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TENSOR PRODUCTS OF REPRESENTATIONS UP TO
HOMOTOPY
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Abstract
We study the construction of tensor products of represen-

tations up to homotopy, which are the A∞ version of ordinary
representations. We provide formulas for the construction of
tensor products of representations up to homotopy and of mor-
phisms between them, and show that these formulas give the
homotopy category a monoidal structure which is uniquely de-
fined up to equivalence.
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ESI in Vienna. The second author was partially supported by NWO Grant “Symmetries and De-
formations in Geometry”. The third author was partially supported by NWO Grant “Generating
functions and Poisson manifolds” and SNF Grant PA002-113136.
Received February 24, 2011, revised August 21, 2011; published on November 27, 2011.
2000 Mathematics Subject Classification: 18G55
Key words and phrases: Homotopy invariant algebraic structures, monoidal categories
c© 2011, Camilo Arias Abad, Marius Crainic and Benoit Dherin. Permission to copy for private

use granted.

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 6(2), 2011 240

5.3 The case m = 2: the proof of Corollary 5.7 and of Corollary 5.10 . . 260
5.4 End of proof of Theorem 5.9: unitality . . . . . . . . . . . . . . . . . 261

6 Tensor products of morphisms 263
6.1 Universal Maurer-Cartan morphisms . . . . . . . . . . . . . . . . . . 264
6.2 Composition of Maurer-Cartan morphisms . . . . . . . . . . . . . . . 268
6.3 Monoidal structure on D(G) . . . . . . . . . . . . . . . . . . . . . . . 271

7 Canonical tensor products on morphisms 276

A Appendix 281
A.1 Maurer-Cartan elements . . . . . . . . . . . . . . . . . . . . . . . . . 281
A.2 The case of complete DGAs . . . . . . . . . . . . . . . . . . . . . . . 283
A.3 Relation with Hochschild cohomology . . . . . . . . . . . . . . . . . 286

1. Introduction

This work is motivated by the study of the cohomology of classifying spaces of Lie
groupoids. For a Lie group G, Bott [4] constructed a spectral sequence converging
to the cohomology of the classifying space BG with first page

Epq1 = Hp−q
diff (G,Sq(g∗)), (1)

the differentiable cohomology with coefficients in the symmetric powers of the coad-
joint representation. If the Lie group G is compact then the first page of the spectral
sequence vanishes outside of the diagonal, and one obtains that the cohomology of
BG is isomorphic to the invariant polynomials on the Lie algebra. The Cartan model
for equivariant cohomology can be seen as a generalization of this computation for
classifying spaces of groupoids associated to compact group actions on manifolds. In
[6] Getzler constructed a model for equivariant cohomology of non compact groups,
generalizing Bott’s spectral sequence to the case of general group actions. Behrend
[5] extended Getzler’s model to the case of stacks that can be represented by “flat
groupoids”. For general Lie groupoids the situation is more subtle because the “ad-
joint representation” is no longer a representation in the usual sense. Instead, one
has to work with the notion of representation up to homotopy. We have shown in
[1] that the Bott spectral sequence does exist for arbitrary Lie groupoids, provided
one has a well-behaved operation of taking symmetric powers of representations up
to homotopy. In the present paper we study the existence and the uniqueness of
tensor products of representations up to homotopy.

For a small category C, the notion of representation up to homotopy is the A∞
version of the usual notion of representation. In terms of A∞ structures, one asso-
ciates to C the differential graded category RC whose objects are those of C, and
whose morphisms are the linear span over R of those of C. Then, a representation
up to homotopy of C is an A∞ functor from RC to the dg-category of differen-
tial graded vector spaces. We will be interested in the case where C = G is a Lie
groupoid and require the structure operators to be smooth in the appropriate sense.
We would like to point out that the assumption that C is a Lie groupoid does not
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play any role in the construction of tensor products. We chose this level of generality
only because our original motivation comes from studying this case. However, the
whole construction applies to arbitrary categories and, more generally, to twisting
cochains over a simplicial set (see [17]). These more general twisting cochains arise
in the integration of infinitesimal representations up to homotopy to global ones,
which can also be thought of as a version of the Riemann-Hilbert correspondence,
see [2, 3, 8].

