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Abstract

It is well known that under some general conditions right Bousfield localization exists. We
provide general conditions under which right Bousfield localization yields a monoidal model
category. Then we address the questions of when this monoidal model structure on a right
Bousfield localization induces a model structure on the category of algebras over a colored
operad and when a right Bousfield localization preserves colored operadic algebras. We give
numerous applications, to topological spaces, equivariant spaces, spectra, chain complexes,
stable module categories, and examples drawn from category theory. We recover a wide range
of classical results as special cases of our theory, and prove several new preservation results.
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1 Introduction

The CW Approximation Theorem is a fundamental result in homotopy theory. It allows us to work
with CW complexes without losing information, up to weak homotopy equivalence. This result is
one of a suite of similar results, and all are examples of right Bousfield localization [Hir03], also
called cellularization and colocalization. Examples include A-cellular homotopy theory in topolog-
ical spaces or simplicial sets [Cha96], n-connected covers and Postnikov pieces [Nof99], analogous
constructions in the category of small categories and in the category of simplicial abelian groups,
point-set models in chain complexes and R-modules for localizing subcategories in the derived cate-
gory of R and the stable module category of R, and family model structures in equivariant homotopy
theory (see section 10). Right Bousfield localization also has applications to homotopy limits of left
Quillen presheaves, and to constructing Postnikov towers in simplicial or spectral model categories
[Bar10].

While much work has been done to understand how much structure is preserved by cellular-
ization [CCS07], [MM97], [CPS04], [Nof99], [CW18], little is understood. In this paper, we find
conditions under which right Bousfield localization preserves algebraic structure as encoded by a
colored operad. We then prove that these new conditions are satisfied in the examples of interest,
and provide specific preservation results about commonly used operads.

Operads are used to encode algebraic structure in general symmetric monoidal categories, and
hence have become central to modern algebraic topology. Operads have also been applied to
deformation theory and mathematical physics [MSS02], in gauge theory and symplectic geometry,
in representation theory and graph cohomology [Fre10], and in Goodwillie calculus.

In recent years, the importance of colored operads has become clear, e.g. in [BM07], [YJ15],
and [BB17]. Colored operads encode even more general algebraic structures, including the category
of operads itself, other categories which encode algebraic structure (e.g. modular operads, higher
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operads, colored operads), morphisms between algebras over an operad, modules over an operad,
other enriched categories, and diagrams in such categories. Colored operads have been applied in
enriched category theory, factorization homology, higher category theory (leading to ∞-operads),
and topological quantum field theories.

Our setting in this paper is a monoidal model categoryM, a set of objectsK (the cells we want to
build things out of), and a right Bousfield localization RKM. This means id ∶ M // RKM is right
Quillen and RKM satisfies the universal property that any right Quillen functor F ∶ M // N ,
taking the K-colocal equivalences to weak equivalences, factors through RKM. As a category,
RKM is the same as M, hence is monoidal, but the model structure is different (with more weak
equivalences), and it is not automatic that RKM will be a monoidal model category; i.e., the
pushout product axiom could fail in RKM. In order to prove our preservation results, we will need
to bring homotopy into the realm of colored operads by building model structures and semi-model
structures on categories of algebras over operads. Such structures provide a powerful computational
tool which has been crucial in many of the applications above, and are therefore of independent
interest.

In Section 2 we provide definitions and notations concerning colored operads. In Section 3
we review right Bousfield localization. We assume the reader is familiar with the basics of model
categories (an excellent overview is [Hov99]), and we encourage the reader to proceed with a copy
of [Hir03] near at hand. In Section 4 we define the notion of a monoidal right Bousfield localization,
dualizing [Whi14b], and we provide an easy to check condition guaranteeing that a right Bousfield
localization RKM satisfies the pushout product axiom. In Section 5 we build our model structures
on categories of algebras taken in RKM. In Section 6 we dualize our general preservation results
from [WY18a]. In Sections 7 and 8 we derive specific preservation results, often with easier to
check hypotheses. Finally, in Sections 9–13 we apply our results to numerous examples of interest,
including spaces, equivariant spaces, spectra, chain complexes, R-modules, and small categories.

En route to these examples, we establish many results of independent interest. For example,
in Theorem 5.11, we prove that algebras over any colored operad in G-spaces have a transferred
model structure. In Corollary 5.15, we prove the same for positive model structures on orthogonal
G-spectra. To our knowledge, these results have not appeared before, and are essential to the study
of brave new equivariant algebra. Similarly, in Section 12, we conduct what we believe to be the
first ever study of operad algebras in the stable module category. This has the potential to give
powerful new tools to representation theorists using the stable module category.

Acknowledgments: The authors are grateful to Sarah Wolff for helpful conversations as Sec-
tion 12 was being worked out, and to Sinem Odabaşi for a helpful conversation related to Section
11.3.

2 Colored operads

Assumption 2.1. Fix a symmetric monoidal closed category (C,⊗, I,Hom) with all small limits
and colimits, initial object ∅, and terminal object ∗.

Let us first recall some notations regarding colors from [YJ15]. A basic introduction to colored
operads is [Yau16].

Definition 2.2. Fix a non-empty set C once and for all, whose elements are called colors.

1. A C-profile is a finite sequence of elements c = (c1, . . . , cm) in C. The empty C-profile is
denoted ∅. Write ∣c∣ =m for the length of a profile c.
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2. The set of all C-profiles is denoted by Prof(C).

3. If a = (a1, . . . , am) and b are C-profiles, then a left permutation σ ∶ a // b is a permutation
σ ∈ Σm such that

σa = (aσ−1(1), . . . , aσ−1(m)) = b

This necessarily implies ∣a∣ = ∣b∣ =m. A left permutation is also called a map.

4. The groupoid of C-profiles, with left permutations as the isomorphisms, is denoted by ΣC.
The opposite groupoid Σop

C is regarded as the groupoid of C-profiles with right permutations

aσ = (aσ(1), . . . , aσ(m))

as isomorphisms.

5. The orbit of a profile a is denoted by [a]. The maximal connected sub-groupoid of ΣC contain-
ing a is written as Σ[a]. Its objects are the left permutations of a. There is a decomposition

ΣC ≅ ∐
[a]∈ΣC

Σ[a], (2.1)

where there is one coproduct summand for each orbit [a] of a C-profile.

6. A C-colored object in C is an object in the product category

C
C def
== ∏

C

C.

A typical C-colored object X is also written as {Xa} with Xa ∈ C for each color a.

7. A C-colored object X is said to be concentrated at c ∈ C if Xd = ∅ for all colors d /= c. A map
of C-colored objects is said to be concentrated at c ∈ C if both its domain and codomain are
concentrated at c.

8. The category of C-colored symmetric sequences in C is the diagram category

SymSeqC(C)
def
== C

Σ
op
C
×C.

9. The category of C-colored sequences in C is the diagram category

SeqC(C)
def
== C

Prof(C)×C
= ∏

Prof(C)×C
C.

10. A typical C-colored (symmetric) sequence is also written as {X(
d
c
)} with X(

d
c
) ∈ C for d ∈ C

and c ∈ Prof(C).

11. Suppose k ≥ 0. A C-colored (symmetric) sequence X is said to be concentrated at k if, for
d ∈ C and c ∈ Prof(C),

∣c∣ /= k implies X(
d
c
) = ∅
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Remark 2.3. 1. A C-colored (symmetric) sequence concentrated at 0 is equivalent to a C-
colored object.

2. Since there is a coproduct decomposition

Σop

C × C ≅ ∐
d∈C

∐
[c]∈ΣC

Σop
[c] × {d},

there is a product decomposition

SymSeqC(C) ≅ ∏
d∈C

∏
[c]∈ΣC

C
Σop

[c]
×{d}

≅ ∏
d∈C

∏
[c]∈ΣC

C
Σop

[c] . (2.2)

If X ∈ SymSeqC(C), then a typical component with respect to this decomposition is written
as

X(
d
[c]) ∈ C

Σop

[c]
×{d}

.

A C-colored symmetric sequence is the C-colored version of a 1-colored symmetric sequence
[Har10b] (3.1).

3. Suppose C is a cofibrantly generated model category. Then by the decomposition (2.2) and
[Hir03] (11.1.10 and 11.6.1), the category SymSeqC(C) inherits from C a cofibrantly generated
model category structure, in which weak equivalences and fibrations are defined entrywise in
C. Likewise, the category SeqC(C) inherits from C a cofibrantly generated model category
structure in which fibrations, cofibrations, and weak equivalences are all defined entrywise in
C.

The following colimit construction is needed to define the colored version of the circle product.

Definition 2.4. Suppose G is a finite non-empty connected groupoid, X ∈ CG
op

, and Y ∈ CG.
Define

X ⊗
G
Y = colim [ Gop ∆ // Gop ×Gop ≅ Gop ×G

X×Y // C × C
⊗
// C ] . (2.3)

We now recall from [WY18a] the colored circle product, the monoids with respect to which are
C-colored operads.

Definition 2.5. Suppose:

• A,B ∈ SymSeqC(C), and Y ∈ CC;

• d ∈ C, c = (c1, . . . , cm) ∈ ΣC, and [b] ∈ ΣC is an orbit.

1. Define Y ⊗[b] ∈ CΣ[b] as the diagram with values

Y ⊗[b]
(b′) = Y ⊗b′ def

== Yb′1 ⊗⋯⊗ Yb′n (2.4)

if b′ = (b′1, . . . , b
′
n) ∈ Σ[b]. The structure maps in the diagram Y ⊗[b] are given by permutation

of the tensor factors.
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2. Define the object B⊗c ∈ CΣ
op
C as having the [b]-component

B⊗c
([b]) = ∐

{[bj]∈ΣC}1≤j≤m s.t.

[b]=[(b1,...,bm)]

Kan
Σop

[b] [
m

⊗
j=1

B(
cj
[bj]

)] ∈ C
Σop

[b] . (2.5)

The left Kan extension is defined as

∏
m
j=1 Σop

[bj]

concatenation

��

∏B(cj
−
)

// C×m
⊗
// C

=

��

Σop

[b]

Kan
Σ

op
[b] [⊗B(⋮)]

left Kan extension // C.

3. By allowing left permutations of c in (2.5), we obtain B⊗[c] ∈ CΣ[c]×Σ
op
C with

B⊗[c]
([b]) ∈ C

Σ[c]×Σop

[b] . (2.6)

4. The circle product
A ○B ∈ SymSeqC(C)

is defined to have components

(A ○B)(
d
[b]) = ∐

[a]∈ΣC

A(
d
[a]) ⊗

Σ[a]

B⊗[a]
([b]) ∈ C

Σop

[b]
×{d}

(2.7)

for d ∈ C and orbits [b] ∈ ΣC, where ⊗
Σ[a]

is defined in (2.3).

The next definition is the non-symmetric version of the previous definition.

Definition 2.6. Suppose A,B ∈ SeqC(C).

1. For a = (a1, . . . , am), b ∈ Prof(C), define

B⊗a
(b) = ∐

{bj∈Prof(C)}1≤j≤m

s.t. b=(b1,...,bm)

[
m

⊗
j=1

B(
aj
bj
)] .

2. The non-symmetric circle product
A ○B ∈ SeqC(C)

is defined to have entries

(A ○B)(
d
b
) = ∐

a∈Prof(C)
A(

d
a
) ⊗B⊗a

(b) (2.8)

for d ∈ C and b ∈ Prof(C).
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Recall that a C-colored (symmetric) sequence concentrated at 0 is equivalent to a C-colored
object. The following observation is immediate from the definition.

Lemma 2.7. Suppose Y is a C-colored object.

1. For X ∈ SymSeqC(C) and with Y regarded as a symmetric sequence concentrated at 0, the
circle product X ○ Y is also concentrated at 0.

2. For X ∈ SeqC(C) and with Y regarded as a sequence concentrated at 0, the non-symmetric
circle product X ○ Y is also concentrated at 0.

Proposition 2.8. Suppose C is a non-empty set of colors.

1. (SymSeqC(C), ○, I) is a monoidal category with unit I such that

I(
d
c
) =

⎧⎪⎪
⎨
⎪⎪⎩

I if c = d,

∅ if c /= d
(2.9)

for c ∈ ΣC and d ∈ C.

2. (SeqC(C), ○, I) is a monoidal category.

Proof. The first assertion is proved in [WY18a]. The second assertion is proved similarly. q.e.d.

Definition 2.9. Suppose C is a non-empty set of colors.

1. The category OperadΣC(C) of C-colored operads in C is the category of monoids in the monoidal
category (SymSeqC(C), ○, I).

2. The category OperadΩC(C) of C-colored non-symmetric operads in C is the category of monoids
in the monoidal category (SeqC(C), ○, I).

3. A colored (non-symmetric) operad in C is a D-colored (non-symmetric) operad in C for some
non-empty set of colors D.

4. Suppose O is a C-colored (non-symmetric) operad in C. The category of algebras over the
monad [Mac98] (VI.2)

O ○ − ∶ C
C // C

C

is denoted by Alg(O) = Alg(O;C), whose objects are called O-algebras.

Proposition 2.10. Suppose O is a C-colored (non-symmetric) operad in C.

1. The category Alg(O) has all small limits, which are created and preserved by the forgetful
functor

CC Alg(O)oo

2. The category Alg(O) has all small colimits, with reflexive coequalizers and filtered colimits
created and preserved by the forgetful functors.
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Proof. If O is a C-colored operad, then the assertions are proved in [WY18a]. The non-symmetric
case is proved similarly. q.e.d.

The following observation provides a way to compute ⊗Σ[c]
(2.3).

