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Abstract

In this study, Pell polynomial approach is used for approximately solving a class of systems of
nonlinear differential equations with initial conditions. The given problem is firstly expressed
as a matrix-vector system via collocation points. Then the unknown coefficients of the ap-
proximate solution are obtained. Also, some test problems are given to demonstrate accuracy
and effectiveness of the proposed method. Additionally, the calculated numerical values are
compared with exact solutions of the test problems and approximate ones obtained with other
methods in literature.
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1 Introduction

The systems of nonlinear differential equations are frequently used in astrophysics, physics engi-
neering, scientific phenomena and their modelling. For this reason, it is very important to obtain
the solution of these systems. Due to the difficulties on obtaining the analytical solutions, several
methods are developed to solve those equations approximately. Some of the applied numerical
methods on the approximate solutions of nonlinear differential equations are as follows: Variational
iteration method [1], operational matrix method based on Bernoulli polynomials [2], optimized
decomposition method [3], homotopy analysis method [4].

In [5], the Pell-Lucas collocation method is used to obtain approximate solution of linear func-
tional differential equations. In [6], a class of linear partial differential equations with Dirichlet
conditions is approximately solved using the Pell collocation method. In the paper given by [7], the
approximate solutions of a class of delay Fredholm integro-differential equations is obtained using
PellLucas collocation method by authors. In [8], the Pell-Lucas collocation method is used to cal-
culate the approximate solution of a class of linear Fredholm-Volterra integro differential equations.
In [9], logistic growth model and preypredator model are numerically solved by using PellLucas
collocation method. In [10], some properties and definition of Pell polynomials are presented by
authors. Also, in [11], the authors study identities involving Pell polynomial and Pell-Lucas poly-
nomial.

In this paper, the Pell collocation method is developed for solving the following class of systems
of nonlinear differential equation:

2∑
k=0

2∑
r=1

Rjkr(x)u(k)
r (x) +

2∑
k=0

2∑
r=1

Qjkrsp(x)urs (x)u(k)
p (x) = gj(x), (1.1)

Advanced Studies: Euro-Tbilisi Mathematical Journal Special Issue (10 - 2022), pp. 1–15.

Tbilisi Centre for Mathematical Sciences.

Received by the editors: 12 June 2021.
Accepted for publication: 15 Nov 2021.



2 M. Cakmak, S. Alkan

0 ≤ x ≤ 1, j, s, p = 1, 2

with the initial conditions

1∑
k=0

[
ajku

(k)
r (0) + bjku

(k)
r (0)

]
= δjr, j = 1, 2 (1.2)

where u
(0)
r (x) = ur(x), u0

r(x) = 1 and ur(x) is an unknown functions. Rjkr(x), Qjkrsp(x) and gj(x)
are given continuous functions on interval [0, 1], ajk, bjk, and δjr are suitable constants. The aim
of this study is to get the approximate solutions as the truncated Pell series defined by

ur (x) =

N+1∑
n=1

crnPn(x) (1.3)

where Pn(x) denotes the Pell polynomials; crn (1 ≤ rn ≤ N + 1) are unknown Pell polynomial
coefficients, and N is any positive integer such that N ≥ m.

The paper consists of six sections. In Section 2, the basic properties and definitions related to Pell
polynomials are presented. In Section 3, the fundamental matrix forms of Pell collocation method
by using fundamental relations of Pell polynomials are constructed to obtain the approximate
solutions for the given class of systems of nonlinear differential equations. In section 4, the absolute
error function is formulated. In Section 5, three test problems are presented and the method is
tested using the absolute error function. Finally, conclusions are given in Section 6.