The works of Loday [10], Markl-Schnider [14], Saneblidze-Umble [19] and Stash-
eff [17] explain that the construction of tensor products of higher homotopy alge-
braic structures amounts to the construction of certain “diagonal maps” in some
appropriate family of polytopes. In the case of A∞-morphisms, the right family of
polytopes is the multiplihedra (see [7]). Since we consider the case in which the
domain category is strict, the polytopes controlling our problem become much sim-
pler, indeed, they are cubes. See also Sugawara [20] and Forcey [7] for an account
of this. This simplification of the combinatorics allows us to study not only tensor
products of representations up to homotopy, but also of morphisms between them.

Here is a short account of the results of this paper. We provide explicit and uni-
versal formulas for tensor products that are unital and strictly associative or strictly
symmetric, while showing that any two tensor product operations are equivalent.
There is a particularly simple choice for this tensor product, given by the Serre
diagonal, which is associative but not symmetric. Since we are interested in the
symmetric case, and do not want to make any arbitrary choices, we treat all possi-
ble tensor product operations on an equal footing. We explain how to take tensor
products of morphisms between representations up to homotopy, which correspond
to natural transformations between the A∞ functors. We prove that once a choice
has been made for taking tensor products of objects, there is a natural way to take
tensor products of morphisms. We show that these constructions produce monoidal
structures on the homotopy category of the representations up to homotopy, and
that this monoidal structure is unique up to equivalence.

The category of representations up to homotopy of a Lie groupoid is naturally
a dg-category and it seems natural to ask whether the monoidal structure on the
homotopy category can be lifted to this dg-category by making choices of tensor
products of all lengths in a coherent way. This is an interesting question that we do
not address here.

We conclude this introduction with an outline of the paper.
In §2 we review the definitions of representations up to homotopy, the morphisms

between them, and the homotopies between the morphisms.
The purpose of §3 is to isolate the algebraic structure that controls the problem

of tensoring representations up to homotopy. We show that a representation up to
homotopy of G on a complex of vector bundles E is the same thing as a Maurer-
Cartan element in a certain DGA (differential graded algebra) ĀE associated to
G and E. However, for the purpose of handling tensor products, the structure of
DGA is not fine enough: ĀE⊗F cannot be expressed in terms of the DGA’s ĀE and
ĀF . For that reason, we introduce the finer notion of DB-algebra and we describe
a functor K̄ from the category of DB-algebras to the category of complete DGA’s.
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The DGA ĀE comes from a canonical DB-algebra AE and, this time, AE⊗F is
related to the tensor product of the DB-algebras AE and AF . Thus, one can state
the problem of constructing tensor products of representations up to homotopy in
the language of DB-algebras.

In §4 we construct a DB-algebra Ω that is universal with respect to Maurer-
Cartan elements in the sense that a morphism of DB-algebras Ω → A is the same
as a Maurer-Cartan element in the complete differential graded algebra K̄(A).

In §5 we show that the problem of constructing tensor products of representations
up to homotopy corresponds to finding certain Maurer-Cartan elements in some
universal differential graded algebra. We prove the existence and uniqueness of
these tensor products, and provide explicit formulas for strictly associative or strictly
symmetric one. We show that a tensor product can not enjoy both of these properties
at the same time. We also explain that the tensor product can be chosen so that
the product of unital representations remains unital.

In section §6 we explain how to take tensor products of morphisms between
representations. We show that any two choices are homotopic. We prove that the
homotopy category D(G) has a monoidal structure that is uniquely defined up to
natural equivalence.

Hochschild cohomology appears in §7. There we prove that the universal algebra
K̄(Ω) comes with a canonical Hochschild cocycle of degree zero, and we use this
cocycle to specify a construction of the tensor product of morphisms.

The appendix contains general facts about Maurer-Cartan elements in complete
differential graded algebras, morphisms between them and their relationship to
Hochschild cohomology.

Acknowledgements. We thank Andre Henriques, Jean Louis Loday and Bruno
Vallette for various conversations we had at different stages of this work. We spe-
cially thank Ieke Moerdijk for his constructive comments during the process of
writing this paper. C.A.A. and B.D. also thank Calder Daenzer for suggesting we
think about these questions in his cabin in Lake Tahoe.

2. Representations up to homotopy

In this section, we recall the definition of the category of representations up to
homotopy. As mentioned in the introduction, we work over general Lie groupoids
G (see e.g. [11] for the basics), but the reader may assume for simplicity that G is
a group.