Lemma 2.11. Suppose:

• c ∈ ΣC with length ∣c∣ ≥ 1, and {ci}1≤i≤r are the distinct colors that appear in c with ci

appearing ki ≥ 1 times.

• b is in the orbit of c (e.g., b = c).

• A ∈ C
Σop

[c] , and W = {Wci}1≤i≤r ∈ C
{c1,...,cr} (i.e., each Wci is an object in C).

Then there is a natural isomorphism

A ⊗
Σ[c]

W⊗[c]
≅ A(b) ⊗

Σk1
×⋯×Σkr

W⊗b. (2.10)

Here:

• − ⊗
Σ[c]

− is the colimit in (2.3).

• W⊗[c] and W⊗b are as in (2.4).

• Σk1 ×⋯×Σkr acts on A(b) from the right by permuting the ki copies of ci’s among themselves
for each 1 ≤ i ≤ r, and likewise for W⊗b.

Proof. First note that a self-map of b simply permutes the ki copies of ci’s among themselves for
each 1 ≤ i ≤ r. Suppose b′ and b′′ are two objects in the orbit of c. Then there is a unique order-
preserving map σ(b′,b′′) ∶ b

′ // b′′ in the sense that, for each 1 ≤ i ≤ r, the jth copy of ci (counting

from left to right) in b′ is sent to the jth copy of ci in b′′ for all 1 ≤ j ≤ ki. Then each map
τ ∶ b′ // b′′ is factored as

b′

τ

$$

τ ′

��

σ
(b′,b′′)

// b′′

τ ′′

��

b′ σ
(b′,b′′)

// b′′

for some self-maps τ ′ of b′ and τ ′′ of b′′ that are uniquely determined by τ . Using these order-
preserving maps σ(b′,b′′), it follows that the natural map

A(b) ⊗
Σk1

×⋯×Σkr

W⊗b // A ⊗
Σ[c]

W⊗[c]

is an isomorphism. q.e.d.
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3 Existence of right Bousfield localization

Here we first recall a few definitions and existence result regarding right Bousfield localization, taken
from [Hir03]. Let M be a model category and K a set of cofibrant objects in M. Let map(−,−)
denote the homotopy function complex in M. We describe the right Bousfield localization RKM
of M with respect to K (the chosen set of cells for RKM).

Definition 3.1. A map f ∶ X // Y is a K-colocal equivalence if for every A ∈ K, the induced
map

f∗ ∶ map(A,X) // map(A,Y )

is a weak equivalence. These maps will become the weak equivalences in RKM.

Remark 3.2. If M is a simplicial model category then one can use the simplicial mapping space
instead of the homotopy function complex. For general M, one often needs framings. However,
in this paper we have avoided the need for framings by proving in our examples of interest (all of
which are closed symmetric monoidal categories) that one can use the internal Hom in place of map
above.

Remark 3.3. If K is not a set of cofibrant objects, one can still define RKM, but it agrees with
RK′(M) where K ′ is a set of cofibrant replacements for every A ∈K. Thus, it is no loss to assume
K consists of cofibrant objects from the start.

Definition 3.4. An object W is K-colocal if W is cofibrant and for every K-colocal equivalence
f ∶X // Y , the induced map

f∗ ∶ map(W,X) // map(W,Y )

is a weak equivalence.

Definition 3.5. The right Bousfield localization of M with respect to K is a model structure
RKM on the underlying category of M, whose weak equivalences are the K-colocal equivalences,
whose fibrations are the same as those inM, and whose cofibrations are defined via the left lifting
property.

This model structure RKM need not exist in general. The following is a distillation of Theorem
5.1.1 in [Hir03] (with corrections from the errata). Recall that M is right proper if pullbacks of
weak equivalences along fibrations are weak equivalences.

Theorem 3.6 (Hirschhorn). Let M be a right proper, cellular model category and K a set of
objects. Then RKM exists and the cofibrant objects are the K-colocal objects of M. If every
object of M is fibrant then RKM is cofibrantly generated.

Following [CI04], we will avoid the need to assume M is cellular at any point.

Definition 3.7. Suppose M is a model category. We say that M is right localizable if it satisfies
the following conditions.

1. M is right proper; i.e., pullbacks along fibrations preserve weak equivalences.

2. There exists a set J of generating trivial cofibrations [Hir03] (11.1.2(2)). This means that:
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(a) J permits the small object argument (i.e., the domains of the maps in J are J-small);

(b) a map is a fibration precisely when it is right orthogonal to J.

3. Every object in M is cofibration-small, i.e., small relative to the subclass of cofibrations.

Note that the definition of right localizable is only about the model category and is not about
any set of objects in it. Next we define weaker conditions on the model category that involve a
set of cofibrant objects. The essence of the next definition is that, in order to construct the right
Bousfield localization, one needs a functorial factorization of each map into a K-colocal cofibration
followed by a K-colocal trivial fibration. Not surprisingly, this comes down to Quillen’s small object
argument. The following definitions provide two different ways to use the small object argument
to obtain the desired factorization, as discussed in [Hir03] (5.2.3) and [CI04] (2.5).

Definition 3.8. Suppose M is a right proper model category, and K is a set of cofibrant objects
in M.

1. We say that the pair (M,K) is type 1 right localizable if it satisfies the following conditions.

(a) There exists a set J of generating trivial cofibrations.

(b) Define the sets

Λ(K) = {A⊗ ∂∆[n] // A⊗∆[n] ∣ A ∈K, n ≥ 0},

Λ(K) = Λ(K) ∪ J,
(3.1)

where A is a cosimplicial resolution of A ∈ K [Hir03] (16.1.2(1)). Then Λ(K) permits

the small object argument, i.e., the domains of the maps in Λ(K) are Λ(K)-small.

2. We say that the pair (M,K) is type 2 right localizable if it satisfies the following conditions.

(a) There exists a regular cardinal κ such that each object of K is κ-small relative to cofi-
brations.

(b) Suppose given a diagram

X0
//

((

X1
//

""

⋯ // Xβ
//

||

⋯

Y

in M in which the top row is a κ-sequence (with κ as in the previous condition) of
cofibrations, and the map Xβ

// Y is a fibration for each successor ordinal β. Then
the map colimβXβ

// Y is also a fibration.

3. We say that the pair (M,K) is right localizable if it is either type 1 right localizable or type
2 right localizable.

The definition of type 1 right localizable is extracted from [Hir03] (Chapter 5), while the defi-
nition of type 2 right localizable is precisely [CI04] (2.4)
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Proposition 3.9. Suppose M is a model category, and K is a set of cofibrant objects. If M
is right localizable, then (M,K) is both type 1 right localizable and type 2 right localizable. In
particular, (M,K) is right localizable.

Proof. By assumptionM is right proper and has a set J of generating trivial cofibrations, and every
object inM is cofibration-small. That Λ(K) is Λ(K)-small follows from the fact that every map in

Λ(K) is a cofibration inM (see the proof of [Hir03] 5.2.5) and the fact that K-colocal cofibrations
are, in particular, cofibrations in M. So the pair (M,K) is type 1 right localizable.

To see that (M,K) is type 2 right localizable, as mentioned in [CI04] (under 2.4), just choose
κ such that the domains in J and the objects in K are κ-small relative to cofibrations. q.e.d.

The following general existence result of right Bousfield localization is proved in [Hir03] (Chapter
5, in particular 5.1.1 and 5.1.2) and, with a variation of the argument, in [CI04] (Section 2).

Theorem 3.10. Suppose M is a model category, and K is a set of cofibrant objects such that
(M,K) is right localizable. Then the following statements hold.

1. The right Bousfield localization RKM exists [Hir03] (3.3.1).

2. The cofibrant objects in RKM are precisely the K-colocal objects in M.

3. RKM is right proper.

4. If every object in M is fibrant and if M is cofibrantly generated by (I, J), then RKM is

cofibrantly generated by (Λ(K), J).

5. IfM is a simplicial model category, then RKM inherits a simplicial model category structure.

Graphically, the above conditions are related as follows:

(M,K) type 1 r.l.

�%
M right localizable

.6

(0

RKM exists

(M,K) type 2 r.l.

9A

However, to ensure that RKM is cofibrantly generated, one needs to assume a little bit more.

4 Monoidality in right Bousfield localization

In this section, we address the question of when RKM is a monoidal model category, i.e., satisfies
the pushout product axiom.

Definition 4.1. A right Bousfield localization RK is said to be a monoidal right Bousfield lo-
calization if RKM satisfies the pushout product axiom. The smallest monoidal right Bousfield
localization for a given (M,K) is a monoidal model structure RKM

⊗ on M such that the iden-
tity id∶ M // RKM

⊗ is the initial monoidal right Quillen functor to a monoidal model category
taking K-colocal equivalences to weak equivalences
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This universal property is the monoidal analogue of [Hir03] (3.3.18) and the dual of [Whi14b]
(4.8).

Definition 4.2. Suppose:

• M is a model category with a set J of generating trivial cofibrations.

• K is a set of cofibrant objects in M.

Define the following condition.

$ : If A is a domain or a codomain of a map in Λ(K) = Λ(K) ∪ J (3.1), then the functor

M
Hom(A,−)

//M

takes K-colocal equivalences between fibrant objects to K-colocal equivalences.

We will say that (M,K) satisfies $ if this condition holds.

Recall once again that M and RKM, if it exists, have the same fibrations and also the same
trivial cofibrations. In particular, in $ and everywhere else it is not necessary to specify whether
an object is fibrant in M or fibrant in RKM.

Theorem 4.3. Suppose:

• M is a cofibrantly generated monoidal model category in which every object is fibrant.

• K is a set of cofibrant objects in M such that (M,K) is right localizable.

• All the domains and codomains of the maps in Λ(K) are K-colocal objects.

Then RKM is a right proper, cofibrantly generated, monoidal model category if and only if $ holds.

Remark 4.4. This theorem demonstrates that the smallest monoidal Bousfield localization for a
given right-localizable (M,K) has colocal objects generated by K ′ = K ∪D, where D is the set

of domains and codomains of maps in Λ(K), and has weak equivalences the closure of the K-
colocal equivalences under Hom(A,−) for A ∈K ′. Remark 9.3 demonstrates this for the example of
topological spaces. As remarked in [Gut12], the existence of this model structure can be verified by
carrying through the exposition in [Hir03] or in [Bar10] using Hom instead of map, and Theorem
2.12 in [GR14] provides an alternative construction in case M is combinatorial.

Proof of Theorem 4.3. First note that by Theorem 3.10, RKM exists and is a right proper, cofi-
brantly generated model category with generating cofibrations Λ(K). So we must show that RKM
satisfies the pushout product axiom if and only if $ holds.

For the if direction, suppose that $ holds, j ∶ A // B is a cofibration inRKM, and p ∶X // Y
is a fibration. We write Hom for the internal hom in M. We must show that the pullback corner
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map (j, p) in

Hom(B,X)

(j,p)

))

Hom(B,p)

))

((

PB
p#

//

��

Hom(B,Y )

��

Hom(A,X)
Hom(A,p)

// Hom(A,Y )

(4.1)

is a fibration that is also a K-colocal equivalence if either j or p is such. Here

PB = Hom(A,X) ×
Hom(A,Y )

Hom(B,Y )

is the pullback.

1. Observe that RKM has fewer cofibrations than M, so j is also a cofibration in M. So (j, p)
is a fibration by the pushout product axiom on M.

2. We turn next to the case where j is a trivial cofibration in RKM, hence also in M because
M and RKM have the same trivial cofibrations. By the pushout product axiom onM, (j, p)
is a trivial fibration in M, hence also in RKM.

3. Lastly, suppose p is a trivial fibration in RKM. We already know that (j, p) is a fibration by
our first case above. So by [Hov99] (4.2.5) it is sufficient to check that (j, p) is a K-colocal

equivalence for j ∈ Λ(K), the set of generating cofibrations of RKM. By the 2-out-of-3
property of K-colocal equivalences [Hir03] (3.2.3(2)) it is enough to check that both p# and
Hom(B,p) in (4.1) are K-colocal equivalences.

Since A is the domain of j ∈ Λ(K), it is by assumption a K-colocal object, in particular a
cofibrant object in M. Recall that M and RKM have the same fibrations, and a trivial
fibration in M is also a trivial fibration in RKM. So the pushout product axiom on M
implies that

RKM
−⊗A

//
M

Hom(A,−)
oo (4.2)

is a Quillen pair because the right adjoint Hom(A,−) preserves fibrations and trivial fibrations.

Next note that, by the 2-out-of-3 property of K-colocal equivalences, a fibrant approximation
in M to a K-colocal equivalence is a K-colocal equivalence between fibrant objects. The as-
sumption $ says that Hom(A,−) in (4.2) takes K-colocal equivalences between fibrant objects
to K-colocal equivalences. So 3.3.18(2) in [Hir03] now says that

RKM
Hom(A,−)

// RKM

is a right Quillen functor. Thus, the bottom horizontal map Hom(A,p) in (4.1) is a trivial
fibration in RKM because p is a trivial fibration in RKM. It follows that its pullback p# is
also a trivial fibration in RKM, hence a K-colocal equivalence.
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Likewise, since B is the codomain of j ∈ Λ(K), the map Hom(B,p) in (4.1) is a trivial fibration
in RKM, hence a K-colocal equivalence, because

RKM
Hom(B,−)

// RKM

is a right Quillen functor and p is a trivial fibration in RKM. Thus, by the 2-out-of-3 property
in the top triangle, the pullback corner map (j, p) is a K-colocal equivalence as required.