2 Properties of Pell polynomials

The Pell polynomials and series were studied by Horadam, A. F. and Mahon, J. M. [12–17]. The
recurrence relation of those polynomials is defined by

Pn(x) = 2xPn−1(x) + Pn−2(x) (2.1)

For n > 3. , P1(x) = 1, P2(x) = 2x . The properties were further investigated by Horadam, A. F.
and Mahon, J. M. [14]. The first few Pell polynomials are

P1(x) = 1, (2.2)

P2(x) = 2x,

P3(x) = 4x2 + 1,

P4(x) = 8x3 + 4x,

P5(x) = 16x4 + 12x2 + 1,

P6(x) = 32x5 + 32x3 + 6x,

P7(x) = 64x6 + 80x4 + 24x2 + 1,

P8(x) = 128x7 + 192x5 + 80x3 + 8x,

P9(x) = 256x8 + 448x6 + 240x4 + 40x2 + 1,

...
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3 Fundamental relations

Let us assume that linear combination of Pell polynomials (1.3) is an approximate solutions of Eq
(1.1). Our purpose is to determine the matrix forms of Eq (1.1) by using (1.3). Firstly, we can
write Pell polynomials (2.2) in the matrix form

P (x) = T (x)M (3.1)

where P (x) = [P1 (x) P2 (x) · · ·PN+1 (x)], T (x) =
[
1 x x2 x3...xN

]
, Cr = [cr1 cr2 · · · cr(N+1)]

T

, r = 1, 2 and

M =



1 0 1 0 1 0 1 0 1 · · ·
0 2 0 4 0 6 0 8 0 · · ·
0 0 4 0 12 0 24 0 40 · · ·
0 0 0 8 0 32 0 80 0 · · ·
0 0 0 0 16 0 80 0 240 · · ·
0 0 0 0 0 32 0 192 0 · · ·
0 0 0 0 0 0 64 0 448 · · ·
0 0 0 0 0 0 0 128 0 · · ·
0 0 0 0 0 0 0 0 256 · · ·
...

...
...

...
...

...
...

...
...

. . .


Then we set the approximate solutions defined by a truncated Pell series (1.3) in the matrix form

ur (x) = P (x)Cr. (3.2)

By using (3.1) and (3.2), the matrix relation is expressed as

ur (x) ∼= urN (x) = P (x)Cr= T (x)MCr (3.3)

u′r (x) ∼= u′rN (x) = TBMCr

u
′′

r (x) ∼= u
′′

rN (x) = T (x)B2MCr

...

u(k)
r (x) ∼= u

(k)
rN (x) = T (x)BkMCr

where r = 1, 2. Also, the relations between the matrix T (x) and its derivatives, T′(x), T′′(x),...,T(k) (x)
are

T′(x) = T (x)B, T′′(x) = T (x)B2 (3.4)

T′′′(x) = T (x)B3, ...,T(k) (x) = T (x)Bk

Then we set the approximate solution defined by a truncated Pell series (1.3) in the matrix form

ur (x) ∼= urN (x) = P (x)Cr. (3.5)

By substituting the Pell collocation points defined by

xi =
i

N
, i = 0, 1, ...N (3.6)
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into Eq(3.3), we have
u(k)
r (xi) = T (xi)B

kMCr. (3.7)

and the compact form of the relation (3.7) becomes

U(k)
r = TBkMCr, k = 0, 1, 2, r = 1, 2 (3.8)

where

U(k)
r =


u

(k)
r (x0)

u
(k)
r (x1)

...

u
(k)
r (xN )

 , (3.9)

B =



0 1 0 0 0 0 · · · 0
0 0 2 0 0 0 · · · 0
0 0 0 3 0 0 · · · 0
0 0 0 0 4 0 · · · 0
0 0 0 0 0 5 · · · 0
0 0 0 0 0 0 · · · 0
...

...
...

...
...

. . .
. . . N

0 0 0 0 0 0 · · · 0


, B0 =



1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0
0 0 0 0 1 0 · · · 0
0 0 0 0 0 1 · · · 0
...

...
...

...
...

. . .
. . . 0

0 0 0 0 0 0 · · · 1



T =


T (x0)
T (x1)

...
T (xN )

 =


1 x0 ... xN0
1 x1 ... xN1

1
... ...

...
1 xN ... xNN

 .

In addition, we can obtain the matrix form
(
Ûs

)r
Û

(k)
p which appears in the nonlinear part of

Eq. (1.1), by using Eq. (3.3) as

(
Ûs

)r
Û(k)

p =


urs (x0)u

(k)
p (x0)

urs (x1)u
(k)
p (x1)

...

urs (xN )u
(k)
p (xN )

 (3.10)

=


us (x0) 0 ... 0

0 us (x1) ... 0
...