Hence throughout this paper the letter G will stand for a Lie groupoid (which
we also identify with the space of arrows) over the base smooth manifold M (the
space of units). The source and target maps will be written as s, t : G −→ M . A
representation up to homotopy of G consists of the following data:

1. A graded vector bundle E over M .
2. A differential ∂ on E; that is, a degree-one vector bundle morphism

∂ : E• −→ E•+1

with ∂ ◦ ∂ = 0.
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3. A smooth operator that associates to each g ∈ G a chain map

λg : Es(g) −→ Et(g), e 7→ λg(e),

which we will refer to as the quasi-action. Here, quasi refers to the fact that
it may fail to respect the composition operation.

4. A smooth operation that associates to each pair (g, h) of composable arrows
a homotopy between λgλh and λgh; i.e., a linear map that lowers the cochain
degree by one,

R2(g, h) : Es(h) −→ Et(h)

with the property that

λgλh − λgh = ∂(R2(g, h)), (2)

where the last expression makes use of the induced differential in the Hom-
bundle:

∂(R2(g, h)) = [∂,R2(g, h)] = ∂ ◦R2(g, h) +R2(g, h) ◦ ∂.

5. Similar higher-order operations Rk, in which each Rk measures the failure
of higher-coherence equations for ∂, λ,R2 . . . , Rk−1. In order to have more
uniform notation, we will often write R0 = ∂, R1 = λ.

For the precise definition, we recall that a string of k composable arrows is a
k-tuple (g1, . . . , gk) ∈ Gk of arrows satisfying s(gi) = t(gi+1) for i = 1 . . . , k.

Definition 2.1. A representation up to homotopy (E,Rk) of a Lie groupoid G
is a graded vector bundle E over the base M , together with a sequence of operations
Rk, k > 0, where Rk associates to a string of k-composable arrows (g1, . . . , gk) a
linear map

Rk(g1, . . . , gk) : Es(gk) −→ Et(g1),

of degree 1− k, depending smoothly on the arguments and satisfying the equations
k−1∑
j=1

(−1)jRk−1(g1, . . . , gjgj+1, . . . , gk) =
k∑
j=0

(−1)jRj(g1, . . . , gj)◦Rk−j(gj+1, . . . , gk).

(3)
The representation up to homotopy (E,Rk) is said to be unital if the restriction
of R1 to the unit space M is the vector bundle identity map idE, and if the higher
components Rk vanish when one of the arguments is a groupoid unit.

We will denote the vector bundle morphism R0 by ∂E or simply by ∂ when no
confusion arises. We will say that (E, ∂) is the complex underlying the representation
up to homotopy E, or that the operators {Rk}k>1 define a representation up to
homotopy on the complex (E, ∂). With this notation, the equations above read:

k−1∑
j=1

(−1)jRk−1(g1,. . ., gjgj+1,. . ., gk)+
k−1∑
j=1

(−1)j+1Rj(g1, . . . , gj)◦Rk−j(gj+1, . . . , gk)

= ∂ ◦Rk(g1, . . . , gk) + (−1)kRk(g1, . . . , gk) ◦ ∂.
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We turn now to the definition of morphisms between representations up to ho-
motopy:

Definition 2.2. A morphism from a representation up to homotopy (E,Rk) to
another one (E′, R

′

k) is a sequence Φ = {Φk}k>0, where Φk is an operator that
associates to a string of k-composable arrows (g1, . . . , gk) a linear map

Φk(g1, . . . , gk) : Es(gk) −→ E′t(g1)

of degree −k, depending smoothly on the arguments, such that∑
i+j=k

(−1)jΦj(g1, . . . , gj)◦Ri(gj+1, . . . , gk) =
∑
i+j=k

R
′

j(g1, . . . , gj)◦Φi(gj+1, . . . , gk)(4)

+
k−1∑
j=1

(−1)jΦk−1(g1, . . . , gjgj+1, . . . , gk).

The composition of morphisms is given by the formula

(Φ ◦Ψ)k(g1, . . . , gk) =
∑
i+j=k

Φi(g1, . . . , gi) ◦Ψ(gi+1, . . . , gk).

We will denote by Rep∞(G) the resulting category of representations up to ho-
motopy of G. Note that a morphism Φ is an isomorphism if and only if Φ0 is an
isomorphism of (graded) vector bundles. We will also need the following stronger
notion of isomorphism.

Definition 2.3. We say that two representations up to homotopy (E, ∂,Rk) and
(E′, ∂′, R

′

k) are strongly isomorphic if E = E′, ∂ = ∂′ and there exists a mor-
phism Φ with Φ0 = IdE. In this case, Φ will be called a strong isomorphism.