We have shown that RKM satisfies the pushout product axiom.
Next, for the only if direction, suppose RKM satisfies the pushout product axiom. To prove

$, suppose A is the domain or the codomain of a map in Λ(K). Then A is cofibrant in RKM by
assumption. The pushout product axiom on RKM implies that

RKM
Hom(A,−)

// RKM

preserves trivial fibrations in RKM. By Ken Brown’s Lemma ([Hov99] 1.1.12), this functor takes
all weak equivalences in RKM between fibrant objects to weak equivalences in RKM. This is the
condition $. q.e.d.

The last assumption in Theorem 4.3 says that all the domains and codomains of the maps in
Λ(K) are K-colocal objects. We next address the question of when this condition holds.

Theorem 4.5. Suppose:

• M is a cofibrantly generated, monoidal, simplicial model category in which every object is
fibrant.

• K is a set of cofibrant objects in M such that (M,K) is right localizable.

Then the following statements are equivalent.

1. All the generating trivial cofibrations in M have K-colocal domains.

2. All the domains and codomains of the maps in Λ(K) are K-colocal objects.

3. The generating cofibrations and generating trivial cofibrations in RKM have K-colocal do-
mains .

Proof. By Theorem 3.10, the right Bousfield localization RKM is a right proper, simplicial model
category and is cofibrantly generated by (Λ(K), J), where J is the set of generating trivial cofibra-
tions in M. We will prove (2) Ô⇒ (3) Ô⇒ (1) Ô⇒ (2).

(2) Ô⇒ (3). If (2) is true, then all the maps in J ⊆ Λ(K) also have K-colocal domains.
(3) Ô⇒ (1). If (3) is true, then all the maps in J (= generating trivial cofibrations in RKM)

have K-colocal domains.
(1) Ô⇒ (2). Suppose (1) is true, so all the maps in J have K-colocal domains. To prove (2),

since every map in Λ(K) is a cofibration in RKM, it is enough to show that the domain of each

map in Λ(K) is K-colocal. Moreover, since Λ(K) = Λ(K) ∪ J, it remains to show that maps in
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Λ(K) have K-colocal domains. In other words, we must show that each A⊗ ∂∆[n] is a K-colocal
object for A ∈K.

For each A ∈ K, recall that A is a cosimplicial resolution of A in M∆. Using the simplicial
structure on M, we now choose its cosimplicial resolution as follows:

A = {An
= A⊗∆[n] ∶ n ≥ 0}.

This A is indeed a cosimplicial resolution of A inM∆ by [Hir03] (16.1.4(1)) because A is cofibrant
in M by assumption. But note that A is also K-colocal (= cofibrant in RKM) and that RKM
inherits its simplicial model structure from M. So by [Hir03] (16.1.4(1)) applied to RKM, the
same A is also a cosimplicial resolution of A in (RKM)∆. In particular, A ∈ (RKM)∆ is Reedy
cofibrant. So [Hir03] (16.3.9(1)) applied to RKM says that A ⊗ ∂∆[n] is a cofibrant object in
RKM, hence K-colocal as desired. q.e.d.

We build on the Theorem above to characterize when RKM is monoidal.

Corollary 4.6. Suppose:

• M is a cofibrantly generated, monoidal, simplicial model category in which every object is
fibrant.

• K is a set of cofibrant objects in M such that (M,K) is right localizable.

• All the generating trivial cofibrations in M have K-colocal domains.

Then RKM is a right proper, cofibrantly generated, monoidal, simplicial model category if and
only if $ holds.

Proof. This follows from Theorems 3.10, 4.3, and 4.5. q.e.d.

5 Model structure on algebras in right Bousfield localization

In this section we provide sufficient conditions under which all colored operads in RKM are ad-
missible.

The following definitions and examples are from [BM03, BM07].

Definition 5.1. SupposeM is a model category that is also a symmetric monoidal closed category
with ⊗-unit I.

1. A coalgebra interval consists of a counital comonoid object H in M together with a factor-
ization

I ∐ I
(i0,i1)

// H
ε // I (5.1)

of the fold map of I, in which:

• both maps (i0, i1) and ε are maps of comonoids;

• (i0, i1) is a cofibration;

• ε is a weak equivalence.
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2. A cocommutative coalgebra interval is a coalgebra interval H whose comonoid structure is
cocommutative.

Example 5.2. In the context of the previous definition:

1. Familiar examples of monoidal model categories admitting a cocommutative coalgebra inter-
val include [BM03] the categories of compactly generated Hausdorff spaces, simplicial sets,
simplicial (pre)sheaves, and symmetric spectra. Less familiar examples include small cate-
gories (by analogy with spaces) and cochain complexes concentrated in non-negative degrees
over a commutative ring with unit [Ric06] (Section 8).

2. The category of unbounded chain complexes over a commutative ring with unit admits a
coalgebra interval that is not cocommutative [BM03] (3.3.3).

Definition 5.3. Suppose M is a model category, and T is a monad on M.

1. A fibrant T -algebra in M is a T -algebra whose underlying object is fibrant in M.

2. For X ∈ Alg(T ;M), a path object in M is a factorization

X
∼ // Path(X) // // X ×X (5.2)

in Alg(T ;M) of the diagonal map in which the first map is a weak equivalence inM and the
second map is a fibration in M.

Taking internal hom out of a coalgebra interval leads to functorial path objects just as in [BM03]
(proof of 3.1) and [BM07] (proof of 2.1):

Lemma 5.4. Suppose M is a monoidal model category with a cofibrant ⊗-unit and a coalgebra
interval.

1. If O is a C-colored non-symmetric operad inM, then fibrant O-algebras inM have functorial
path objects in M.

2. If the coalgebra interval is furthermore cocommutative and if O is a C-colored operad in M,
then fibrant O-algebras in M have functorial path objects in M.

Proposition 5.5. Suppose:

• M is a monoidal model category with a cofibrant ⊗-unit and a coalgebra interval.

• K is a class of cofibrant objects in M such that RKM exists.

Then the following statements hold.

1. If O is a C-colored non-symmetric operad in M, then fibrant O-algebras in RKM have
functorial path objects in RKM.

2. If the coalgebra interval is furthermore cocommutative and if O is a C-colored operad in M,
then fibrant O-algebras in RKM have functorial path objects in RKM.
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Proof. Suppose O is either a C-colored non-symmetric operad or a C-colored operad in M, and X
is a fibrant O-algebra in RKM. This means that X is an O-algebra with each colored entry fibrant
in RKM, i.e., fibrant in M. So X is also a fibrant O-algebra in M. By Lemma 5.4 it has a path
object (5.2) inM that is functorial in X. In this path object, the first map is a weak equivalence in
M, hence also a weak equivalence in RKM [Hir03] (3.3.3(2)(a)). The second map is a fibration in
M, hence also a fibration in RKM by definition. So this is actually a path object in RKM. q.e.d.

Remark 5.6. We are not asserting that the ⊗-unit is cofibrant in RKM or that a coalgebra
interval inM is also one in RKM. The reason is that not every cofibration inM is a cofibration in
RKM. Luckily, what we truly need is a functorial path object for fibrant algebras, and fibrations
in M and RKM are the same.

The following general transfer result is a slight modification of [BM07] (2.1). It is a colored
variant of [BM03] (3.2 and remark afterwards), which in turn is essentially a consequence of [SS00]
(2.3(2)). The proof is basically the same as in [BM07], where it is assumed that there be a (cocom-
mutative) coalgebra interval. Here we assume directly that fibrant algebras have functorial path
objects.

Theorem 5.7. Suppose:

• M is a cofibrantly generated monoidal model category with a symmetric monoidal fibrant
replacement functor.

• O is either a C-colored operad in M or a C-colored non-symmetric operad in M.

• fibrant O-algebras have functorial path objects.

• the domains of maps in O○I (resp. O○J) are small with respect to relative (O○I)-cell complexes
(resp. relative (O ○ J)-cell complexes).

Then the following statements hold.

1. Alg(O;M) admits a cofibrantly generated model structure with weak equivalences and fibra-
tions defined entrywise in M.

2. The sets of generating cofibrations and of generating trivial cofibrations in Alg(O;M) are O○ I
and O○J, respectively, where (I, J) are the sets of generating (trivial) cofibrations inMC (see
[Hir03] 11.1.10).

3. The free-forgetful adjunction

MC
O○− // Alg(O;M)
U

oo (5.3)

is a Quillen adjunction.

We now apply Theorem 5.7 to right Bousfield localization RKM. Our approach is inspired in
part by [JY09].

Theorem 5.8. SupposeM is a cofibrantly generated, monoidal, simplicial model category in which
every object is fibrant. Furthermore, suppose:
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• It has a cofibrant ⊗-unit and a coalgebra interval H.

• K is a set of cofibrant objects in M such that (M,K) is right localizable.

• All the generating trivial cofibrations in M have K-colocal domains.

• It satisfies the condition $ in Definition 4.2.

Then the following statements hold.

1. If O is a C-colored non-symmetric operad inM such that the domains of maps in O○ IK (resp.
O ○ J) are small with respect to relative (O ○ IK)-cell complexes (resp. relative (O ○ J)-cell
complexes), then Alg(O;RKM) admits a cofibrantly generated model structure such that:

(a) Weak equivalences and fibrations in Alg(O;RKM) are defined entrywise in RKM.

(b) The sets of generating cofibrations and of generating trivial cofibrations in Alg(O;RKM)

are O ○ IK and O ○ JK , respectively, where (IK , JK) are the sets of generating (trivial)
cofibrations in (RKM)C.

(c) The free-forgetful adjunction

(RKM)C
O○− // Alg(O;RKM)
U

oo (5.4)

is a Quillen adjunction.

2. Suppose the coalgebra interval H is cocommutative. Then the conclusions of the previous
case hold for every C-colored operad in M.

Proof. By Corollary 4.6 RKM is a right proper, cofibrantly generated, monoidal, simplicial model
category in which every object is fibrant (because every object inM is fibrant). By Proposition 5.5
fibrant O-algebras in RKM have functorial path objects in RKM. Therefore, Theorem 5.7 applies
to RKM to yield the desired conclusions. q.e.d.

Remark 5.9. By Lemma 5.4 the hypotheses of Theorem 5.8 subsume those of Theorem 5.7. So
when Theorem 5.8 is applicable, then so is Theorem 5.7.

Denote by Top either the category of compactly generated spaces or the category of compactly
generated weak Hausdorff spaces. For a finite group G, denote by TopG the respective category of
G-equivariant spaces and maps.

Proposition 5.10. If M is a combinatorial model category or if M is either Top or TopG for a
compact Lie group G, then the smallness hypotheses in Theorems 5.7 and 5.8 are satisfied.

Proof. IfM is combinatorial then all objects are small relative to the whole category, and the same
remains true in Alg(O;RKM).

For the category of (G-equivariant) topological spaces, Lemma 2.4.1 in [Hov99] implies all spaces

are small relative to the class of topological inclusions. Since Top is Top{e} with {e} the trivial
group, it is enough to consider the case TopG for a general compact Lie group G. We use ⊗ to denote
the monoidal product in TopG. In the category of compactly generated spaces (resp. compactly
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generated weak Hausdorff spaces), inclusions (resp. closed inclusions) are saturated with respect to
transfinite composition, pushout, smash product, Cartesian product, and passage to coinvariants
under a groupoid action, as can readily be checked (see [Whi13] for an exposition).

It is therefore sufficient to argue that O ○ I,O ○ J, and O ○ IK are contained in the class of
inclusions (resp. closed inclusions). By the definition of the circle product (2.7) and Lemma 2.11
(in the symmetric case), by the definition of the non-symmetric circle product (2.8), and by the
saturation properties of (closed) inclusions stated in the previous paragraph, it suffices to show that
every map in I, J, and IK is a (closed) inclusion. This is certainly true for I and J. Using Lemma
9.1, we take IK to be the set of maps of the form K ⊗ in where in ∈ I. It follows that every map in
IK is a (closed) inclusion. q.e.d.

Theorem 5.11. Let G be a compact Lie group, and let O be a colored operad in TopG.

1. Then O-algebras in TopG inherit a transferred model structure from the usual (Quillen) model
structure on TopG.

2. Let K be a set of cofibrant objects such that (TopG,K) is right localizable, satisfies condition
$ in Definition 4.2, and all objects of the form (G/H)+ ∧D

n
+ are K-colocal. Then O-algebras

in RKTopG inherit a transferred model structure from RKTopG.

3. The same result holds for unpointed G-spaces, assuming in (2) that all objects of the form
(G/H) ×Dn are K-colocal.

Proof. All three statements follow from Theorem 5.8, applied to M = TopG (and with trivial K
for the statement about O-algebras in TopG). The requisite smallness is Proposition 5.10. The
symmetric monoidal fibrant replacement functor is the identity. The existence of functorial path
objects follows from Proposition 5.4, since G-spaces have a cocommutative coalgebra interval (in-
deed, a commutative and cocommutative Hopf interval object as in [BM03]) and has a cofibrant
unit. The interval is [0,1] with the trivial G-action (or [0,1]+ in the pointed setting). The multi-
plication is the usual multiplication of integers (in the pointed setting, a ∗ p = p for all a, where p
is the distinguished basepoint). The unit map is η ∶ ∗ // [0,1] taking ∗ to 1 (in the pointed case,
η ∶ S0 // [0,1]+ preserves basepoints and takes the other point of S0 to 1). The comultiplication
is the diagonal. The counit ε ∶ [0,1] // ∗ is trivial (and basepoint preserving in the pointed case).
All of these morphisms are easily seen to be equivariant, and the coherence conditions to give [0,1]
the structure of a cocommutative coalgebra interval are verified precisely as in the non-equivariant
case [BM03]. q.e.d.

