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Abstract

In this study, the condition that the ruled surface of ϕ (u, v) in Euclidean 3− space with density
ez is a Weingarten surface has been studied. While this review is being conducted, Q,F, J of
ϕ (u, v) are called structure functions of the ruled surface were used. Furthermore, the mean
curvature Hφ and Gaussian curvature Kφ of the Weingarten surface were studied. Later on, the
relationship between the mean Hr

φ curvature and Gauss curvature Kr
φ of this surface, which is

the parallel surface ϕr (u, v) of the Weingarten surface ϕ (u, v) in Euclidean space with density
ez, was investigated. Weingarten surface ϕr (u, v) condition of the parallel surface of the ruled
Weingarten surface in Euclidean space with density ez was examined.
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1 Introduction

The theory of surfaces occupies a wide place in various scientific fields such as physics, engineering,
and architecture as well as mathematics. Apart from many architectures in daily life, mathematical
models of various surfaces have been used in buildings including pyramids, temples, mosques,
palaces, and tombs. Moreover, geometry has been also used in the interior and exterior decorations
of these structures. Different types of surfaces have been used for many artifacts and materials.
In the class of surfaces, one type is the developable surface that can be laid on the plane without
being stretched or torn. Because of this feature, it is widely used in sheet-metal and plate-metal
based industries, on the surface of a marine vessel, aircraft surfaces and architectural structures,
[1]-[3]. Developable surfaces as a kind of ruled surfaces are classified into cylinders, cones or tangent
surfaces of space curves, [4]. One of the important result related to the ruled surfaces is its relation
with developable surfaces, although all developable surfaces are ruled ones, all ruled surfaces are
not developable, [5, 6].

The ruled surfaces are very useful in many areas of sciences, for instance, Computer-Aided Man-
ufacturing (CAM), Computer-Aided Geometric Desing (CAGD), geometric modelling and kinemat-
ics, [7]. It is possible to see many architectural structures based on ruled surfaces. For instance, at
the end of the nineteenth century, the Shukhov Tower has been built by Vladimir Shukhov which
is an example of the ruled surface.

The inner metric of a ruled surface determines the Gaussian curvature, therefore all the lengths
and angles on the surface remain invariant in manufacturing. Hence, the ruled surfaces have been
paid attention in engineering, architecture, and design, etc [8]-[11]. It is Gaspard Monge who
pioneered the emergence of all these surfaces. Today, a great variety of studies have been devoted
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to investigating the classifications of ruled surfaces. In [12], Izumiya classified the ruled surfaces
into five classes such as developable surfaces, principal and binormal surfaces, Darboux developable
surfaces, rectifying developable surfaces and focus surfaces of space curves.

Two parallel surfaces x and y have an identical distribution of normal vectors; i.e. their Gauss
maps are indistinguishable. Thus, a family of parallel surfaces can be produced by translating a
surface in the direction of its normal vectors by an equal amount everywhere on the surface.

If x and y are parallel surfaces, the formulae of the Gaussian and mean curvature of them
yields the following interesting consequences: Firstly, the curvatures of surfaces parallel to minimal
surfaces regarding a Bonnet transformation remain unamended. Secondly, increasing of the Gaus-
sian curvature of a surface parallel to a minimal surface has been observed. This means that the
minimal surface has a larger area than parallel surfaces, [13]. Park and Kim also showed that in
3−dimensional Euclidean space the parallel surfaces of non-developable ruled surfaces are not ruled
surfaces, but the parallel surface of a developable ruled surface is a developable ruled surface [14].

Weingarten surfaces were introduced by Weingarten in 1861 in the context of the problem
of finding all surfaces isometric to given surfaces of revolution, [15]. Weingarten improved his
theory of w−surfaces in 1863, for this theory to be a Weingarten surface or w−surface of space in
3−dimensional Euclidean space, the principal curvature of the surface or the Gauss curvature K
and the mean curvature H are described as linearly dependent with each other. The five classes
of Weingarten surfaces are translation surfaces, channel surfaces of a curve which is a constant
from its principal curvatures, helicoidal surfaces, constant mean curvature surfaces, and constant
Gaussian curvature surfaces. Kuhnel took the Weingarten surface classification a step further by
giving a condition as the dimensions of the structure functions Q, F, J of the surface is constantly
based on the condition of being a Weingarten surface [16]. In differential geometry, curves and
space structures in density spaces are among the subjects studied recently. Morgan and Corwin
studied the density spaces, [17, 18]. Inspired by these studies, the structures of different surfaces
in different spaces of density have been started to be studied.