There is also a natural notion of homotopy between morphisms:

Definition 2.4. Let Φ and Ψ be morphisms of representation up to homotopy
from (E,Rk) to (E′, R

′

k). A homotopy between Φ and Ψ consists of a sequence
h = {hk}, where hk is an operator that associates with a string of k-composable
arrows (g1, . . . , gk) a linear map

hk(g1, . . . , gk) : Es(gk) −→ Et(g1),

of degree −k − 1 depending smoothly on the arguments, and such that

Φk −Ψk = ∂ ◦ hk(g1, . . . , gk) + (−1)khk(g1, . . . , gk) ◦ ∂ (5)

+
k−1∑
i=0

(−1)ihi(g1, . . . , gi) ◦Rk−i(gi+1, . . . , gk)

+
k∑
i=1

(−1)iR′i(g1, . . . , gi) ◦ hk−i(gi+1, . . . , gk)

+
k−1∑
i=1

(−1)i+1hk−1(g1, . . . , gigi+1, . . . , gk).
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The composition is well defined on homotopy classes of morphisms. The homo-
topy category D(G) is defined as the category whose objects are representations
up to homotopy and whose morphisms are homotopy classes of morphisms between
representations up to homotopy.

Let us now describe the problem of constructing tensor products. Given two
representations up to homotopy E and F , the tensor product E⊗F is defined, first
of all, as a cochain complex of vector bundles over M with the standard differential

∂(e⊗ f) = ∂(e)⊗ f + (−1)pe⊗ ∂(f),

where p is the degree of e. The first step toward giving this complex the structure
of a representation up to homotopy is to define the R1-term. Thinking of it as a
quasi-action, there is again a standard choice, the diagonal one:

λg(e⊗ f) = λg(e)⊗ λg(f).

However, for higher R’s, the problem is more subtle. For instance, when looking for
an R2, we have to make sure that the equation (2) for E ⊗ F is satisfied. Already
in this case the equation has more than one natural and interesting solution. For
instance, if one is interested in a symmetric tensor product, then there is only one
solution for R2:

R2(g, h)(e⊗ f) =
1
2

(R2(g, h)(e)⊗ λ(gh)(f) +R2(g, h)(e)⊗ (λ(g) ◦ λ(h))(f)

+λ(gh)(e)⊗R2(g, h)(f) + (λ(g) ◦ λ(h))(e)⊗R2(g, h)(f)).

On the other hand, this specific second component would not work if we wanted
the tensor product to be associative, in which case we could choose, for instance,
the second component to be

R2(g, h)(e⊗ f) = R2(g, h)(e)⊗ λ(gh)(f) + (λ(g) ◦ λ(h))(e)⊗R2(g, h)(f)).

For higher values of k, the equations become much more involved. The aim of this
paper is to understand the algebraic structure that governs representations up to
homotopy, and to use it to classify all possible tensor products of representations
up to homotopy and of morphisms between them.

3. Maurer-Cartan elements and DB-algebras

In this section we discuss the algebraic structures that are relevant to the con-
struction of tensor products. First we interpret representations up to homotopy as
Maurer-Cartan elements in a certain DGA (Differential Graded Algebra) and then
we describe the building pieces of the DGAs involved. This underlying algebraic
structure is important when tensoring two representations up to homotopy, and we
axiomatize it under the name of DB-algebra (Differential Bar algebra). Hence the
main outcome is the construction of functors{
Complexes of vector bundles (E, ∂) over M

}
−→

{
DB-algebras

}
−→

{
CompleteDGAs

}
,

E 7→ AE 7→ ĀE ,
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so that representations up to homotopy on E correspond to Maurer-Cartan ele-
ments in ĀE and the resulting composition functor behaves well with respect to
tensor products. Moreover, the notion of strong isomorphism on the left hand side
corresponds to the notion of gauge equivalence between Maurer-Cartan elements
on the right hand side. For the general notion of complete DGA’s, Maurer-Cartan
elements and gauge equivalences, we refer the reader to the appendix.