...
. . .

...
0 0 ... us (xN )


r


u
(k)
p (x0)

u
(k)
p (x1)

...

u
(k)
p (xN )


where (

Ûs

)r
Û(k)

p =
(
T̂ M̂ Ĉr

)r
T (B)

k
M. (3.11)
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T̂ =


T (x0) 0 ... 0

0 T (x1) ... 0
...

...
. . .

...
0 0 ... T (xN )

, B̂ =


B 0 ... 0
0 B ... 0
...

...
. . .

...
0 0 ... B

,

M̂ =


M 0 ... 0
0 M ... 0
...

...
. . .

...
0 0 ... M

, Ĉr =


Cr 0 ... 0
0 Cr ... 0
...

...
. . .

...
0 0 ... Cr

. Substituting the collocation points

(xi = i/N, i = 0, 1,···, N) into Eq. (1.1), gives the system of equations

2∑
k=0

2∑
r=1

Rjkr(xi)u
(k)
r (xi) +

2∑
k=0

2∑
r=1

Qjkrsp(xi)u
r
s (xi)u

(k)
p (xi) = gj(xi), , 0 ≤ x ≤ 1

which can be expressed with the aid of Eqs. (3.9) and (3.10) as

2∑
k=0

2∑
r=1

RjkrU
(k)
r +

2∑
k=0

2∑
r=1

Qjkrsp

(
Ûs

)r
Û(k)

p = Gj (3.12)

where

Rjkr = diag [Rjkr(x0) Rjkr(x1) ... Rjkr(xN )] ,

Qjkrsp = diag [Qjkrsp(x0) Qjkrsp(x1) ... Qjkrsp(xN )]

and Gj =
[
gj(x0) gj(x1) ... gj(xN )

]T
, j = 1, 2.

Substituting the relations (3.8) and (3.11) into Eq. (3.12), the fundamental matrix equation can
be obtained as{

2∑
k=0

2∑
r=1

RjkrTBkM +

2∑
k=0

2∑
r=1

Qjkrsp

(
T̂ M̂ Ĉr

)r
T (B)

k
M

}
Cr = Gj (3.13)

Shortly, Eq. (3.13) is also written in the following form

WC = G or [W;G] (3.14)
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where

W =

[
W11 W12

W21 W22

]
, C =

[
C1

C2

]
, G =

[
G1

G2

]
W11 =

2∑
k=0

1∑
r=1

RjkrTBkM +

2∑
k=0

1∑
r=1

Qjkrsp

(
T̂ M̂ Ĉr

)r
T (B)

k
M for j = 1

W12 =
2∑

k=0

2∑
r=2

RjkrTBkM +

2∑
k=0

2∑
r=2

Qjkrsp

(
T̂ M̂ Ĉr

)r
T (B)

k
M for j = 1

W21 =

2∑
k=0

1∑
r=1

RjkrTBkM +

2∑
k=0

1∑
r=1

Qjkrsp

(
T̂ M̂ Ĉr

)r
T (B)

k
M for j = 2

W12 =

2∑
k=0

2∑
r=2

RjkrTBkM +

2∑
k=0

2∑
r=2

Qjkrsp

(
T̂ M̂ Ĉr

)r
T (B)

k
M for j = 2.

Here, Eq. (3.14) is a system containing (N+1) linear algebraic equations with the (N+1) unknown
Pell coefficients crn, n = 1, 2, ..., N + 1. Using Eq. (3.8) at the point 0, the matrix representation
of the initial conditions in Eq. (1.2) is given by{

m−1∑
k=0

[ajkT (0) + bjkT (0)] (B)
(k)

M

}
Cr = δjr, j = 0, 1, 2, ...,m− 1

or briefly
Vjr Cr = [δjr] or [Vjr; δjr] ; j = 0, 1, 2, ...,m− 1 (3.15)

where

Vjr =

m−1∑
k=0

[ajkT (0) + bjkT (0)] (B)
(k)

M = [vjo vj1 vj2 ... vjN ] .