In this study, the definition of the ruled surface ϕ (u, v) in 3−dimensional Euclidean space with
density ez has been introduced and also, the condition of being Weingarten has been examined.
Some theorems and results were given by proving that the ruled surface ϕ (u, v) is Weingarten. In
3−dimensional Euclidean space with density ez, ϕ (u, v) is a surface ϕr (u, v) parallel to the ruled
Weingarten surface. Then the condition of the surface being Weingarten parallel to the ruled Wein-
garten surface has been examined. In these regards, the theorems, corollaries and examples about
ϕr (u, v) according to the case of the ruled surface ϕ (u, v) being developable and non-developable
in 3−dimensional Euclidean space with density ez.

2 Preliminaries

A ruled surface is a surface which can be swept out at least one 1-parameter family of lines in the
space. For this reason, it has a parametrization of the form

ϕ (u, v) = c (u) + ve (u)

where c and e are called the base curve and director curve of the ruled surface, respectively. The
foot of perpendicular bisector of two adjacent directrices of a ruled surface on the main directrix
is called striction points. The geometric position of these points is also called the striction curve.
The ruled surface is called non-developable ruled surface in case the drall, which is the ratio of



Parallel Weingarten surface in Euclidean space with density 89

the shortest distance between these two directrices to the angle between rectifiers, is non-zero. If
ϕ (u, v) is not a developable ruled surface such that 〈e (u) , e (u)〉 = 1 and 〈e′ (u) , e′ (u)〉 = 1, the
directrix of c (u) is a striction curve. Since c (u) is the striction curve of ϕ (u, v), 〈c′ (u) , e′ (u)〉 = 0,
[19]. For brevity, the parameter u will not be written hereinafter.

Let {e, t, g} be the spherical Frenet frame of spherical indicatrix vector of e. Then t = e′ and
g = e× e′. Derivative vectors for the spherical Frenet frame {e, t, g} are given as follows:

e′ = t
t′ = −e− Jg
g′ = Jt

where the vectors are said to be the central normal t and the asymptotic normal g of ϕ (u, v),
respectively. Moreover, here J = 〈e′′, e′ × e〉 denotes the geodesic curvature κg of a spherical
indicatrix curve e. On the other hand, the derivative of the striction curve c is given by

c′ = Fe+Qg

where F = 〈c′, e〉 and Q = 〈c′, e× e′〉.
The functions Q, F and J are called structure functions of a non-developable ruled surface

ϕ (u, v) in E3. The structure functions F and Q of ϕ (u, v) satisfy F 2 + Q2 = 1 because the
parameter u is also the arc-length parameter of the striction curve c of ϕ (u, v), [19]. The Gaussian
and mean curvatures of the ruled surface ϕ (u, v) are

K = −Q
2

D4
(2.1)

H =
1

2D2

(
Jv2 −Q′v +Q (QJ − F )

)
(2.2)

in terms of structure functions. By of the fact that ϕ (u, v) is considered a non-developable ruled
surface, K is non-zero. In that case, the function Q is non-zero everywhere, [19].

Suppose that M1 and M2 are two hypersurfaces in En and unit normal vector area of M1 is

N1 =

n∑
i=1

ai
∂

∂xi
, ai ∈ C∞ (M,R) .

M2 is called the parallel hypersurface of M1, if the function

f : M1 → M2

p → f (p) = (p1 + ra1 (p) , ... , pn + ran (p))

exists for a constant r ∈ R, [20]. After that, the surface parallel to the hypersurface M will be
expressed as Mr.

Theorem 2.1. Let K and H denotes the Gaussian and mean curvatures of the surface of M at
the point p ∈M , respectively, and Mr denotes a parallel surface of the surface M ⊂ E3. Then, the
Gaussian and mean curvatures of the surface Mr at the point f (P ) ∈Mr are given by

Kr =
K

1 + 2rH + r2K
(2.3)
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and

Hr =
H + rK

1 + 2rH + r2K
, (2.4)

respectively.