This Theorem will be used in Section 10 to obtain numerous examples of situations where right
Bousfield localizations preserve O-algebra structure.

Remark 5.12. The situation of family model structures, for a family F of subgroups of G, is more
subtle. Unless G itself is in the family F, it is not known that the unit is cofibrant.

The category SpG of orthogonal G-spectra, described in [HW13] among other places, also has
a (co)commutative Hopf interval object. It is simply Σ∞[0,1]+. The multiplication and comulti-
plication are obtained using that Σ∞ is strong symmetric monoidal [MMSS01, Lemma 1.8]. The
coherence conditions then follow from those for [0,1]+ in G-spaces. However, no model structure
on G-spectra can admit a cofibrant unit and symmetric monoidal fibrant replacement functor, by a
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well-known counterexample due to Gaunce Lewis (expounded in [May09, Section 11]). In order to
have a model structure on O-algebras for the commutative monoid operad O, one must use a positive
model structure, see [Whi14a] for a discussion. Unfortunately, such model structures do not have
a cofibrant unit (by design), so Proposition 5.4 (and also [BM03, Proposition 4.1]) cannot be used.
However, [Kro07, Corollary 2.7] gets around the assumption that the unit is cofibrant, by using the
interval object in another category V in whichM is enriched. For us, catV is TopG. By mimicking
Kro’s approach [Kro07], with respect to the positive stable model structure on G-spectra [MM02,
Theorem III.5.3] and for the positive complete model structure on G-spectra [HHR16, Proposition
B.63], we obtain:

Theorem 5.13. The positive stable model structure on G-equivariant orthogonal spectra admits
a symmetric monoidal fibrant replacement functor, for any compact Lie group G. The same is true
for the positive complete model structure.

Proof. This is the G-equivariant analogue of [Kro07, Theorem 3.3]. Thinking of a G-spectrum as a
functor from an indexing category of G-representations [MM02, Definition II.2.6], one defines the
symmetric monoidal fibrant replacement of a G-spectrum X via the formula

TX(V ) = hocolim
n

ΩnVX((n+1)V ),

where V is a finite dimensional real G-representation, and nV is V ⊕ ⋅ ⋅ ⋅ ⊕ V (n times). The
homotopy colimit is taken in G-spaces, and the verification that TX is a G-spectrum, and that
the functor T is symmetric monoidal, proceeds precisely as in [Kro07]. The point is that the G
action never mixes with Kro’s considerations. For the verification that TX is fibrant for the positive
stable model structure, observe that positive fibrant G-spectra are positive Ω −G-spectra [MM02,
Theorem III.5.3]. Now Kro’s proof [Kro07, Theorem 3.3] carries through to the equivariant setting,
but now only G-representations V with dimV G ≠ 0 are considered. This is actually more than is
needed for Kro’s proof to work: Kro only needs dimV ≠ 0 [Kro07, Theorem 3.3]. Hence, the proof
also works for the positive complete model structure, which considers, for all closed subgroups H of
G, the H-representations V that contain a non-zero invariant vector. In particular, this restriction
on V , and the identification of fibrant G-spectra as Ω-spectra [HHR16, Diagram (B.68)], allows
Kro’s proof to carry through. q.e.d.

Remark 5.14. The category of orthogonal G-spectra also has a positive flat stable model structure
[Sto11, Theorem 2.3.27] and a complete flat stable model structure, obtained just as in [Sto11,
Theorem 2.3.27], but replacing the consideration of V with dimV G ≠ 0 by the consideration of
H-representations V that contain a non-zero invariant vector. These model structures have fewer
fibrations. We therefore do not know that fibrant objects are Ω-spectra, and hence it is not clear if
Kro’s proof [Kro07] works in these settings.

Corollary 5.15. Let G be a compact Lie group, and let O be a colored operad in orthogonal
G-spectra.

1. Then O-algebras in SpG inherit a transferred model structure from the positive stable (or
positive complete) model structure on SpG.

2. Let K be a set of cofibrant objects such that (SpG,K) is right localizable, satisfies condition
$ in Definition 4.2, and all objects of the form FW ((G/H)+ ∧D

n
+) are K-colocal, for every
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G-representation W in the universe indexing G-spectra [MM02, Definition III.2.2]. Then
O-algebras in RKSpG inherit a transferred model structure from RKSpG.

Proof. The first statement follows from [Kro07, Corollary 2.7], combined with Theorem 5.13. The
second statement follows from Theorem 5.8, except instead of appealing to Proposition 5.5 (the
only place where the cofibrant ⊗ unit is required), we appeal to the proof of [Kro07, Corollary 2.7],
which provides the required functorial path objects. q.e.d.

This result improves on [GW18, Section 7], where model structures on O-algebras are provided
for certain generalized N∞-operads O.

Remark 5.16. In this section, we have discussed conditions on a model categoryM to guarantee
that operad-algebras in a right Bousfield localization RKM inherit a transferred model structure.
These conditions are satisfied in many, but not all, of the examples of interest. In the next section,
we will prove several results regarding preservation of algebraic structure under right Bousfield
localization. It will turn out that we only need a transferred semi-model structure on operad-
algebras in RKM. We work in this more general setting to allow these results to hold for a wider
class of examples, since transferred semi-model structures exist in great generality, as demonstrated
in [WY18a, WY19].

6 Preservation of algebras under right Bousfield localization

In this section we will discuss preservation of monadic algebras under right Bousfield localization.
We use the terms right Bousfield localization and colocalization interchangeably.

Definition 6.1. Assume that:

• M is a model category, and T is a monad on M.

• K is a class of cofibrant objects inM such that the right Bousfield localization RKM exists.

Then RK is said to preserve T -algebras if:

1. When X is a T -algebra there is some T -algebra X̃ that is weakly equivalent in M to RKX.

2. In addition, when X is a fibrant T -algebra, there is a choice of X̃ in Alg(T ;M), with U(X̃)

colocal inM, there is a T -algebra homomorphism cX ∶ X̃ // X lifting the colocalization map
q ∶ RKUX // UX up to homotopy, and there is a weak equivalence βX ∶ U(X̃) // RKUX
such that q ○ βX ≅ UcX in Ho(M).

If T = FO is the free O-algebra monad of a colored operad O, then we say that RK preserves
O-algebras if it preserves FO-algebras.

The following general preservation result is the right Bousfield localization analogue of Theorem
7.2.3 in [WY18a], which deals with left Bousfield localization. Although we are mostly interested
in colored operads, the following preservation result holds for general monads. Furthermore, it only
requires semi-model structures on T -algebras.

Theorem 6.2. Suppose:

1. M is a model category, and T is a monad on M.
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2. K is a class of cofibrant objects inM such that the right Bousfield localization RKM exists.

3. Alg(T ;M) inherits a projective semi-model structure from M with weak equivalences and
fibrations created in M.

4. Alg(T ;RKM) inherits a projective semi-model structure from RKM with weak equivalences
and fibrations created in RKM.

5. The forgetful functor
U ∶ Alg(T ;RKM) // RKM (6.1)

preserves cofibrant objects.

Then RK preserves T -algebras.

Proof. Let QK denote cofibrant replacement in RKM, let QK,T denote cofibrant replacement
in Alg(T ;RKM), and let QT and BT denote cofibrant replacement and fibrant replacement in
Alg(T ;M). Since Alg(T ;M) is a semi -model category, we will only apply BT to cofibrant objects
in Alg(T ;M). We first focus on the first form of preservation and at the end turn our attention to
the case where E is a fibrant T -algebra.

Pick a T -algebra E. If E is not cofibrant in Alg(T ;M), we first take its cofibrant replacement
QTE in Alg(T ;M). Since QTE // E is a trivial fibration in Alg(T ;M), it is also a trivial
fibration inM. Applying the functorial fibrant replacement B inM then yields a weak equivalence
BQTE // BE in M. So applying cofibrant replacement in RKM yields a weak equivalence

QKBQTE // QKBE

in RKM between K-colocal objects. Thus, [Hir03] (3.2.13(2)) implies that it is actually a weak
equivalence in M.

Because QK is the left derived functor of the identity adjunction between M and RKM, and
B is the right derived functor of the identity, we know that BKE is weakly equivalent to QKBE in
M. Combined with the previous paragraph, we infer that BKE is weakly equivalent to QKBQTE
in M. Our model of Ẽ will be QK,TBTQTE. We must therefore show

QKBQTE ≃ QK,TBTQTE

in M.
The fibrant replacement QTE // BQTE is a trivial cofibration inM. The fibrant replacement

QTE // BTQTE–which exists because QTE is cofibrant in Alg(T ;M)–is a weak equivalence in
Alg(T ;M), hence inM. The map BTQTE // ∗ is a fibration in Alg(T ;M), hence inM. Consider
the following lifting diagram in M:

QTE
≃ //

��

≃
��

BTQTE

����
BQTE //

α

88

∗

(6.2)

The lifting axiom gives the dotted lift α ∶ BQTE // BTQTE, and it is necessarily a weak equiv-
alence in M by the 2-out-of-3 property.
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Since BTQTE is a T -algebra in M it must also be a T -algebra in RKM. In the follow-
ing diagram, the left vertical is a cofibration in RKM, the right vertical is a trivial fibration in
Alg(T ;RKM), hence in RKM, and the bottom horizontal map is a weak equivalence in RKM.
We may therefore construct a dotted lift β:

∅��

��

// QK,TBTQTE

≃
����

QKBTQTE
≃ //

β
66

BTQTE

By the 2-out-of-3 property, the lift β is a weak equivalence in RKM. We make use of this map as
the horizontal map in the lower right corner of the diagram below.

The top horizontal map α ∶ BQTE // BTQTE in the following diagram is the first map we
constructed, which was proven to be a weak equivalence in M. The square in the diagram below
is then obtained by applying QK to that map. In particular, the map

QKBQTE // QKBTQTE

is a weak equivalence in RKM:

BQTE
α // BTQTE

QKBQTE
QKα //

OO

QKBTQTE

OO

β
// QK,TBTQTE

We have shown that both of the bottom horizontal maps are weak equivalences in RKM. Thus,
by the 2-out-of-3 property, their composite

QKBQTE // QK,TBTQTE

is a weak equivalence in RKM. All the objects in the bottom row are cofibrant in RKM. Note
that QK,TBTQTE is cofibrant in RKM by the assumption that the forgetful functor

Alg(T ;RKM) // RKM

preserves cofibrant objects. So the above K-colocal equivalences are actually weak equivalences in
M by Theorem 3.2.13(2) in [Hir03].

As E was a T -algebra and BTQT and QK,T are endofunctors on categories of T -algebras, it is
clear that QK,TBTQTE is a T -algebra. We have just shown that BKE is weakly equivalent in M
to this T -algebra, so we are done.

We turn now to the case where E is assumed to be a fibrant T -algebra (so E is fibrant inM as
well). We have seen that there is an M-weak equivalence

QKBQTE // QK,TBTQTE,

and above we took QK,TBTQTE in M as our representative for BKE in Ho(M). Because E is a
fibrant T -algebra, so is its cofibrant replacement QTE in Alg(T ;M). There are weak equivalences

QTE
//

oo BTQTE
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in Alg(T ;RKM) because all fibrant replacements of a given object are weakly equivalent, e.g., by
diagram (6.2). So passage to BTQTE is unnecessary when E is a fibrant T -algebra, and we take
Ẽ ∶= QK,TQTE as our representative for BKE. The map cE is simply the composite of cofibrant
replacement maps

QK,TQTE // QTE // E.

The map βE is defined by the following lifting diagram in RKM, where the right vertical map is
cofibrant replacement in RKM:

∅��

��

// // RKUE

q≃

����

UQK,TQTE
UcX

≃
//

β

88

UE

Using that U preserves cofibrant objects we conclude that UQK,TQTE is cofibrant in RKM. It
easily follows that β is a weak equivalence, since it is a K-colocal equivalence between K-colocal
objects (by the 2-out-of-3 property).

The localization map RKE // E in Ho(M) lifts to the composite

QK,TQTE // QTE // E

in M. As both QT and QK,T are taken in Alg(T ), this composite map is a T -algebra homomor-
phism, as desired. q.e.d.

Remark 6.3. Section 7 in [CRT14] gives an alternative approach to preservation of algebraic
structure under colocalization, by seeking to lift colocalization functors to the level of T -algebras.
Their approach also uses a transferred model structure on Alg(T ;RKM), in [CRT14, Theorem 7.6].
In [WY16b], we prove that our approach is equivalent to the approach of [CRT14]. This dualizes an
earlier result of Batanin and the first author [BW16] that holds for left Bousfield localizations and
proves that the main preservation result in [Whi14b] is equivalent to the preservation in [CRT14],
in situations where both apply. This is important because, as illustrated by [WY16b, Theorem 6.4],
it allows us to prove preservation results for cases (like symmetric spectra) where the hypotheses of
Theorem 6.2 are difficult to verify. However, for other cases (like orthogonal spectra), we will see
that the hypothesis of Theorem 6.2 are easier to verify.

7 Entrywise Colocal Colored Operads

The main observation in this section is Theorem 7.6. It provides sufficient conditions under which
RK preserves O-algebras for an entrywise K-colocal colored operad.

Throughout this section, assume that M is a model category and that K is a class of cofibrant
objects in M. First recall the following condition ♣ from [WY18a] (Definition 6.2.1).

Definition 7.1. Suppose M is a symmetric monoidal category and is a model category. Define
the following condition.
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♣: For each n ≥ 1 and X ∈ MΣop
n that is cofibrant in M, the function

X ⊗
Σn

(−)◻n ∶ M //M

preserves cofibrations and trivial cofibrations.