Therefore, by replacing the row matrices in (3.15) by the last m rows of the augmented matrix
(3.14), the new augmented matrix becomes

Ŵ C = Ĝ or
[
Ŵ; Ĝ

]
which is an algebraic system. Here, [

Ŵ; Ĝ
]

=

[
Ŵ11 Ŵ12

Ŵ21 Ŵ22

]
(3.16)
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where

[
Ŵ11

]
=



w11 w12 w13 · · · w1N+1

w21 w22 w23 · · · w2N+1

w31 w32 w33 · · · w3N+1

...
...

...
. . .

...
w(N+1−m)1 w(N+1−m)2 w(N+1−m)3 · · · w(N+1−m)N+1

v11 v12 v13 · · · v1N+1

v21 v22 v23 · · · v2N+1

v31 v32 v33 · · · v3N+1

...
...

...
. . .

...
v(m−1)1 v(m−1)2 v(m−1)3 · · · v(m−1)N+1



[
Ŵ12

]
=



w11 w12 w13 · · · w1N+1

w21 w22 w23 · · · w2N+1

w31 w32 w33 · · · w3N+1

...
...

...
. . .

...
w(N+1−m)1 w(N+1−m)2 w(N+1−m)3 · · · w(N+1−m)N+1

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



[
Ŵ21

]
=



w11 w12 w13 · · · w1N+1

w21 w22 w23 · · · w2N+1

w31 w32 w33 · · · w3N+1

...
...

...
. . .

...
w(N+1−m)1 w(N+1−m)2 w(N+1−m)3 · · · w(N+1−m)N+1

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



[
Ŵ22

]
=



w11 w12 w13 · · · w1N+1

w21 w22 w23 · · · w2N+1

w31 w32 w33 · · · w3N+1

...
...

...
. . .

...
w(N+1−m)1 w(N+1−m)2 w(N+1−m)3 · · · w(N+1−m)N+1

v11 v12 v13 · · · v1N+1

v21 v22 v23 · · · v2N+1

v31 v32 v33 · · · v3N+1

...
...

...
. . .

...
v(m−1)1 v(m−1)2 v(m−1)3 · · · v(m−1)N+1


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Ĝ =

[
Ĝ1

Ĝ2

]
where

Ĝ1 =
[
g1(x0) g1(x1) · · · g1(xN+1−m) δ10 δ11 δ12 · · · δ1m−1

]T
Ĝ2 =

[
g2(x0) g2(x1) · · · g2(xN+1−m) δ20 δ21 δ22 · · · δ2m−1

]T
.

In this way, by solving the linear equation system in (3.16), the unknown Pell coefficients
crn, n = 1, 2, ..., N + 1 are calculated and substituted into (1.3), and the approximate solution is
obtained.

4 Error Estimation

In this section, to test the accuracy of the proposed method, it is presented that the error function
Ei,N (x) for i = 1, 2. The function Ei,N (x) is given by

Ei,N (x) = |ui,N (x)− ui(x)| for i = 1, 2 (4.1)

where ui,N (x) and ui(x) are the approximate and exact solutions of Eq.(1.1), respectively.

5 Numerical examples

In this section, three numerical examples are given to show the accuracy of the proposed method.
On these problems, the method is tested by using the error function given by (4.1). The obtained
numerical results are presented with tables and graphics.

Example 1. Consider the nonlinear differential equation system

(x+ 1)u
′

1 (x) + (x− 1)u
′

2 (x) + u2 (x) + u
′

1 (x)u2 (x) = g1 (x) (5.1)

2u
′

1 (x) + xu
′

2 (x)− u1 (x) + u2
1 (x) = g2 (x)

with initial conditions
u1 (0) = 0, u2 (0) = 1

and the exact solutions u1 (x) = x2 + 2x, u2 (x) = x2 + 1. The approximate the solution ur(x) by
the Pell polynomials is

ur (x) =

N+1∑
n=1

crnPn(x)

where N = 2, R111 (x) = x + 1, R112 (x) = x − 1, R102 (x) = 1, Q10112 (x) = 1, g1 (x) =
2x3 + 7x2 + 4x + 5 and R211 (x) = 2, R212 (x) = x, R201 (x) = −1, , Q20111 (x) = 1, g2 (x) =
x4 + 4x3 + 5x2 + 2x+ 4. Hence, the set of collocation points (3.6) for N = 2 is computed as

x0 = 0, x1 =
1

2
, x2 = 1
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From Eq. (3.13), the fundamental matrix equation of the problem is