Under the conditions of the above theorem, the following equalities can be written

K =
Kr

1− 2rHr + r2Kr

H =
Hr − rKr

1− 2rHr + r2Kr
.

If the Gaussian and mean curvatures that given by the equations (2.3) and (2.4) of the parallel
surface are rearranged in terms of structure functions,

Kr =
−Q2

2D4 + 4Dr (Jv2 −Q′v +Q2J −QF )− 2r2Q2

Hr =
D
(
Jv2 −Q′v +Q2J −QF

)
− 2rQ2

2D4 + 2Dr (Jv2 −Q′v +Q2J −QF )− 2r2Q2

are obtained. Being a Weingarten surface in E3 means that the changes of Gaussian and mean
curvatures belonging to this surface are linearly independent of each other. That is

Φ (K, H) = 0,

[21].

Theorem 2.2. Let M (u, v) ⊂ E3 be a surface and K denotes the Gaussian curvature and H
denotes the mean curvature of M . If

KuHv −KvHu = 0

holds for this surface, then M is a Weingarten surface, [21].

A manifold with a positive density function φ used to weight the volume and the hypersurface
area. In terms of the underlying Riemannian volume dV0 and area dA0, the new, weighted volume
and area are given by dV = φdV0 and dA = φdA0, respectively. For more details on manifolds with
density, see [17, 18], [22, 23]. One of the best examples of density surfaces is the two-dimensional
Gaussian plane. The Gaussian plane is the Euclidean plane with volume and length weighted by

(2π)
−1
e−

r2/2 . We can generalize the curvature of a curve or the mean curvature of a surface to
manifolds with density.

Let φ (x) be the linear function in the form φ (x) =
n∑
i=1

aixi in Euclidean space En. Then eφ(x)

is called the log-linear density. We can write the density in exn form by selecting the appropriate
coordinates. Thus, we can examine the space En with density eφ(x) while En−1 ⊕Eφ is producing
(n− 1)−dimensional Euclidean space En−1 and Eφ to real lines with density exn .
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Taking into account that ∇φ = (0, 0, ..., 1), it is seen that the following equation exists;

dφ

dN
= 〈∇φ,N〉 = ‖∇φ‖ . ‖N‖ . cos θ (∇φ,N) = cos θ (∇φ,N) .

Here dφ
dN = 〈∇φ,N〉 is the cosine of the angle between N and z-axis [24]. Riemann curvature with

density is defined by

κφ = κ− dφ

dN

where κ is Riemann curvature, [17]. Besides, for the case n = 3, we can give the Gaussian and
mean curvatures with density,

Kφ = K −∆φ (2.5)

and

Hφ = H − 1

2

dφ

dN
, (2.6)

respectively [17],[24]. These curvatures are also called Gaussian φ−curvature and mean φ−curvature.
where K and H are Gaussian and mean curvatures of the ruled surface, respectively.

In view of the fact that ∇φ = (0, 0, 1) and ∆φ = 0, Gauss and mean φ−curvatures of the ruled
surface in terms of structure functions are obtained as follows

Kφ = −Q
2

D4
(2.7)

Hφ =
1

2D3

(
Jv2 −Q′v +Q (QJ − F )

)
− 1

2D
〈∇φ,Qt− vg〉 (2.8)

with the aid of equations (2.5) and (2.6) in E3 with density ez where D =
√
Q2 + v2.

3 Ruled surfaces in E3 with density ez

In this section, the ruled Weingarten surfaces in 3−dimensional Euclidean space E3 with density
ez and parallel surfaces of these surfaces will be examined.

3.1 Ruled Weingarten surfaces in Eculidean space with density ez

First, we investigate the state of a ruled surface to be Weingarten by using the Gaussian and mean
φ− curvatures of the ruled surface ϕ (u, v) in the Euclidean space with density.

If there exists the Jacobi equation Φ (Hφ,Kφ) = 0 between the Gaussian and the mean φ−
curvatures in the Euclidean space with density ez, it is called Weingarten surface.