The condition ♣ for cofibrations will be referred to as ♣cof , and the condition for trivial cofibrations
as ♣t.cof . So

♣ = ♣cof + ♣t.cof .

Write ♣M, ♣Mcof , and ♣Mt.cof if it is necessary to specify the category M.

To put a suitable model structure on the category of algebras over a colored operad in RKM,
we will employ Theorem 6.2.3 in [WY18a] to RKM, for which we need ♣RKM. In other words, we
need ♣

RKM
cof and ♣

RKM
t.cof . The following lemma deals with ♣

RKM
t.cof .

Lemma 7.2. Suppose RKM exists. Then ♣Mt.cof implies ♣RKM
t.cof .

Proof. Suppose X ∈ (RKM)Σop
n = MΣop

n is cofibrant in RKM. So X is also cofibrant in M. The
condition ♣Mt.cof says that the map

M
X⊗Σn(−)◻n

//M

preserves trivial cofibrations in M. But M and RKM have the same fibrations, hence the same
trivial cofibrations. q.e.d.

The following condition will be used to obtain ♣
RKM
cof .

Definition 7.3. Suppose M is a symmetric monoidal category and is a model category, and K is
a set of cofibrant objects in M. Define the following condition.

⧫ : For each n ≥ 1, X ∈ MΣop
n that is a K-colocal object in M, and map β ∶ U // V ∈ MΣop

n

that is both a fibration in M and a K-colocal equivalence, every solid-arrow diagram

U

β

��

X

<<

// V

in MΣop
n admits a dotted lift.

Lemma 7.4. Suppose RKM is a monoidal model category. Then ⧫ implies ♣RKM
cof .

Proof. Suppose X ∈ (RKM)Σop
n is cofibrant in RKM (i.e., a K-colocal object in M), f ∶ A // B

is a cofibration in RKM, and p ∶ Y // Z is a trivial fibration in RKM. The condition ♣
RKM
cof

says that every commutative square

X ⊗
Σn

A◻n

X⊗Σnf
◻n

��

// Y

p

��

X ⊗
Σn

B◻n //

α

;;

Z
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in RKM admits a dotted arrow that makes the entire diagram commutative. A dotted filler α
exists if and only if a dotted filler α′ exists in the diagram

Hom(B◻n, Y )

(f◻n,p)

��

X //

α′

66

Hom(A◻n, Y ) ×
Hom(A◻n,Z)

Hom(B◻n, Z)

in (RKM)Σop
n . Assuming the condition ⧫, to show that the dotted filler α′ exists, we just need to

see that the pullback corner map (f◻n, p) satisfies the condition for β in ⧫. In other words, we
need to show that the map (f◻n, p) is both a fibration in M and a K-colocal equivalence.

Since f is a cofibration in RKM, the iterated pushout product f◻n is also a cofibration in
RKM by the pushout product axiom in RKM. The map p is a trivial fibration in RKM by
assumption. So the pushout product axiom in RKM once again implies that the map (f◻n, p) is
a trivial fibration in RKM. Since the fibrations in M and RKM are the same, the map (f◻n, p)
is a fibration in M. Finally, the map (f◻n, p) is a weak equivalence in RKM, i.e., a K-colocal
equivalence. q.e.d.

We use this lemma to prove the following result, which provides semi-model structures trans-
ferred from RKM in such a way that the forgetful functor U preserves cofibrancy.

Theorem 7.5. Suppose:

• RKM is a cofibrantly generated monoidal model category.

• ♣Mt.cof and ⧫ are satisfied.

• O is a C-colored operad in M that is entrywise a K-colocal object in M.

Then:

1. The category Alg(O;RKM) admits a cofibrantly generated semi -model structure over RKM
such that the weak equivalences and fibrations are created in RKM.

2. If j ∶ A // B ∈ Alg(O;RKM) is a cofibration with A cofibrant in Alg(O;RKM), then the
underlying map of j is entrywise a cofibration in RKM.

3. Every O-algebra that is cofibrant in Alg(O;RKM) is entrywise cofibrant in RKM.

Proof. The operad O is entrywise cofibrant in RKM by assumption. By Lemmas 7.2 and 7.4 the
conditions ♣Mt.cof and ⧫ together imply ♣RKM = ♣

RKM
cof + ♣

RKM
t.cof . So Theorem 6.2.3 in [WY18a] can

be applied to RKM, and the conclusions are the three statements above. q.e.d.

With this theorem in hand, we have all we need to prove a preservation result, building on
Theorem 6.2.

Theorem 7.6. Suppose:
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• M and RKM are cofibrantly generated monoidal model categories.

• ♣M and ⧫ are satisfied.

• O is a C-colored operad in M that is entrywise a K-colocal object in M.

Then RK preserves O-algebras.

Proof. We will use Theorem 6.2 with T = FO the monad on MC associated to the colored operad
O [WY18a] (Definition 4.1.1). So we now check the hypotheses in Theorem 6.2.

1. RKM exists by assumption.

2. Note that O is also entrywise cofibrant in M, since every cofibration in RKM is also a
cofibration inM and O is entrywise cofibrant in RKM by assumption. So Alg(O;M) inherits
a semi-model structure fromMC by Theorem 6.2.3 in [WY18a] and the assumption that ♣M is
satisfied. Likewise, Alg(O;RKM) inherits a semi-model structure from (RKM)C by Theorem
7.5(1).

3. The forgetful functor
Alg(O;RKM) // (RKM)

C

preserves cofibrant objects by Theorem 7.5(3).

q.e.d.

8 Sigma cofibrant colored operads

In this section we assume a little bit more about the colored operad O and less about M than in
Theorem 7.6. The main observation is Theorem 8.5, which says that RK preserves O-algebras if
O satisfies a certain condition ★O, which is equivalent to O being cofibrant as a colored symmetric
sequence in RKM.

Throughout this section, assume that M is a cofibrantly generated model category and that
K is a class of cofibrant objects in M. The following lemma is used below to provide necessary
conditions for a colored symmetric sequence in RKM to be cofibrant.

Lemma 8.1. Suppose:

• RKM is a cofibrantly generated model category, and G is a finite connected groupoid.

• f ∈ (RKM)G is a cofibration, where (RKM)G has the inherited projective model structure
from RKM.

Then:

1. f is entrywise a cofibration in RKM.

2. f ∈ MG is a cofibration.
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Proof. The first statement follows from [Hir03] (11.6.3).
For the second statement, the cofibrations in (RKM)G are generated–as retracts of transfinite

compositions of pushouts–by the set G ⋅ IK . Here IK is the set of generating cofibrations in RKM,
while

G ⋅ g = ∐
G(−,β)

g

for some object β ∈ G with the coproduct taken in RKM. Each cofibration in RKM is also a
cofibration in M, so

G ⋅ IK ⊆ G ⋅Mcof .

The cofibrations in M are generated by the set I of generating cofibrations. Since G ⋅ − com-
mutes with taking retracts, transfinite compositions, and pushouts, each cofibration in (RKM)G

is generated by G ⋅ I, which is the set of generating cofibrations in MG. q.e.d.

The following observation gives necessary conditions for a C-colored symmetric sequence in
RKM to be cofibrant.

Proposition 8.2. Suppose RKM exists, and X ∈ SymSeqC(RKM) is cofibrant. Then:

1. X is entrywise a K-colocal object in M.

2. X ∈ SymSeqC(M) is cofibrant.

Proof. Since (by [WY18a] (3.1.5))

SymSeqC(RKM) ≅ ∏

(
d
[c])∈Σ

op
C
×C

(RKM)
Σop

[c]
×{d}

,

X being cofibrant means that each component

X(
d
[c]) ∈ (RKM)

Σop

[c]
×{d}

is cofibrant. Since each Σop

[c]×{d} is a finite connected groupoid, Lemma 8.1 says that each component

X(
d
[c]) is

• entrywise cofibrant in RKM (i.e., a K-colocal object);

• cofibrant in M
Σop

[c]
×{d}

.

Since we also have
SymSeqC(M) ≅ ∏

(
d
[c])∈Σ

op
C
×C

M
Σop

[c]
×{d}

,

we conclude that X ∈ SymSeqC(M) is also cofibrant. q.e.d.

We now unpack the necessary condition from the proposition above, with an eye towards veri-
fying it in our examples of interest in subsequent sections.

Definition 8.3. Suppose X ∈ SymSeqC(M). Define the following condition.
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★X : For each map p ∶ E // B ∈ SymSeqC(M) that is entrywise both a fibration in M and a
K-colocal equivalence, each solid-arrow diagram

E( d
[c]

)

p

��

X( d
[c]

)

::

// B( d
[c]

)

(8.1)

in MΣop
[c]×{d} admits a dotted lift for each ( d

[c]
) ∈ Σop

C × C.

The following observation gives a necessary and sufficient condition for a C-colored symmetric
sequence in RKM to be cofibrant.

Proposition 8.4. Suppose RKM exists, and X ∈ SymSeqC(RKM). Then X is cofibrant if and
only if ★X holds.

Proof. Suppose

p ∶ E // B ∈ SymSeqC(RKM) ≅ ∏

(
d
[c])∈Σ

op
C
×C

(RKM)
Σop

[c]
×{d}

is a trivial fibration, i.e., each component in (RKM)
Σop

[c]
×{d}

is a trivial fibration. This means
precisely that p is entrywise a trivial fibration in RKM by [Hir03] (11.6.1). In other words, p is
entrywise both a fibration in M (since M and RKM have the same fibrations) and a K-colocal
equivalence (= weak equivalence in RKM). The object X is cofibrant if and only if for each such
p and each diagram

E

p

��

X //

==

B

in SymSeqC(RKM), a dotted filler exists. Such a dotted filler exists if and only if the diagram

(8.1) in (RKM)
Σop

[c]
×{d}

=M
Σop

[c]
×{d}

always has a dotted filler for each (
d
[c]) ∈ Σop

C ×C. This is exactly
★X . q.e.d.

Theorem 8.5. Suppose:

• M and RKM are both cofibrantly generated monoidal model categories.

• O is a C-colored operad in M that is cofibrant in SymSeqC(RKM).

Then RK preserves O-algebras.

Proof. As before we will use Theorem 6.2 with T the monad on MC associated to the colored
operad O. First note that RKM exists by assumption.

1. Alg(O;M) inherits a semi-model structure from MC by Theorem 6.3.1 in [WY18a]. This is
the case because O being cofibrant in SymSeqC(RKM) implies O ∈ SymSeqC(M) is cofibrant
(by Proposition 8.2(2)).
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2. Likewise, Alg(O;RKM) inherits a semi-model structure from (RKM)C by, once again, The-
orem 6.3.1 in [WY18a] applied to RKM and the fact that O ∈ SymSeqC(RKM) is cofibrant.

3. That the forgetful functor
Alg(O;RKM) // (RKM)

C

preserves cofibrant objects is part of Theorem 6.3.1 in [WY18a].

q.e.d.

9 Application: spaces and spectra

In this section we provide applications to right Bousfield localizations to topological spaces, and
discuss what can be said for spectra. For this entire section Top will denote the category of pointed
compactly generated spaces, since Remark 3.1.10 of [Hir03] demonstrates that these are the only
interesting right Bousfield localizations. Everything in this section is also true for pointed compactly
generated weak Hausdorff spaces, using Proposition 5.10 for the requisite smallness. We will often
use the fact that for topological model categories like Top, one can use topological (rather than
simplicial) mapping spaces to detect K-colocal equivalences. The following is Lemma 2.3 and 2.5
in [CI04] together with Example 9.1.15 of [Hir03]:

Lemma 9.1. Let K be a set of cofibrant objects in a topological model categoryM such that the
pair (M,K) is right localizable. Then the set

Λ(K) = {A ∧ Sn−1
+

// A ∧Dn
+ ∣ A ∈K, n ≥ 0}

together with the generating trivial cofibrations J of M form a set of generating cofibrations of
RKM.

Specializing to the case of M= Top, we find that $ (Definition 4.2) is always satisfied.

Theorem 9.2. Let K be any set of cofibrant objects in Top that are small with respect to the
cofibrations. Then (Top,K) satisfies $.

Proof. Suppose f is a K-colocal equivalence. Let A be a domain or codomain of a map in Λ(K)∪J,
so A is of the form K ∧ Sj+, K ∧ Dj

+, Dj
+, or (Dj × I)+. First, we argue that when A is con-

tractible $ is satisfied. We must show Hom(A,f) is a K-colocal equivalence, which is equivalent to
Hom(K,Hom(A,f)) being a weak homotopy equivalence, where Hom(A,X) has the compact open
topology. This means the following map must be an isomorphism for t ≥ 0:

[St,Hom(K ∧A,f)] ≅ [St ∧K,Hom(A,f)] ≅ [St ∧K,f] ≅ [St,Hom(K,f)].

The right-most map is an isomorphism because f is a K-colocal equivalence. The middle isomor-
phism uses that Hom(A,f) ≃ f because A ≃ pt.

Next, we argue that the class of K-colocal equivalences coincides with the class of K ′-colocal
equivalences, where K ′ is the closure of K under all suspensions − ∧ Sm+ . This is because of the
following chain of equivalent statements (and it also follows from Lemma 5.5.2 in [Hir03], taking L
to be the simplicial circle):
f is a K-colocal equivalence
⇐⇒ Hom(K,f) is a weak equivalence
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⇐⇒ [St,Hom(K,f)] is an isomorphism for all t
⇐⇒ [St+m,Hom(K,f)] is an isomorphism for all t,m
⇐⇒ [St,Hom(Sm,Hom(K,f))] is an isomorphism for all t,m
⇐⇒ [St,Hom(K ∧ Sm, f)] is an isomorphism for all t,m
⇐⇒ f is a K ′-colocal equivalence

This implies that K-colocal objects are the same as K ′-colocal objects. Observe that the K ′-
colocal objects contain all objects A of the form K0 ∧ S

j
+ for some K0 ∈ K. We now prove that $

holds for such objects. To see that Hom(A,f) is a K-colocal equivalence, consider

Hom(K,Hom(A,f)) ≅ Hom(K ∧ Sj+,Hom(K0, f)).