3.1. Representations up to homotopy as Maurer-Cartan elements
We start by constructing ĀE . Let Gk be the submanifold of Gk consisting of

strings of k composable arrows of G. By convention, G0 = M . We will also denote by
s and t the maps Gk →M given by s(g1, . . . , gk) = s(gk) and t(g1, . . . , gk) = t(g1).
For a graded vector bundle E over M , we consider the pull-back bundles s∗E and
t∗E to Gk, and we form the graded Hom-bundle Hom(s∗E, t∗E) over Gk. Recall
that φ : s∗E −→ t∗E has degree l if it maps s∗(E•) to t∗(E•+l). We will consider
the resulting spaces of sections

AkE(l) := Γ(Gk,Homl(s∗E, t∗E)). (6)

For c ∈ AkE(l), we write

k(c) = k, l(c) = l, |c| = k(c) + l(c),

and we call |c| the total degree of c. All these spaces together define a bigraded
algebra, with the product ? that associates to c ∈ AkE(l) and c′ ∈ Ak′E (l′) the
element c ? c′ ∈ Ak+k′

E (l + l′), given by

(c ? c′)(g1, . . . , gk+k′) = (−1)k(k′+l′)c(g1, . . . , gk) ◦ c′(gk+1, . . . , gk+k′). (7)

When E is a cochain complex, then so is the Hom-bundle, with the differential

∂(φ) = [∂, φ] = ∂ ◦ φ− (−1)lφ ◦ ∂, (8)

for φ ∈ Homl(s∗E, t∗E). This defines a differential

∂ : AkE(l) −→ AkE(l + 1), (9)

induced by the differential of E. On the other hand, the groupoid structure induces
a differential along the other degree:

d : AkE(l) −→ Ak+1
E (l),

d(c)(g1, . . . , gk+1) =
k∑
j=1

(−1)jc(g1, . . . , gjgj+1, . . . , gk+1).

We denote by ĀE the DGA that, in degree n, is given by

ĀnE := Πk+l=nAkE(l)

and whose elements should be thought of as infinite sums γ0 + γ1 + γ2 + · · · of
homogeneous elements γi ∈ ĀiE , i > 0. The product ? and the total differential

dtot(c) := ∂(c) + (−1)nd(c)
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give ĀE the structure of a DGA. The signs are chosen so that the differential is
a derivation with respect to ?. This DGA is a complete DGA, in the sense of the
appendix, with the filtration:

FpĀE :=
{
γ = γ0 + γ1 + . . . ∈ ĀE : γ0 = . . . = γp−1 = 0

}
.

Note that the structure of ĀE depends on the differential ∂ and not only on the
vector bundle E. The formulas that appear in the definition of representations up
to homotopy and of morphisms between them take now the following more compact
form, which follows by a direct computation.

Proposition 3.1. Let G be a Lie groupoid over a manifold M and let (E, ∂) a
cochain complex of vector bundles over M . Also, let {Rk}k>1 be a sequence of oper-
ators such that Rk ∈ AkE(1−k). Then, (E, ∂,Rk) is a representation up to homotopy
of G if and only if

RE := R1 +R2 + . . . ∈ ĀE
is a Maurer-Cartan element for ĀE. Moreover, for two such sets of operations
{Rk}k>1 and {R′k}k>1, there is a one-to-one correspondence between:

1. strong isomorphisms between (E, ∂,Rk) and (E, ∂,R
′

k) (Definition 2.3), and
2. strong gauge equivalences between the Maurer-Cartan elements RE , R′E ∈ ĀE

(Definition A.5).

3.2. DB-algebras
The description of representations up to homotopy in terms of Maurer-Cartan

elements is still not very useful when it comes to constructing tensor products. The
reason is very simple: given two cochain complexes E and F , the DGA ĀE⊗F is
not directly related to the tensor product of the DGAs ĀE and ĀF . Looking at the
differential of ĀE⊗F it becomes clear that there is more structure present in ĀE
and ĀF then just that of DGA. This brings us to the notion of a DB-algebra.

Definition 3.2. A differential bar-algebra, or DB-algebra, is a bigraded vector
space

A =
⊕

k>0,l∈Z
Ak(l)

together with:
• A structure of bigraded associative algebra with the product

◦ : Ak(l)⊗Ak
′
(l′) −→ Ak+k′(l + l′).

For a ∈ Ak(l), we write k(a) = k, l(a) = l, and we define the total degree
|a| = k(a) + l(a).

• A derivation of bidegree (1, 0); i.e., a linear map

∂ : Ak(l) −→ Ak(l + 1)

that satisfies
∂(a ◦ b) = ∂(a) ◦ b+ (−1)l(a)a ◦ ∂b. (10)
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• For each k > 1, there are linear maps

di : Ak(l) −→ Ak+1(l), i = 1, . . . , k,

commuting with ∂ and satisfying

djdi = didj−1, if i < j,

and, for a ∈ Ak(l),

di(a ◦ b) =

{
di(a) ◦ b, k > i

a ◦ di−k(b), k < i.
(11)

A morphism between two DB-algebras is a linear map that preserves both degrees and
commutes with all the structure maps. We denote by DBar the resulting category.