Theorem 3.1. Let Kφ and Hφ denote the Gaussian and mean φ−curvatures of the ruled surface
ϕ (u, v) in the 3−dimensional Euclidean space with density ez, respectively. If the following equality

(Kφ)u(Hφ)v − (Kφ)v(Hφ)u = 0 (3.1)

holds, the ruled surface ϕ (u, v) is the Weingarten surface.
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Proof. Let us first observe the derivatives of Hφ and Kφ with respect to parameters u and v. The
derivatives of the equation (2.7) with respect to parameters u and v are

(Kφ)u =
2QQ′

(
Q2 + v2

)
D6

, (Kφ)v =
4vQ2

D6
(3.2)

respectively. The central and asymptotic normals of the ruled surface ϕ (u, v) are vectors t =
(t1, t2, t3) and g = (g1, g2, g3), respectively. If one takes the derivative of the equation (2.6) with
respect to u and v by considering t, g and ∇φ = (0, 0, 1), the following have been obtained

(Hφ)u =
Su

2D5
, (Hφ)v =

Sv
2D5

. (3.3)

The equalities of the expression of Su and Sv can be obtained by basic calculations, left to the
reader.

Let us arrange the equation (3.1) that is provided by the equations (3.2) and (3.3). This gives

(Kφ)u(Hφ)v − (Kφ)v(Hφ)u =

(
2QQ′v2 + 2Q′Q3

)
Sv − 4vQ2Su

2D11
.

So that this surface is a Weingarten surface in the Euclidean space with density ez, the right side
of the equation must be zero. Since the Gaussian curvature of K given by the equation (2.1) is
different from zero, Q′ = F ′ = J ′ = 0 and t′3 = g′3 = 0 must be held in the neighbourhood of any
point satisfying the condition Q 6= 0. In this case, the values Q , F, J, g3 and t3 must be constant.
Moreover, J = F = 0 when H = 0. In this case, the surface is helicoidal surface. q.e.d.

Hereunder this theory, we can reach the following result.

Result 3.2. For a non-developable ϕ (u, v) ruled surface in the 3−dimensional Euclidean space
with density ez, the following conditions hold;

i) ϕ is a Weingarten surface.

ii) The values Q,F, J, g3, t3 are constants.

Example 3.3. Let ϕ be a ruled surface in 3−dimensional Euclidean space with density ez defined
as

ϕ (u, v) = (− cos (u) + v sin (u) ,− sin (u)− v cos (u) , u) .

The Gaussian and mean curvatures of the ruled surface ϕ (u, v) are

K = − 1

(1 + v2)
2 , H = − 1

2(1 + v2)
3/2

(3.4)

respectively. This non-developable helicoidal surface in Euclidean space is a ruled Weingarten
surface. Let us show that this surface is a Weingarten surface in Euclidean space E3 with density
ez.
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Figure 1. Non-developable ruled surfaces ϕ (u, v)

Let us substitute (3.4) in (2.7) and (2.8) such that ∇φ = (0, 0, 1). So, the Gaussian φ−curvature
and mean φ−curvature of the ruled surface ϕ (u, v) in Euclidean space with density ez are as follows:

Kφ = − 1

(1 + v2)
2 , Hφ =

−1 + v + v3

2(1 + v2)
3/2

.

If we calculate the partial derivative of the above equations according to the parameters u and v,
and replace them in the equation (3.1), the equation

(Kφ)u(Hφ)v − (Kφ)v(Hφ)u = 0

is obtained. So the non-developable ruled surface ϕ (u, v) in 3−dimensional Euclidean space with
density ez is a Weingarten surface.

Result 3.4. Let ϕ (u, v) be a ruled Weingarten surface in 3−dimensional Euclidean space. Then,
the ruled surface ϕ (u, v) is also Weingarten in the 3−dimensional Euclidean space with density ez.

3.2 Parallel surfaces of ruled Weingarten surfaces in Euclidean space with density ez

Let ϕr (u, v) be the parallel surface of the ruled Weingarten surface ϕ (u, v) in Euclidean space
with density ez. Let us examine whether the parallel surface is Weingarten surface using Gaussian
φ−curvature and mean φ−curvature.