G1 =
{
R111TBM + Q10111T̂ M̂ Ĉ2T BM

}
C1

+ {R112TBM + R102TM}C2

G2 =
{
R211TBM + R201TM + Q20111T̂ M̂ Ĉ1T M

}
C1

+ {R212TBM}C2

where

W11 = R111TBM + Q10111T̂ M̂ Ĉ2T BM

W12 = R112TBM + R102TM

W21 = R211TBM + R201TM + Q20111T̂ M̂ Ĉ1T M

W22 = R212TBM

R111 =

 1 0 0
0 3

2 0
0 0 2

 ,R112 =

 −1 0 0
0 − 1

2 0
0 0 0

 ,R102 = Q10112 = Q20111 =

 1 0 0
0 1 0
0 0 1

 ,
R211 =

 2 0 0
0 2 0
0 0 2

 ,R201 =

 −1 0 0
0 −1 0
0 0 −1

 ,R212 =

 0 0 0
0 1

2 0
0 0 1

 ,
T =

 T (0)
T
(

1
2

)
T (1)

 =

 1 0 0
1 1

2
1
4

1 1 1

 , M =

 1 0 1
0 2 0
0 0 4

 , B =

 0 1 0
0 0 2
0 0 0

 ,
T̂ =

 T (x0) 0 0
0 T (x1) 0
0 0 T (x2)

 =

 1 0 0 0 0 0 0 0 0
0 0 0 1 1

2
1
4 0 0 0

0 0 0 0 0 0 1 1 1



M̂ =


M 0 ... 0
0 M ... 0
...

...
. . .

...
0 0 ... M

 , Ĉr =


Cr 0 ... 0
0 Cr ... 0
...

...
. . .

...
0 0 ... Cr


W =

[
W11 W12

W21 W22

]
, C1 =

[
a b c

]T
,C2 =

[
k l m

]T
, C =

[
C1

C2

]
G =

[
G1

G2

]
,G1 =

[
5 9 18

]T
,G2 =

[
4 109

16 16
]T
,

W11 =

 0 2k + 2m+ 2 0
0 2k + 2l + 4m+ 3 4k + 4l + 8m+ 6
0 2k + 4l + 10m+ 4 8k + 16l + 40m+ 16

 ,W12 =

 1 −2 1
1 0 0
1 2 5


,W21 =

 a+ c− 1 4 a+ c− 1
a+ b+ 2c− 1 a+ b+ 2c+ 3 2a+ 2b+ 4c+ 6
a+ 2b+ 5c− 1 2a+ 4b+ 10c+ 2 5a+ 10b+ 25c+ 11

 ,W22 =

 0 0 0
0 1 2
0 2 8


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Table 1: Numerical comparison of the functions u1 and u2 for Example 2

x
Adomian decomposition method [18] Runge-Kutta method [18] The proposed method

u1 u2 u1 u2 u1 u2

0.1 0.9004640155 1.004524209 0.9004639852 1.004524129 0.9004639428 1.0045242796
0.2 0.8034482877 1.016374098 0.8034482895 1.016373909 0.8034482353 1.0163741569
0.3 0.7108239629 1.033327532 0.7108241556 1.033327161 0.7108240368 1.0333275272
0.4 0.6238900641 1.053576241 0.6238926950 1.053574362 0.6238924878 1.0535748457
0.5 0.5434799759 1.075665396 0.5435048184 1.075649444 0.5435044969 1.0756500526
0.6 0.4699911064 1.098485574 0.4701502231 1.098381159 0.4701497676 1.0983818994
0.7 0.4032626837 1.121371970 0.4040245971 1.120858494 0.4040239951 1.1208593704

[
Ŵ
]

=

[
Ŵ11 Ŵ12

Ŵ21 Ŵ22

]
=


0 2k + 2m+ 2 0 1 −2 1
0 2k + 2l + 4m+ 3 4k + 4l + 8m+ 6 1 0 0
1 0 1 0 0 0

a+ c− 1 4 a+ c− 1 0 0 0
a+ b+ 2c− 1 a+ b+ 2c+ 3 2a+ 2b+ 4c+ 6 0 1 2

0 0 0 1 0 1

 ;

Ĝ =
[

5 9 0 4 109
16 1

]T
From Eq. (3.15), the matrix form for initial condition is

[V11; δ11] =
[

1 0 1 ; 0
]
, [V12; δ12] =

[
1 0 1 ; 1

]
.