For a general DB-algebra A we introduce the operators

d =
k∑
i=1

(−1)idi : Ak(l) −→ Ak+1(l). (12)

From the axioms, it follows that d is a biderivation with respect to ◦.

Lemma 3.3. Let A be a DB-algebra. Then A, together with the total grading, the
signed product

a ? b = (−1)k(a)|b|a ◦ b (13)

and the total differential

dtot = ∂ + (−1)nd : An −→ An+1,

is a DGA.

Definition 3.4. Given a DB-algebra A, we denote by Ā the completion of A with
respect to the filtration by the k-degree. In other words, Ā is the DGA with

Ān =
∏

k+l=n

Ak(l),

endowed with ? and dtot. The elements a ∈ Ān will be written as infinite sums

a = a0 + a1 + . . . , with ak ∈ Ak(n− k), (14)

and we call ak the k-th component of a. This construction defines a functor

K : DBar −→ DGA

from the category of DB-algebras to the category of complete DGAs.

Example 3.5. It is clear now that the DGA (ĀE , dtot, ?) from the previous sub-
section comes from a DB-algebra (AE , ∂, ◦, di):
• the underlying bigraded space is

⊕
k>0, l∈ZAkE(l),

• the product ◦ is the unsigned version of ?:

(c ◦ c′)(g1, . . . , gk+k′) = c(g1, . . . , gk) ◦ c′(gk+1, . . . , gk+k′), (15)
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• the differential ∂ is the Hom-bundle differential defined in (9), and
• the operators di are given by the formulas:

di(c)(g1, . . . , gk+1) = c(g1, . . . , gigi+1, . . . , gk+1).

3.3. The tensor product of DB-algebras
The category DBar has a natural tensor product operation that will be denoted

by �. Given two DB-algebras A and B, their tensor product A � B is defined as
follows. As a bigraded vector space,

(A� B)k(l) =
⊕
i+j=l

Ak(i)⊗ Bk(j).

For a ∈ Ak(i) and b ∈ Bk(j), we will denote by a� b the resulting tensor in A�B.
The differential ∂ and the operators di are given by

∂(a� b) = ∂(a)� b+ (−1)l(a)a� ∂(b), di(a� b) = di(a)� di(b),

while the multiplication ◦ by

(a� b) ◦ (a′ � b′) = (−1)l(b)l(a
′)(a ◦ a′)� (b ◦ b′).

The previous definition is designed so that the construction E 7→ AE behaves
well with respect to tensor products.

Proposition 3.6. For any two complexes of vector bundles E and F over M , the
canonical map

mE,F : AE �AF −→ AE⊗F ,

mE,F (c� c′)(g1, . . . , gk) = c(g1, . . . , gk)⊗ c′(g1, . . . , gk)

is a morphism of DB-algebras.

For later use we mention here that, for any DB-algebra A, there is a natural
action of the group Sm on A�m. For σ ∈ Sm, the associated automorphism of
A�m is denoted by σ̂. To define σ̂, it suffices to describe it when σ = τi,i+1 is a
transposition that interchanges the positions i and i+ 1; in this case:

σ̂(a1 � . . .� am) = (−1)ll
′
a1 � . . .� ai−1 � ai+1 � ai � . . .� am,

for ai ∈ Ak(l), ai+1 ∈ Ak
′
(l′). It is not difficult to see that this defines an action of

Sm on A�m by automorphisms of DB-algebras.

4. The Maurer-Cartan DB-algebra

As explained in Proposition 3.1, representations up to homotopy structures on a
complex of vector bundles correspond to Maurer-Cartan elements on the associated
DGA. This observation allows one to translate the problem of constructing tensor
products of representations up to homotopy to that of constructing Maurer-Cartan
elements on the DGAs associated to tensor products of DB-algebras. Clearly, this
problem can be treated at a universal level. This brings us to the Maurer-Cartan
DB-algebra, which is the universal DB-algebra for Maurer-Cartan elements.
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Definition 4.1. For a DB-algebra A, we denote by MC1(Ā) the set of Maurer-
Cartan elements of Ā whose zeroth component vanishes. A Maurer-Cartan alge-
bra is a DB-algebra Ω, together with a Maurer-Cartan element L ∈ MC1(Ω̄) with
the property that for any DB-algebra A, the map

HomDBar (Ω,A) −→MC1(Ā), φ 7→ φ(L)

is a bijection.