Let the coefficients of the first and the second fundamental forms of parallel surface ϕr (u, v)
in Euclidean space with density ez be Erφ, F

r
φ , G

r
φ and Lrφ, M

r
φ, N

r
φ. In this case, there are the

following equations,

Eφ
r = Eφ − 2rLφ + r2 〈Nu, Nu〉

Fφ
r = Fφ − 2rMφ + r2 〈Nu, Nv〉

Gφ
r = Gφ + r2 〈Nv, Nv〉
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and
Lφ

r = Lφ − r 〈Nu, Nu〉
Mφ

r = Mφ − r 〈Nu, Nv〉
Nφ

r = −r 〈Nv, Nv〉 .

By considering ∇φ = (0, 0, 1) and ∆φ = 0, the Gaussian φ−curvature and mean φ−curvature of
the parallel surface ϕr (u, v) in Euclidean space with density ez, are

Kr
φ =

−Q2

2D4 + 4Dr (Jv2 −Q′v +Q2J −QF )− 2r2Q2
, (3.5)

and

Hr
φ =

D
(
Jv2 −Q′v +Q2J −QF

)
− 2rQ2

2D4 + 2Dr (Jv2 −Q′v +Q2J −QF )− 2r2Q2
− Qt3 − vg3

2D
, (3.6)

respectively.

Theorem 3.5. Let ϕr (u, v) be the parallel surface of a non-developable ruled surface ϕ (u, v) =
α (u) + vX (u) in the Euclidean space with density ez. If the equations

‖X‖ = ‖X ′‖ = 1 , 〈α′, X ′〉 = 0, K 6= 0,

F = 〈α′, X〉 , Q = det (α′, X,X ′) , J = det (X ′′, X ′, X)

exist, the following conditions are equivalent. If ϕ (u, v) is a Weingarten surface, then ϕr (u, v) is a
Weingarten surface.

Proof. Let ϕ (u, v) is a Weingarten surface. In this condition, the values of Q , F , J , t3 and g3
are constants. If partial derivatives of the Gaussian φ−curvature of the parallel surface given by
the equation (3.5) are taken according to parameters u and v, the following equations are obtained

(
Kr
φ

)
u

=
ψu

D (Q4 + v4 + 2Q2v2 +Dr (Jv2 −Q′v +Q2J −QF )− 2Q2r2)
(3.7)

and (
Kr
φ

)
v

=
ψv

D (Q4 + v4 + 2Q2v2 +Dr (Jv2 −Q′v +Q2J −QF )− 2Q2r2)
, (3.8)

respectively. The equalities of the expression of ψu and ψv can be obtained by basic calculations,
left to the reader.

If the partial derivatives of the mean φ−curvature of the parallel surface given by the equation
(3.6) are taken with respect to the parameters u and v, the following equations are obtained(

Hr
φ

)
u

=
µu

D(2D4 + 2Dr (Jv2 −Q′v +Q2J −QF )− 2Q2r)
2 −

$u

4D3
(3.9)

and (
Hr
φ

)
v

=
µv

D(2D4 + 2Dr (Jv2 −Q′v +Q2J −QF )− 2Q2r)
2 +

Dg3
v
, (3.10)



Parallel Weingarten surface in Euclidean space with density 95

respectively. The equalities of the expression of $u, µu and µv can be obtained by basic calculations,
left to the reader. If the values found in equations (3.7)-(3.10) are substituted in the equation(
Kr
φ

)
u

(
Hr
φ

)
v
−
(
Kr
φ

)
v

(
Hr
φ

)
u

and the conditions of ii) in the Result 3.2 are taken into account,

we have the following equation (
Kr
φ

)
u

(
Hr
φ

)
v
−
(
Kr
φ

)
v

(
Hr
φ

)
u

= 0.

This completes the proof.
q.e.d.

Theorem 3.6. Let ϕr (u, v) be the parallel surface of the developable ruled Weingarten surface
ϕ (u, v) in the Euclidean space with density ez. Then ϕr (u, v) is a developable ruled Weingarten
surface.