The map Hom(K0, f) is a weak equivalence (hence a K ′-colocal equivalence) because f is a K-
colocal equivalence. Since K ∧ Sj+ ⊆K

′, we see that

Hom(K,Hom(A,f))

is a weak equivalence as required.
Since smashing with a contractible object has no effect, this proves that $ holds for A of the

form K ∧ Sj+ or K ∧Dj
+. q.e.d.

Remark 9.3. This theorem demonstrates that if one wishes a right Bousfield localization RK to
be monoidal, one may as well right localize with respect to the set {ΣmA} over all A in K. So for
Top, the smallest right Bousfield localization of Definition 4.1 can be obtained simply by enlarging
K in this way, and since this does not change the resulting RKM, we see again that every right
Bousfield localization is monoidal in Top. Note that the step of introducing K ′ demonstrates that
every right Bousfield localization in Top is stable, even though Top itself is unstable.

Example 9.4 (n-connected covers). Let K = {Sm ∣ m > n}, a set of cofibrant objects that are
small relative to the cofibrations. In this case RK(X) = CWA(X) where A = Sn [Cha96, Far96].
The K-colocal objects are X with π≤n(X) = 0, and the K-colocal equivalences are maps f with
π>n(f) an isomorphism. In this case, K ′ = K in the proof above, and when A = Sk+ ∧ S

j
+ for k > n

then Sm+ ∧A ≅ Sm+k+j
+ is again an element in K, so it is automatic that Hom(K,Hom(A,f)) is a

weak equivalence for any K-colocal equivalence f . Theorems 9.2, 4.3, and 4.5 demonstrate that
the pushout product axiom is satisfied in RK(Top).

Example 9.5. Let A be any CW complex. Using the same reasoning as in the previous example,
the right Bousfield localization RK(Top), where RK(X) = CWA(X) as studied by Chachólski and
co-authors [Cha96], [CDI02], [CPS04] and Nofech [Nof99], forms a monoidal model category.

An example of this type of colocalization is Mike Cole’s mixed model structure on Top, see
[MP12] (19.1.9). We now give examples of preservation of algebra structure under colocalization.
As we do not know ⧫ holds for Top, we will need to focus on colocalizations and colored operads O
for which ⋆O holds.

Example 9.6. Let K = {S1} so that K-colocal spaces are precisely those X with π0(X) = 0; i.e., X
is path-connected. The Com operad has Com(j) = S0 for all j, so is not entrywise path-connected.
Similarly, Ass(j) = S0[Σj] is a coproduct of copies of S0 so is not path-connected. However, an
E∞ operad O does have path-connected spaces (contractible even), so such an operad is entrywise
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K-colocal. It is easy to check that such an operad is in fact Σ-cofibrant in the K-colocal model
structure on symmetric sequences, since the fixed-point property of EΣn guarantees the existence
of an equivariant lift in a lifting problem against a K-colocally trivial fibration. It follows that RK
preserves E∞-algebras. Similarly, the spaces of the A∞-operad are path-connected CW complexes
(the Stasheff associahedra), so are K-colocal, but we cannot say that RK preserves algebras over
this operad because we do not know A∞ is Σ-cofibrant in the K-colocal model structure.

We can also build operads guaranteed to satisfy our criteria.

Example 9.7. Let K be any set of cofibrant objects. For each n, endow TopΣn with the projective
K-colocal model structure. This is possible because RKM is cofibrantly generated. Consider the
free-operad adjunction

∏
n

TopΣn //
oo Op(Top)

Fresse’s Theorem 12.2.A [Fre10] proves that there is a transferred semi-model structure, since
RKM has the pushout product axiom, by Theorem 9.2. In fact, it can be made a full model
structure following [Rez96], since RKM has a nice path object. Let X = QK(Com) be the cofibrant
replacement of Com in this model structure, as in [Whi14a]. By construction this operad satisfies
⋆X , so RK preserves algebras over this operad.

Remark 9.8. We conclude this section with a word about spectra. In [WY16b, Example 6.5] we
give an extension of Example 9.6 to symmetric spectra, studying colocalizations with respect to
K = {Σn+1S0} where S0 is the sphere spectrum. As in the case of spaces, it is easy to characterize
the K-colocal objects of this colocalization. While it is difficult to prove directly that the K-
colocal model structure on symmetric spectra transfers to a model structure on operad-algebras,
the technology of our companion paper [WY16b] avoids the need to do so, via an even more
general preservation result. The setting of spectra has many interesting types of algebraic structure
one would wish to preserve under colocalization, e.g., the structure of Smith O-algebras (e.g.,
commutative Smith ideals) studied in [WY17]. We hope to provide such preservation results in
future work.

10 Application: equivariant spaces and spectra

In this section we provide applications to right Bousfield localizations in the model category TopG

of G-equivariant spaces for a compact Lie group or a finite group G. We also relate what is known
about preservation of equivariant spectra under right Bousfield localization.

Let G be a compact Lie group. Let M= TopG denote the category of G-equivariant compactly
generated spaces (everything would also work if we used compactly generated weak Hausdorff
spaces). Let Map denote the space of all continuous maps, endowed with the conjugation action by
G. This is the internal Hom object. Let MapG denote the space of G-equivariant maps, endowed
with the compact-open topology. This gives the enrichment of TopG in Top, so we may use Lemma
9.1 with this mapping space. The weak equivalences (resp. fibrations) of TopG are maps f such
that H-fixed points fH are weak equivalences (resp. fibrations) for all closed subgroups H < G.
The generating (trivial) cofibrations are

{i ∧ (G/H)+ ∣H < G closed}
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where i is a generating (trivial) cofibration in Top. There is an adjunction

MapG(X ∧ (G/H)+, f) ≅Map(X,fH)

for any G-space X.

Proposition 10.1. Suppose that a set K of cofibrant objects in TopG is closed under the operations
− ∧ S1 and − ∧ (G/H)+ for all H < G. Then (TopG,K) satisfies $ (Definition 4.2).

Proof. Let f be a K-colocal equivalence. Let A be a domain or codomain of a map in Λ(K) ∪ J.
Then A is of the form D+ ∧ (G/H)+ where D is in the set

{Dj ,Dj
∧ I,K0 ∧ S

j ,K0 ∧D
j}.

over all K0 ∈ K and all j. We have argued above that contractible objects do not matter to the
homotopy type of an internal hom object. We must prove that the map MapG(B,Map(A,f)) is a
weak equivalence in Top for all B ∈K. We use [MM02] (III.1.6):

MapG(B,Map(D+ ∧ (G/H)+, f)) ≅Map(B,Map(D+ ∧ (G/H)+, f))
G

≅Map(B,Map(D+ ∧ (G/H)+, f)
G)

≅Map(B,MapG(D+ ∧ (G/H)+, f)))

Because D+ ∧ (G/H)+ is in K by hypothesis, MapG(D+ ∧ (G/H)+, f) is a weak equivalence in Top.
Forgetting the G-action, we are now trying to prove

MapG(B,Map(A,f)) ≅ Top(B,g)

is a weak equivalence, where g is a weak equivalence in Top. As B is cofibrant and TopG is a
topological model category, [Hov99] (4.2.3) proves that Top(B,−) is a right Quillen functor, hence
preserves weak equivalences between fibrant objects by Ken Brown’s Lemma [Hov99] (1.1.12). We
conclude that MapG(B,Map(A,f)) is a weak equivalence as required. q.e.d.

The hypotheses of this theorem can always be arranged by enlarging K if necessary. We now
record the equivariant analogue of the CWA functors.

Example 10.2. Suppose A is a cofibrant object in TopG. Denote the smash closure of A by

K(A) = {ΣpA∧q
∧ (G/H1)+ ∧⋯ ∧ (G/Hr)+ ∣ p, r ≥ 0, q ≥ 1; allHk < G}.

Then K(A) satisfies the closure properties in Proposition 10.1, so (TopG,K(A)) satisfies $. Note
that K(A) is the smallest set of objects containing A that satisfies the closure properties in Propo-
sition 10.1.

Example 10.3. More generally, suppose A is a non-empty set of cofibrant objects in TopG. Then
the set

K(A) = {ΣpA1 ∧⋯ ∧Aq ∧ (G/H1)+ ∧⋯ ∧ (G/Hr)+ ∣ p, r ≥ 0, q ≥ 1; allHk < G; allAj ∈ A}

satisfies the closure properties in Proposition 10.1, so (TopG,K(A)) satisfies $. In this case, K(A)

is the smallest set of objects containing A that satisfies the closure properties in Proposition 10.1.
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We now record several examples unique to the setting TopG. First, consider the case where G
is finite.

Let F be a nonempty set of subgroups of G, and let

K(F) = {(G/H)+ ∣H ∈ F}.

A K(F)-colocal equivalence is a map f such that

MapG((G/H)+, f) ≅ f
H

is a weak equivalence in Top for all H ∈ F. The fibrations in RK(F)(Top
G
) are the same as in TopG,

i.e. maps f such that fH is a fibration in Top for all H < G. The generating trivial cofibrations are
maps of the form

Dj
+ ∧ (G/H)+ // Dj

+ ∧ I ∧ (G/H)+

for all j ≥ 0 and all H < G. The generating cofibrations are these maps together with maps of the
form

Sj−1
+ ∧ (G/H)+ // Dj

+ ∧ (G/H)+

for j ≥ 0 and H ∈ F. Denote the model category RK(F)(Top
G
) by RF(Top

G
).

Suppose F is a family, i.e., closed under conjugation, intersection, and passage to subgroup.
Then there is a model structure TopF with weak equivalences (resp. fibrations) the maps f such
that fH is a weak equivalence (resp. fibration) in Top forH ∈ F. The generating (trivial) cofibrations
are maps of the form i ∧ (G/H)+ where H ∈ F and i is a generating (trivial) cofibration of Top.

Theorem 10.4. The identity functor TopF // RF(Top
G
) is a Quillen equivalence. Moreover,

TopF and RF(Top
G
) both satisfy the pushout product axiom.

Proof. First, every fibration of RF(Top
G
) is a fibration of TopF because it is easier to satisfy fH

being a fibration for all H ∈ F than to satisfy it for all H < G. Next, these two model categories have
the same weak equivalences, so the identity Quillen adjunction is a Quillen equivalence. Next, TopF

satisfies the pushout product axiom by Lemma 2.19 in [Fau08]. Fundamentally, this is because G
is finite and F is closed under intersection, so G/H1 ×G/H2 with the diagonal action is cofibrant.

By Theorems 4.3 and 4.5, to see that RF(Top
G
) satisfies the pushout product axiom, it is enough

to check that $ holds for (TopG,K(F)). In the current setting, $ requires the map

MapG((G/H)+,Map(A,f)) ≅Map((G/H)+,Map(A,f))
G

≅Map((G/H)+ ∧A,f)
G

≅MapG((G/H)+ ∧A,f)

≅Map(A,fH)

to be a weak equivalence whenever f is a K(F)-colocal equivalence, H ∈ F (so (G/H)+ ∈ K(F)),
and A a (co)domain of a map in Λ(K(F))∪J. Since H ∈ F and f is a K(F)-colocal equivalence, the
map fH is a weak equivalence in Top (necessarily between fibrant objects). Moreover, since every
choice of A is cofibrant, Map(A,fH) is a weak equivalence as well by Ken Brown’s Lemma [Hov99]
(1.1.12). q.e.d.
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Remark 10.5. This Proposition remains true when G is a compact Lie group, but all subgroups
should be closed and TopF is only a monoidal model category if F is an Illman collection, which is
automatic in the case when G is finite. See Lemma 2.19 in [Fau08] for more details.

Example 10.6. When F = {e} we obtain a model structure on TopG Quillen equivalent to the
coarse model structure, where f is a weak equivalence if it is so when viewed in Top. However,
R{e}(Top

G
) has fewer fibrations and more cofibrations, allowing equivariant cells as well as the

usual cells of Top.

Example 10.7. When F = {G}, RF(Top
G
) is a new model structure on TopG where a map f is a

weak equivalence if and only if fG is a weak homotopy equivalence in Top.

We are prepared to give examples of preservation of algebraic structure under colocalization.
We can mimic Example 9.7 to put a model structure on the category of G-equivariant operads
transferred from the projective model structure on ∏n(Top

G
)Σn . In this model structure we can

take the cofibrant replacement of Com, and it is an equivariant E∞-operad, which we shall call
E. This operad plays an important role in the search for algebraic models for equivariant spectra.
We will show a preservation result for this operad. Note, however, that this is the wrong operad
to encode complete equivariant commutativity (including norms) in G-spectra, because it does not
allow for mixing of the G-action with the Σn-action. The correct operads to study for norms are
the N∞-operads of [BH14], further studied in [GW18].

