows that v and 7/ must agree.

For unitality we recall that : Z* — A is induced by the inclusion at ida and therefore the
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composite Aj[n|e[n] in the following diagram

S M [n] Spt

2 Map, (3-A% [n], X[n)) ™"

A1(n;n) As, Maple (S-A% [n], X[n])

e[n] T

(S0), As, Mapt, (S-A%[n], X[n])™"

IR

is given by S° A Tot X[n] = Tot X[n]. QE.D.

8.2 An equivalence of A, -operads between O and 0.Idag,
We now show that the induced operad structure on 0,Idajg, from Proposition 5.8 agrees with the

induced A-algebra structure on O, thus proving Theorem 1.1(b). Let p: A =+ Oper be the map
described in Remark 7.13 and note an operad O € Algg,,, is in algebra over A via the forgetful
functor p*.

Proof of Theorem 1.1(b). By equivalence of A.-operads we mean equivalence of A-algebras which
restricts to an equivalence of underlying symmetric sequences.

Recall there is a natural coaugmentation O — C(O) via O — J. We have shown in Section 4.4
that the coface k-cubes associated to

O — C(0) and 0,Idag, — holima<n—10,((UQ)*T")

are equivalent. Denoting these k-cubes by X and ), respectively, we note for £ > n > 1 that as
Yk[n] is homotopy cartesian so is Xj[n]. That is to say, for all n > 1

O[n] = holima (C(O)[n)).

Let O be the constant cosimplicial object in SymSeq on O. From the above, the coaugmentation
O — C(0) induces a map of cosimplicial symmetric sequences ¢: O — C(O) such that Tot O =
Tot C(O). Moreover, O inherits a natural C-monoid structure induced by the operad structure
maps O o O — O and I — O, and ¢ respects this structure (i.e., is a map of ﬁ—monoids).

For each n > 0 we have

MapZre (En-A%, On]) ™" = MapFi (S,-A°, Oln])™
= Map®™(£,,-5°, O[n])™" = Map®>*(5°, O[n]) = O[n].

and therefore, Tot © =+ O. Thus, there are commuting diagrams for all n > 0

An@5(p*0)°" <——— A, @5 (Tot 0)°" —— A, @x(Tot C(O))°" (8.2)
e ~ TotO ~ Tot C(O)

where the left is the A-algebra structure map on p*O (which must factor through Oper) and the
right is the A-algebra structure map on 9,Idag, - Q.E.D.



Derivatives of the identity 163

8.3 A class of 0,Ida,-algebras

Though it will follow abstractly from Theorem 8.2, the following corollary show that it is possible to
describe an action of 9,.Idag - explicitly on the TQ-completion of sufficiently connected O-algebras.
Recall that X ~ X for 0-connected X € Alg,.

Corollary 8.1. Any 0O-connected O-algebra X is weakly equivalent to an algebra over 0,Idayg,
via X — X7q.

Proof. A straightforward modification of the proof of Proposition 5.7 permits a well-defined map
of cosimplicial diagrams

r: C(O)IC(X) = C(X)

which endows C(X) with the structure of a left module over C'(O). Strictly speaking we do need
to be careful here, as C(O) is not a strict monoid, so the module structure is obtained by replacing
the right-most instances of C(O) with C(X) in (5.5) and (5.6). Nonetheless, a straightforward
adaptation of the proof of Proposition 5.8 demonstrates maps

Ay ((Tot 0(0))6“—1)6)‘@@) — X4

where X?Q is the symmetric sequence concentrated at level 0 with value X?Q, as required of
Definition 6.26. Q.E.D.

Remark 8.2. One intent of the above is to motivate the analogous statement for algebras over the
derivatives of the identity in spaces, which a priori seems a bit more mysterious. Using the model
0,IdTop, = holima C(S) (see Remark 4.1) we further show in [21] that for any S-coalgebra Y in
spectra (e.g., Y = £°°X) the derived primitives Primg(Y") inherits the structure of an algebra over
0,IdTop, Vvia a pairing of cosimplicial objects with respect to [ (see also [15], [38], [8]).

In this framework, Corollary 8.1 tells us that any 0-connected X € Alg, is equivalent to its
derived primitives Primpy(TQ(X)) (with respect to a suitable coalgebra structure on B(O), see
Section 4.3) as 0.Idalg, =~ O-algebras. Note also that Primp)(TQ(X)) =~ Xf,. As such, one
possible future avenue for our work is to try to push this result to work for any nilpotent O-
algebra. This could potentially be used to prove that any nilpotent O-algebra is equivalent to its
TQ-completion (see also [10], [51], and further compare with [13], [4], [14], [11] that any nilpotent
space is equivalent to its completion with respect to 2°°3°°).
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