Theorem 4.2. The Maurer-Cartan DB-algebra exists and is unique up to isomor-
phisms of DB-algebras. Moreover, for each k, H l(Ωk(•), ∂) = 0 for all l 6= 0.

The uniqueness follows by standard arguments. The aim of this section is to
provide several explicit descriptions of Ω, proving in particular the theorem above.
The main conclusion of this section is the resulting reformulation of the notion of
representation up to homotopy in terms of Ω:

Corollary 4.3. Given a Lie groupoid G over M and a complex of vector bundles
(E, ∂), there is a 1-1 correspondence between sequences of operations R = {Rk}k>1

making (E, ∂,Rk) into a representation up to homotopy of G and morphisms of
DB-algebras

kE,R : Ω −→ AE .

The map kE,R, also denoted kE , will be called the characteristic map of the
representation up to homotopy (E,R).

4.1. Description in terms of trees
In our construction of Ω, instead of proceeding abstractly and use generators and

relations, we follow a pictorial approach. We start by explaining the main idea. Due
to the expected universal property of Ω, a representation up to homotopy (E,RE)
is represented by its characteristic map kE : Ω −→ AE- uniquely determined by
the fact that it sends the component Ln of L to the operation RnE . Hence general
elements A of Ω should encode certain operations RAE on E which arise by combining
all the given operations RnE . There are various such operations one can think of.
For instance, one has the following:

(g1, g2, g3, g4, g5, g6) 7→ R2
E(g1, g2g3) ◦R1

E(g4g5) ◦R1
E(g6). (16)

The idea is to encode such operations graphically, by forests of height two. For
instance, the operation above is encoded by:

• • •
• • • •
• • • • • •

2222
����

,,,,
����

,,,,
����

and one should think of the six leaves as labelled by the six elements g1, . . . , g6.

Definition 4.4. We denote by T the set of isomorphism classes of planar rooted
trees whose leaves all have height 2. We denote by S the set of short forests; that
is, the set of finite tuples (T1, . . . , Tn) of trees in T.
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We represent a short forest by joining the roots of the Ti’s by a horizontal line.
For instance,

• • •
• • • •
• • • • • •

2222
����

,,,,
����

,,,,
���� stands for

(
•

• •
• • •

?????
����

////
���� ,

•
•
• •2222

���� ,

•
•
• )

.

Next, we introduce a bigrading on S.

Definition 4.5. A branch of a short forest F ∈ S is an edge that goes from a root
to a vertex that is not a root. For any short forest F , we define

k(F ) = # of leaves of F, called the order of F,
b(F ) = # of branches of F,
r(F ) = # of roots of F,
l(F ) = r(F )− b(F ), called the degree of F.

We denote by Sk(l) the set of short forests of order k and degree l.

Example 4.6. For the tree mentioned above,

F =

• • •
• • • •
• • • • • •

2222
����

,,,,
����

,,,,
���� , k(F ) = 6, b(F ) = 4, r(F ) = 3, l(F ) = −1.

The fact that F ∈ S6(−1) corresponds to the fact that the operation (16) belongs
to A6

E(−1).

Definition 4.7. We denote by (Ω, ◦) the free algebra over R generated by the trees
in T or, equivalently, the linear span over R of S with the product given by the
concatenation.

Pictorially, F ◦ F ′ is the forest obtained by joining the roots by an edge, as in
the following example:

•
• •
• • •

?????
����

////
���� ◦

• •
• •
• • •����

////
=

• • •
• • • •
• • • • • •

2222
����

,,,,
����

,,,,
���� .

The bigrading on S induces a similar bigrading on Ω and allows us to talk about
the spaces Ωk(l).

Definition 4.8. For each i = 1, . . . , k, we define the operator

di : Ωk(•)→ Ωk+1(•),

which acts by replacing the i-th leaf of a forest, counting from the left, by two leaves.
For each l, we define ∂ : Ω•(l)→ Ω•(l + 1) by

∂(F ) =
l∑

j=1

(−1)j+1
(
∂1
jF − ∂0

jF
)
, (17)
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where ∂1
jF is obtained by separating the jth pair of adjacent branches (counted from

left to right) and ∂0
jF by collapsing the jth pair of adjacent branches (counted from

left to right).
Finally, we denote by Ln the tree in Ω that has one root, n branches, and n

leaves:

L1 =
•
•
•
, L2 =

•
• •
• •

2222
����
, L3 =

•
• • •
• • •

?????
�����
, L4 =

•
• • • •
• • • •

DDDDD
,,,, ����

zzzzz
. . . ,

and we set
L := L1 + L2 + . . . ∈ Ω̄.