Example 10.8. The colocalizations K(F ) above preserve algebras over the operad E. This is be-
cause E is Σ-cofibrant in ∏n(Top

G
)Σn and in ∏nTop

Σn , after forgetting the G-action, so E-algebras
inherit a semi-model structure in any (G-)topological model category. The model RK(F )(Top

G
)

is a topological model category, as can readily be seen by following the proof in [Hir03] that any
right Bousfield localization of a simplicial model category is simplicial. We have already shown this
RK(F ) is an enriched colocalization in the sense of [Gut12], so it should not come as a surprise

that the resulting model category RK(F )(Top
G
) is also enriched. With this semi-model structure

in hand, we can easily prove RK(F ) preserves E-algebras, following Theorem 8.5.

Example 10.9. Let K = {Sn+1}, so that K-colocal objects are n-connected covers. Then both
the operad E and the N∞ operads of [BH14] are objectwise K-colocal and Σn-free. They therefore
satisfy ⋆O, and hence their algebras are preserved by taking n-connected covers.

Example 10.10. Now that we understand preservation of G-spaces under right Bousfield local-
ization, a natural question is to determine when G-spectra are preserved. Corollary 5.15 provides
easy-to-check conditions so that O-algebras in RKSpG inherit a transferred model structure from
RKSpG, for the positive, flat, and complete model structures on equivariant orthogonal spectra.
There are many interesting examples, and just as for spaces, the class of N∞-operads is contained in
the class of Σ-cofibrant operads (see [GW18] for a discussion). We can thus again rely on Theorem
8.5. In particular, the statement of Example 10.9 holds verbatim when applied to SpG instead of
TopG, because we again know that spectral N∞-operads are Σ-cofibrant and we can again charac-
terize the K-colocal objects as n-connected covers. Of course, this also gives preservation results
non-equivariantly (taking G to be the trivial group), for E∞-algebras under RK where K = {Sn+1}.

There are many more interesting right Bousfield localizations of SpG that are worthy of study,
e.g., the right Bousfield localizations that give rise to the pieces of the slice spectral sequence rather
than the Postnikov pieces. We leave this as an avenue for future work.
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11 Application: chain complexes

In this section we provide applications to right Bousfield localizations in the model category of
chain complexes of modules over a commutative ring R. Colocalizations in these contexts are well-
studied, as examples below will demonstrate. Recall the projective model structure on Ch≥0(R)

from [DS95]. This model structure is combinatorial, closed symmetric monoidal, and all objects are
bifibrant, i.e. both fibrant and cofibrant. Recall also the projective model structure on unbounded
chain complexes Ch(R) from [Hov99]. This model structure is combinatorial, closed symmetric
monoidal, and has all objects fibrant. Lastly, recall from [Hess07] the category Ch≥0

(k) of non-
negatively graded cochain complexes. It is combinatorial, closed symmetric monoidal, and has
all objects fibrant. There are also formally dual non-positively graded chain complexes, cochain
complexes, and unbounded cochain complexes.

In all three cases let S(n) be the chain complex with R in degree n and 0 everywhere else, and
let D(n) be the chain complex with R in degrees n and n − 1 (or n + 1 for cochain complexes), 0
otherwise, and the identity map as the differential dn. The monoidal product ⊗ is defined by

(C● ⊗D●)n = ⊕
i+j=n

(Ci ⊗R Dj)

and the internal Hom is defined by

Hom(X,Y )n =∏
k

HomR(Xk, Yn+k)

We will record several examples of colocalizations in these settings.

Example 11.1. If A is an object ofM then colocalization with respect to K = {A} gives CWA by
analogy with Example 9.5, and this can be viewed as A-cellular homological algebra. RKM is the
model categorical analogue of the localizing subcategory of D(R) generated by A, i.e. the small-
est subcategory containing A and closed under retracts and coproducts. This is the subcategory
generated by A under homotopy colimits.

An example of this type of colocalization is the mixed model structure on Ch(R) from [MP12]
(19.1.10).

Example 11.2. Let K = {S(n)} for some n. Then the K-colocal objects are the X such that
H<n(X) = 0, and the K-colocal equivalences are maps f such that H≥n(f) is an isomorphism. The
functor RK can be viewed as an n-connected cover. Of course, this example is a special case of the
above, and demonstrates that RKM= RK′(M) for K ′ = {S(m) ∣m ≥ n}.

Example 11.3. To any localization in M at a set of maps S, we can assign a colocalization with
respect to the cofibers of S as in [BR14] (9.2). The resulting triangles

RK(X) // X // LS(X)

are much studied in the theory of triangulated categories; see [Nee01], [HPS97].

The following two examples are described in [DG02].



106 D. White, D. Yau

Example 11.4. Let R be the integers and p be a prime number. There is a colocalization such
that X is colocal precisely when Hi(X) is p-torsion for all i. More generally, the authors of [BR14]
study the monoidal properties of the analogous colocalization of a general commutative ring R and
a perfect R-module A. In this setting the colocal objects are the A-torsion R-modules.

Example 11.5. Let I be a finitely generated ideal of R. There is a colocalization such that X is
colocal precisely when for all i and all x ∈Hi(X), there is some integer k with Ikx = 0. This allows
for the study of local cohomology at I using colocalization.

In addition, in [Bau02] and [Bau99], Bauer developed machinery to lift colocalizations of chain
complexes to categories of spectra, giving yet another application of colocalizations for chain com-
plexes.

Lemma 11.6. Let K be a set of cofibrant objects in any of our modelsM of (co)chain complexes
such that the pair (M,K) is right localizable. Then the set

Λ(K) = {A⊗R S(n − 1) // A⊗R D(n) ∣ A ∈K}

together with the generating trivial cofibrations J of M form a set of generating cofibrations of
RKM. Here n runs through all degrees of complexes in M.

Proof. That these maps detect fibrations between fibrant objects by lifting is Lemma 2.3 of [CI04],
and already appears in [Hir03] (Ch. 5). To see that these maps provide a factorization system,
proceed exactly as in the proof of Lemma 2.5 of [CI04], but replacing ∆[n] everywhere by D(n)
and replacing ∂∆[n] by S(n − 1). This proof boils down to the small object argument, which is
guaranteed to stop becauseM is combinatorial. Indeed, all that is required in order for Christensen-
Isaksen’s Hypothesis 2.4 to hold is that the domains of J are small relative to the cofibrations. q.e.d.

Theorem 11.7. Let M = Ch(R) denote any of our categories of chain complexes. Then every
right Bousfield localization RKM is monoidal, i.e. satisfies Condition $.

Proof. Let f be a K-colocal equivalence, B ∈ K, and let A be a domain or codomain of a map
in Λ(K) ∪ J . We must show that Hom(B,Hom(A,f)) is a quasi-isomorphism. Here A has the
form C ⊗R S(n),C ⊗R D(n),D(n), or 0, where C ∈ K. Since tensoring with a contractible object
does not change anything, we are reduced to the case A = C and A = C ⊗R S(n). For A = C we
know that Hom(C, f) is a quasi-isomorphism because C ∈K and f is a K-colocal equivalence. For
A = C⊗RS(n), proceed as in the proof of Theorem 9.2 and note that RK is the same as RK′ where

K ′
= {W ⊗ S(n) ∣W ∈K,n = 1,2, . . .}

is the stabilization of K under shift suspension. To see that the class of K-colocal equivalences
coincides with the class of K ′-colocal equivalences, use the following chain of equivalent statements:
f is a K-colocal equivalence
⇐⇒ Hom(K,f) is a quasi-isomorphism
⇐⇒ Ht(Hom(K,f)) is an isomorphism for all t
⇐⇒ [S(t),Hom(K,f)]Ch(R) is an isomorphism for all t
⇐⇒ [S(t) ⊗ S(m),Hom(K,f)]Ch(R) is an isomorphism for all t,m
⇐⇒ [S(t),Hom(S(m),Hom(K,f))]Ch(R) is an isomorphism for all t,m
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⇐⇒ [S(t),Hom(K ⊗ S(m), f)]Ch(R) is an isomorphism for all t,m
⇐⇒ Hom(K ⊗ S(m), f) is a quasi-isomorphism for all m
⇐⇒ f is a K ′-colocal equivalence

This implies that K-colocal objects are the same as K ′-colocal objects. Since C ⊗R S(n) is in
K ′, C ⊗R S(n) is K-colocal. So Hom(C ⊗R S(n), f) and

Hom(B,Hom(C ⊗R S(n), f))

are quasi-isomorphisms as required. q.e.d.

Remark 11.8. Stable and monoidal right Bousfield localizations have been studied in [BR14].
There, stability means the class of K-colocal equivalences is closed under suspension, while the
class of K-colocal objects is closed under desuspension. Our notion is different, and appears to be
satisfied more frequently. To [BR14], a monoidal right Bousfield localization has K closed under
the monoidal product. They prove that RKM is stable and monoidal if K and M are stable and
monoidal. As Theorem 4.6 and Theorem 6.2 in [BR14] are both ‘if and only if’ results, our Theorem
recovers theirs in case M is stable and K is closed under desuspension.

We now record the dual of Proposition 7.5 in [Whi14b].

Proposition 11.9. Let k be a field of characteristic zero. The only right Bousfield localizations
of Ch(k)≥0 are n-connected covers as in Example 11.2.

Proof. Over any principal ideal domain, the homotopy type is determined by H∗, so this means
adding weak equivalences is equivalent to nullifying some object. All objects are coproducts of
spheres S(j), and killing k2 in degree n is the same as killing k in degree n. Thus, the colocal-
ization is completely determined by the highest degree in which the first nullification occurs. The
colocalization is therefore equivalent to RKM for K = {S(n)} for that highest degree n, and kills
everything below that degree. q.e.d.

In [Whi14b] an example demonstrated that a left localization of unbounded chain complexes
could fail to be monoidal. There does not appear to be a corresponding example for right local-
izations, leading to the conclusion that it is easier for RKM to satisfy the pushout product axiom
than for a left localization. However, it is more difficult for RK to preserve operad-algebra structure
than for a left localization to do so, as the following example shows.

Example 11.10. For M any of our categories of chain complexes, there is a right Bousfield
localization that destroys monoid structure. Consider the first connective cover functor RK for
K = {S(1)}. The K-colocal objects X have H≤n(X) = 0 and a K-colocal equivalence is a map f
inducing an isomorphism on H>n(f).

This colocalization fails to preserve algebraic structure, even over a Σ-cofibrant operad inM. For
example, suppose A is a (unital) differential graded algebra. Then A has a unit map η ∶ S(0) // A
and a multiplication µ ∶ A⊗R A // A such that

S(0) ⊗R A // A⊗R A // A

is an isomorphism. However, RK(A) cannot have a DGA structure because the unit map

S(0) // RK(A)
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is nullhomotopic, since H0(RK(A)) = 0. It follows that

S(0) ⊗R RK(A) // RK(A)

is nullhomotopic, and not an isomorphism.

Remark 11.11. In this example, the operad A∞ is not objectwise K-colocal. We are about to
prove that this is the only way a right localization of chain complexes can fail to preserve structure.
If we restrict attention to non-unital DGAs then the operad is K-colocal for K = {S(1)} so this
colocalization preserves non-unital DGAs.

Theorem 11.12. Let k be a field of characteristic zero and M = Ch(k) be any of our categories
of chain complexes. Then M satisfies ⧫. Furthermore, for any colored operad O valued in M, O
satisfies ⋆O if O is objectwise K-colocal.

By Theorem 8.5 we deduce

Corollary 11.13. For any of our categories of chain complexes over a field of characteristic zero,
and any set of cofibrant objects K, RK preserves O-algebras for any colored operad O that is
objectwise K-colocal.

Proof of Theorem 11.12. Since k has characteristic zero, all symmetric sequences are projectively
cofibrant in the model category SymSeqC(M) by Maschke’s Theorem. This is because every module
with a Σn-action (i.e. every X ∈ MΣn) is Σn-free. The same reasoning shows that K-colocal
objects X in (RKM)Σn have Σn-equivariant lifts against fibrations, because the characteristic zero
assumption guarantees the Σn-equivariance is no obstacle. So ⧫ holds. For the second part, let O
be objectwise K-colocal. Then O is projectively cofibrant in SymSeqC(RKM), because each O(

d
[c])

is projectively cofibrant in (RKM)Σn . q.e.d.

Example 11.14. For any of the n-connected cover colocalizations of Example 11.2, RK preserves
algebras over any E∞ operad O, when k has characteristic zero. This is because all spaces O(n) have
Hi(O(n)) = 0 for all i, hence are K-colocal. Similarly, commutative differential graded algebras are
preserved.

Example 11.15. Suppose (M,K) is right localizable and that the K-colocalization functor can
be chosen to be lax monoidal (e.g. see [Gut12] (5.6)). Then for any colored operad O, the sequence
RKO defined by

(RKO)(
d
[c]) = RK (O(

d
[c]))

is a colored operad over RKM. By construction, this colored operad is objectwise K-colocal, so
RK preserves algebras over RKO.

Note that this example is more difficult for topological spaces, because in that setting RKO
need not be Σ-cofibrant even if O is.

Example 11.16. Suppose (M,K) is right localizable and satisfies $. Consider the adjunction
given by the free operad functor

∏
n≥0

M
Σn //
oo Op(M)
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GiveMΣn the projective K-colocal model structure. This is possible because the K-colocal model
structure is cofibrantly generated. Fresse’s Theorem 12.2.A [Fre10] gives a transferred semi-model
structure on Op(M), and forM= Ch(k) this can be made into a full model structure by Theorem
6.1.1 of [Hin97], using the fact that k has characteristic zero. The operad Com is defined to be the
operad with Com(n) = k for all n. Let X = QK(Com) be the cofibrant replacement of Com in this
transferred model structure, as in [Whi14a]. By construction this operad satisfies ⋆X , and hence
RK preserves QK(Com)-algebras.