Proof. Let ϕ (u, v) = α (u) + vX (u) be a developable ruled Weingarten surface in Euclidean space
with density ez. The normal of the developable ruled surface is

N1 = αu (u) ∧X (u) + v (Xu (u) ∧X (u)) .

Since the vectors ~αu (u) ∧X (u) and Xu (u) ∧X (u) are linearly dependent, then

αu (u) ∧X (u) = ε (Xu (u) ∧X (u)) (3.11)

can be written, [14].
If one substitutes the equation (3.11) in the equation of N1, the following equality is obtained:

N1 = (ε+ v) (Xu ∧X) .

Let the unit normal of a surface in Euclidean space with density ez be N , we found that

N =
N1

‖N1‖
= Xu ∧X.

The parallel surface of developable Weingarten surface ϕ (u, v) in Euclidean space with density ez

is

ϕr (u, v) = α (u) + r (Xu (u) ∧X (u)) + vX (u)

and the drall of ϕr (u, v) is

λ = 〈αu, Xu ∧X〉+ r 〈Xuu ∧X,Xu ∧X〉 .

From these calculations, it is seen that λ is zero. So ϕr (u, v) is the developable ruled Weingarten
surface in Euclidean space with density ez. Thus the proof is completed. q.e.d.

Theorem 3.7. The principal curvatures k1φ and k2φ of a surface ϕ (u, v) in E3 with density ez are
the roots of the following quadratic equation:

λ2 − λ
(

2Hφ −
dφ

dN

)
+

(
Kφ − 2Hφ

dφ

dN
+∇φ

)
= 0.



96 H. Kormalı, M. Akyiğit

Here the principal curvatures of k1φ and k2φ are obtained as follows:

k1φ =
(2Hφ− dφ

dN )+
√

4Hφ2+( dφdN )
2−4Kφ+4Hφ

dφ
dN−4∇φ

2

k2φ =
(2Hφ− dφ

dN )−
√

4Hφ2+( dφdN )
2−4Kφ+4Hφ

dφ
dN−4∇φ

2 .

Proof. Let ϕ (u, v) be a ruled surface in Euclidean space with the density of ez and k1φ, k2φ denote
the principal curvatures of this surface. The equation det (A− λI) = 0 provides us a characteristic

equation such that A =

(
k1φ 0
0 k2φ

)
is a matrix and λis a constant.

To find the roots of this equation, let’s calculate Gaussian φ−curvature and mean φ−curvature.
The Gaussian φ - curvature in terms of principle curvatures k1φ and k2φ is

Kφ = k1k2 −∇φ =
(
k1φ + dφ

dN

)(
k2φ + dφ

dN

)
−∇φ

= k1φk2φ + dφ
dN

(
2Hφ − dφ

dN

)
+
(
dφ
dN

)2
−∇φ

and then the product of roots is

k1φk2φ = Kφ − 2Hφ
dφ

dN
+∇φ.

The mean φ−curvature in terms of principle curvatures k1φ and k2φ is

Hφ =
k1+k2− dφ

dN

2 =
(k1φ+ dφ

dN )+(k2φ+ dφ
dN )− dφ

dN

2

= 1
2

(
k1φ + k2φ + dφ

dN

)
and then the sum of roots is found as

k1φ + k2φ = 2Hφ −
dφ

dN
.

By considering the relations for k1φk2φ and k1φ + k2φ the equation det (A− λI) = 0 give us

Ps (λ) = det

((
k1φ 0
0 k2φ

)
− λ.

(
1 0
0 1

))
= k1φk2φ − λ (k1φ + k2φ) + λ2

= λ2 − λ
(

2Hφ − dφ
dN

)
+
(
Kφ − 2Hφ

dφ
dN +∇φ

)
= 0.

.

The roots of this quadratic equation are

k1φ =
(2Hφ− dφ

dN )+
√

4Hφ2+( dφdN )
2−4Kφ+4Hφ

dφ
dN−4∇φ

2

and

k2φ =

(
2Hφ − dφ

dN

)
−
√

4Hφ
2 +

(
dφ
dN

)2
− 4Kφ + 4Hφ

dφ
dN − 4∇φ

2
,
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respectively.
q.e.d.
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