Consequently, by solving the system [Ŵ; Ĝ], the Pell coefficients matrix are obtained

C =
[ −1

4 1 1
4

3
4 0 1

4

]T
where

C1 =
[ −1

4 1 1
4

]T
, C2 =

[
3
4 0 1

4

]T
.

The approximate solutions for N = 2 in terms of the Pell polynomials is obtained as

u1 (x) = x2 + 2x and u2 (x) = x2 + 1.

Example 2. [18] Assume that the following differential equation system
u′1(x) = −2u1(x) + u2

1(x)u2(x)

u′2(x) = u1(x)− u2
1(x)u2(x)

u1(0) = 1, u2(0) = 1

(5.2)

Table 1 presents a numerical comparison of the proposed method with Adomian decomposition
method and Runge-Kutta method for Eq.(5.2).
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Table 2: Numerical comparison of the error functions E1,N and E2,N at the different values of N
for Example 3

x
u1 u2

E1,3 E1,5 E1,8 E2,3 E2,5 E2,8

0.2 1.24824 × 10−4 6.19185 × 10−7 8.43282 × 10−11 1.67152 × 10−4 1.12256 × 10−6 1.46487 × 10−10

0.4 5.24571 × 10−4 1.15094 × 10−6 2.09448 × 10−10 7.34585 × 10−4 2.36088 × 10−6 3.44978 × 10−10

0.6 2.88945 × 10−4 1.69739 × 10−6 3.63609 × 10−10 2.68779 × 10−4 3.92165 × 10−6 5.9967 × 10−10

0.8 2.57203 × 10−3 1.71744 × 10−6 5.28537 × 10−10 5.06667 × 10−3 2.61007 × 10−6 9.02742 × 10−10

1 1.09323 × 10−2 6.07564 × 10−5 8.14292 × 10−9 2.20430 × 10−2 1.33261 × 10−4 1.96085 × 10−8

Example 3. Consider that the following differential equation system
u′′1(x)(1 + u2

2(x)) + u′2(x)(1 + u1(x)) =g1(x)

u′′2(x)(1 + u2
1(x)) + u′1(x)(1 + u2(x)) =g2(x)

u1(0) = 1, u2(0) = 1

u′1(0) = −1, u′2(0) = 1

(5.3)

The exact solution of Eq.(5.3) is given by u1(x) = e−x, u2(x) = ex. Here, g1(x) = ex + e−x + 2,
g2(x) = ex − e−x. Table 2 presents the numerical values of error function given in Eq.(4.1) for
Eq.(5.3) when N = 3, 5 and 8. In Figure 1 and Figure 2, it is shown that the graphical compari-
son of the approximate and exact solutions obtained by the proposed method for u1 and u2 when
N = 2, 3 and 4.
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(a) N = 2 (b) N = 3

(c) N = 4

Figure 1: Graphical comparison of the exact and approximate solutions for u1 when N = 2, 3, 4 for
Example 3
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(a) N = 2 (b) N = 3

(c) N = 4

Figure 2: Graphical comparison of the exact and approximate solutions for u2 when N = 2, 3, 4 for
Example 3
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6 Conclusions

In this study, the Pell polynomial approach was used to obtain the approximate solution of a class
of systems of nonlinear differential equations. The accuracy and efficiency of the method with
three different example are illustrated. The obtained approximate solutions are compared with
ones obtained with Adomian decomposition method and Runge-Kutta method. These comparisons
reveal that the method is effective and applicable to obtain approximate solution of systems of
nonlinear differential equations.
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