Remark 11.17. Returning to Example 11.10 we see that the failure of RK to preserve differential
graded structure is due to the fact that both the associative operad and the A∞ operad do not
have K-colocal spaces. Recall that A∞(j) = k[Σj], hence has non-trivial homology. Similarly, the
colored operad whose algebras are C-colored operads will not be preserved by n-connected covers
for n < ∣C∣.

11.1 Equivariant chain complexes

The previous material can be generalized to the equivariant setting in the same way we generalized
from Top to TopG. Now G is a group acting on R and on all R-modules. A cofibrantly generated,
monoidal model structure can be placed on Ch(R)G with all objects fibrant. The authors are
unaware of any papers studying this model structure, let alone colocalizations therein. We believe
this is a valuable example to develop intuition about equivariant spectra, an important example
not included in our theory because not all objects are fibrant. Furthermore, we wonder if Bauer’s
work in [Bau99] and [Bau02] could be generalized to this setting, so that equivariant colocalizations
of chains would lift to the level of spectra.

11.2 Simplicial abelian groups

The category of simplicial abelian groups has a cofibrantly generated model structure [Qui67] in
which all objects are fibrant. This category is equivalent to the category of bounded below chain
complexes, by the Dold-Kan Theorem. The normalized chains functor N is a natural isomorphism,
compatible with the model structures, and is monoidal by [SS03] (4.1).

It follows that all our preservation results about chain complexes hold in this setting as well.
In particular, every right localizable (M,K) satisfies $, a host of examples is given above, and for
any colored operad O whose spaces are all K-colocal, RK preserves O algebras.

11.3 Cotorsion pairs

The first author and Daniel Bravo are currently working out the theory of abelian left and right
Bousfield localization. Similarly to Section 4, conditions are given so that a left or right Bousfield
localization of an abelian model category is again an abelian model category. By the Hovey corre-
spondence [Hov02], abelian model structures are in one-to-one correspondence with Hovey triples.
A Hovey triple (Q,W,F), consists of classes of cofibrant, acyclic, and fibrant objects, such that
(Q∩W,F) and (Q,W∩F) are complete cotorsion pairs. The power of this method is that it allows
one to work with objects instead of morphisms. All of the model structures we have considered on
chain complexes and R-modules can be encoded by Hovey triples. In particular, there is a Hovey
triple for the projective model structure on Ch(R), where the weak equivalences are the quasi-
isomorphisms, all objects are fibrant, and cofibrant objects are the dg-projective chain complexes.
There is also a Hovey triple for the flat model structure [Gil04] where the weak equivalences are the
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quasi-isomorphisms, the fibrant objects are the dg-cotorsion complexes, and the cofibrant objects
are the dg-flat complexes. This model structure is monoidal, by [Gil06] (Theorem 5.7).

Since right Bousfield localization changes the cofibrant objects in a controlled way, it is tempting
to connect the flat model structure and the classical projective model structure on Ch(R) by
changing the flat model structure so that the new cofibrant objects are dg-projective complexes.
Formally, beginning with the flat model structure on Ch(R) [Gil04] and taking K to be the set
{R} (which generates the projective modules), the resulting model category RK(M) has fibrant
objects the dg-cotorsion complexes, and cofibrant objects the degreewise projective complexes. The
weak equivalences are defined as maps that factor into a trivial cofibration followed by a trivial
fibration. The class of weak equivalences is characterized by the property that Hom(f,S0(R)) is a
quasi-isomorphism for all K-colocal equivalences f . Equivalently, HomR(cone(f),R) is exact. The
class of K-colocal equivalences strictly contains the quasi-isomorphisms, so the resulting model
structure is not Quillen equivalent to the usual projective model structure on chain complexes
[Hov99, Section 2.3]. However, it is a new setting one could use to study the interplay between the
notions of projective, flat, and cotorsion modules.

12 Application: stable module category

In this section we provide applications to right Bousfield localizations in the stable module category.
The stable module category is a triangulated category of R-modules much studied in representation
theory [Hap88]. Here R is a quasi-Frobenius ring (i.e. projective modules and injective modules
coincide), and projective modules have been set to zero. Equivalently, two maps are homotopic if
their difference factors through a projective module. The triangulated structure is given by defining,
for a given R-module M , Ω(M) to be the kernel of a map from a projective onto M ; the inverse
Ω−1 is the cokernel of M // I for I injective. If R = k[G] for a field k and a finite group G,
then this category is the homotopy theory of a combinatorial model category where all objects are
bifibrant [Hov99] (2.2). If R is of the form k[G] where k is a principal ideal domain and G a finite
group, then it is the homotopy category of a combinatorial model category with all objects fibrant,
the projective model structure of [Hov02] (8.6), which coincides with [Hov99] (2.2) if k is a field.
Furthermore, the projective model structure satisfies the pushout product axiom and the monoid
axiom [Hov02] (9.5), with monoidal product − ⊗K − and the diagonal G-action.

We focus on the case R = k[G] for a field k, and denote the model structure on R-mod of [Hov99]
(2.2) byM. Unlike our work on chain complexes, we now do not want k to be a field of characteristic
zero. If it were, then all modules would be projective, so the stable module category would be trivial.
The only interesting case when k is a field is the modular case, where the characteristic of k divides
the order of G. The primary operads of interest inM are the associative and commutative operads,
which encode associative R-algebras and commutative R-algebras, respectively.

Colocalizations have been studied in this context in [BIK11], [Rez97], [BCR95], [BCR96], [BR07]
(for Torsion theories), [BGH14], [Sha11] and [GS16], and in highly related contexts in [IKM12] and
[BN93] (Section 6). In this setting, there is a relationship between colocalization and localization
functors as in Example 11.3, and it now gives a natural equivalence between such functors [HPS97]
(3.1.6). Additionally, these localization-colocalization pairs are intimately related to recollements.

Example 4.1 of [Whi14b] demonstrates that not every left Bousfield localization of M is mo-
noidal. Thus, we do not expect every right Bousfield localization of M to be monoidal. Corollary
1.2 of [BIK12] gives a bijective correspondence between monoidal left localizations and monoidal
right localizations, so in fact we know there must be an example where the pushout product axiom
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fails for RKM. A candidate would be colocalization with respect to the cofiber of the map from
Example 4.1 of [Whi14b]. To avoid such examples, we shall assume condition $ for the remainder
of the section. The next example shows that this is not a great loss in generality. The bijective
correspondence means that many interesting examples of right Bousfield localization for the stable
module category can be obtained from [WY18b].

Example 12.1. The colocalization of [Rez97] (5.8) with respect to a tensor ideal subcategory,
satisfies $ by construction. See Theorem 5.19 of [Rez97].

We now verify the conditions required for the study of operad-algebras and right Bousfield

localization. Rather than investigating whether R∆1

= R[t] ≅ R ⊗Z Z[t] forms a well-behaved
interval object, we follow the approach of [WY18a].

Theorem 12.2. Let R = k[G] where k is a field and G is a finite group. The model structureM of
[Hov99] (2.2), for the stable module category, satisfies ♣. Since all objects are cofibrant, this implies
M satisfies ♠ from [WY18a] (6.1.1), and the strong commutative monoid axiom from [Whi14a].
Furthermore, for any right localizable, stable K satisfying $, RK(M) satisfies ♣.

Proof. Let X be an R-module with a Σn-action. Cofibrations are monomorphisms, so the functor
X ⊗Σn (−)◻n automatically preserves cofibrations. We must prove it preserves trivial cofibrations.
For any trivial cofibration f , f◻n ∶ A // B is a trivial cofibration. Let C be the cokernel of this
map, and note that C is nullhomotopic. Apply the functor X ⊗Σn

(−). Since this functor preserves
projective modules, it also preserves all nullhomotopic objects ofM because they are generated by
the projectives. Since X⊗Σn (−) is a left adjoint, X⊗ΣnC is the cokernel of X⊗ΣnA

// X⊗ΣnB,
and so this map is a weak equivalence as required. The strong commutative monoid axiom is the
special case X = k, the unit of M.

The “furthermore” part follows in much the same way. First, because M is a combinatorial,
stable model category in which all objects are bifibrant, we have very good control over the K-
colocal equivalences and the generating (trivial) cofibrations of RKM. The trivial cofibrations
are the same as in M, so are preserved by the functors X ⊗Σn (−)◻n just as above. To see that
these functors preserve K-colocal cofibrations, it is enough that they preserve K-colocal objects.
This is easy to verify, since the property of being K-colocal is detected using homotopy function
complexes. q.e.d.

We note that in the case R = k[G] for a principal ideal domain k, rather than a field k, the
cofibrant objects of the projective model structure M on R-modules are the Gorenstein projective
modules [Hov02] (8.6). We do not know if the functors X⊗Σn(−)

◻n preserve Gorenstein projectivity.
The following is a formal consequence of Theorem 12.2, though of course direct proofs are also
possible.

Corollary 12.3. There are combinatorial stable model category structures on algebras over any
colored operad in M= k[G]-mod, wherein maps that factor through a projective module are null.
Furthermore:

1. In these model categories, all objects are fibrant. In particular, the categories of associative,
commutative, Lie, A∞, and E∞, and L∞-algebras all have model structures.
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2. For any right localizable, stable K satisfying $, algebras over any entrywise K-colocal colored
operad in RKM have transferred semi-model structures. If the associative (resp. commu-
tative) operad is entrywise colocal, then there is a full model structure on its category of
algebras in RKM.

Proof. Let O be any colored operad in M. As all objects are cofibrant, O is entrywise cofibrant,
so Theorem 6.2.3 of [WY18a] proves there is a transferred semi-model structure over M. Since
all objects in M are cofibrant, that semi-model structure is a model structure. In these model
structures, a map f is a weak equivalence or fibration if it is so in M. The proof for RKM is
similar, but we use Theorem 7.5 to prove that the transferred semi-model structure exists. For for
associative operad, we use [BR14] (6.2) to deduce the monoid axiom for RKM, and the main result
of [SS00] for the claimed model structure. For the commutative operad, we use the main result of
[Whi14a], since RKM satisfies the commutative monoid axiom and the monoid axiom. q.e.d.

Example 12.4. Let M = k[G]-mod and let K = {k} where k has the trivial G action. The colo-
calization of (M,K) is studied in [BR07] (IV.2.7). Since k is the monoidal unit, the commutative
operad is objectwise K-colocal. Thanks to our preceding discussion, we immediately obtain preser-
vation results, as in Theorem 7.6. Let K ′ denote the stable, monoidal closure of K, following [BR14].
Then RK′ preserves commutative monoids. Let K ′′ be the closure of K ′ and {k[Σn] ∣ n = 1,2, . . .}.
Then RK′′ preserves both commutative monoids and associative monoids.

We conclude this section by pointing out several other potential applications of our main results
in algebraic settings.

Remark 12.5. The paper [IKM12] conducts colocalization in the model category of [JJ06], for
Kasparov K-theory. An interesting open problem is whether or not this model category is monoidal,
and whether or not that colocalization preserves algebraic structure. Similarly, [Bec14] proved that
the degreewise injective model structure on Ch(R) of [Gil08] is a right Bousfield localization of the
Inj-model structure of [BGH14]. For rings R with monoidal Inj-model structure, our work gives
a new approach to studying the monoidal properties of the degreewise injective model structure.
Lastly, [Mur07] considered a colocalization with respect to local cohomology in the category of
quasi-coherent sheaves over a scheme X. This is a monoidal model category by [Gil06], and one
could therefore ask about preservation of algebraic structure by this colocalization.

13 Application: small categories

The category Cat of small categories possesses a combinatorial, simplicial, Cartesian model struc-
ture called the canonical (or folk) model structure [Rez96]. The weak equivalences are the equiva-
lences of categories, and all objects are bifibrant. Commonly studied operads in this setting include
the categorical Barrat-Eccles operad and the A∞ operad, whose algebras are A∞-categories. The
path object of Cat can be used to construct model structures for these categories of algebras,
following [Rez96]. Since Cat is simplicial, $ can easily be verified as we did for topological spaces.

For any colocalization RK chosen, model structures on algebras over the Barrat-Eccles operad or
the A∞-operad can be constructed as for the stable module category; since all objects are cofibrant
there will be no difference between a semi-model structure over Cat and a full model structure.
Thus, ♣ and ⋆X need not be verified, and we will have preservation results over any colored operad
that is entrywise K-colocal.
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A notion of suspension in Cat has recently been invented in [Vic15]. It should therefore be
possible to define n-connected covers as a colocalization, and one can mimic the theory of topological
spaces and chain complexes to determine what types of algebraic structure are preserved. Since the
Barrat-Eccles operad is contractible, such colocalizations should preserve algebras over it.

Another colocalization in this setting is A-cellularization for some category or set of categories
A, by analogy with Top. The description on pages 37-39 of [Vic15] give a hands-on way to do such
cellularization, replacing her T by some category A. In particular, A can be chosen in such a way
that either of the operads above consist of A-colocal spaces.

Remark 13.1. There are several examples similar to Cat, where preservation results of this sort
could be proven. For example, the (folk) model structure on the category of groupoids and the
(folk) model structure on set-valued operads are both combinatorial, Cartesian, and have all objects
fibrant. A vast generalization of all three is given by the model structure [EKV05] of categories
internal to some category C. In this cofibrantly generated model structure, all objects are fibrant,
and a monoidal product is inherited from C (just as Cat inherits the Cartesian structure from Set).
Steve Lack’s model structure on 2-Cat is combinatorial, with all objects fibrant, and is monoidal
with respect to the Gray tensor product (but not with respect to the Cartesian product) [La02].
All of these examples have colocalization functors and operads, so the question of preservation may
be studied therein.
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