Example 4.9. Here is an example of the action, on the short forests, of the di
operators,

d2

(
• •
• • •
• • • •

2222
����

,,,, ����

)
=

• •
• • •
• • •• •

2222
����

2222
����

and, here, of the differential,

∂

(
•

• • •
• • • •

?????
�����

,,,, ����

)
=

(
• •
• • •
• • • •

2222
����

,,,, ���� −
•

• •
• • • •

9999
����

2222
����

)
−

(
• •
• • •
• • • •

2222
����

,,,, ���� −
•

• •
• • • •

9999
����

2222
����

)
.

4.2. Description in terms of words in three letters
The set Sk+1 of short forests with k + 1 leaves can be naturally identified with

the set of words in three letters {a, b, c} of length k as follows. To a short forest F
with k + 1 leaves l1, . . . , lk+1, numbered from left to right, we associate the word
e1 . . . ek, where:

ei =


a if li and li+1 belong to the same branch,
b if li and li+1 belong to different branches of the same tree,
c if li and li+1 belong to different trees.

The unique short forest in S(1),

e :=
•
•
•
,

corresponds to the empty word. The following figure illustrates this correspondence:

a ccbcac c bb a

This construction identifies Ω, as a vector space, with the free unital algebra
Fe〈a, b, c〉 on the generators a, b and c with unit e. In terms of short forests:

a =
•
•
• •2222

���� , b =
•
• •
• •

2222
����
, c =

• •
• •
• •

, e =
•
•
•
.
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The natural product coming from the concatenation of words will be denoted by �.
Note that � does not coincide with the product ◦ defined on Ω. In terms of forests,
F �F ′ is obtained by identifying the rightmost branch and leaf of F with the leftmost
branch and leaf of F ′, as in the following example:

•
• •
• • •

?????
����

////
���� �
• •
• •
• •

=
• •
• • •
• • • •

2222
����

,,,, ���� .

In terms of words on three letters, the algebraic structure of Ω has the following
description:

• The product on Ω is given by:

T ◦ T ′ = T � c � T ′.

• The operator di acts according to the formula:

di(e1 . . . ek) = e1 . . . ei−1aei . . . ek.

• The operator ∂ is the unique derivation with respect to �; i.e., with the prop-
erty that

∂(F � F ′) = ∂(F ) � F ′ + (−1)l(F )F � ∂(F ′), (18)

given on generators by

∂ (e) = ∂ (a) = ∂ (c) = 0and∂(b) = c− a. (19)

• Ln = b�n−1 for n > 2, and L1 = e.

The only statement in the list above that requires a proof is the derivation property
(18). Denote by ∂̂ the operator defined on the generators as in (19) and extended by
derivation as in (18). We need to prove that ∂̂ = ∂. Consider a word T = e1 � . . .�ek
with ei ∈ {a, b, c}; then:

∂̂(T ) =
∑
ei=b

(−1)l(wi)e1 � · · · � ei−1 � (c− a) � ei+1 � · · · � ek, (20)

where l(wi) is the degree of wi = e1 � · · · � ei−1. On the other hand,

e1 � · · · � ei−1 � c � ei+1 � · · · � ek = ∂0
j (T ),

e1 � · · · � ei−1 � a � ei+1 � · · · � ek = ∂1
j (T ).

Thus, from the formula in Definition 4.8, we conclude that ∂̂ = ∂.

4.3. Description in terms of faces of cubes
The DB-algebra Ω can also be constructed in terms of the faces of cubes. Namely,

the set of words in three letters can be naturally identified with the set of faces of
the geometric cubes [0, 1]k ⊂ Rk as follows. To a word F = e1 . . . ek, we associate
the face

φ(F ) = ψ(e1)× · · · × ψ(ek) ⊂ [0, 1]k,
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with the convention that

ψ(e) =

 {0} if e = a,
{1} if e = c,
[0, 1] if e = b.

This simply says that the cells of the cube Ik are products of the cells of the interval,
which we label as follows: {0} = a, (0, 1) = b and {1} = c. Thus, we identify the cells
of Ik with words of length k in the letters {a, b, c}. Note that the dimension of a
cell is the number of times that b appears in the corresponding word. The following
figure illustrates this bijection:

• •
• • •
• • •

////
����

gfed`abc
• •
• •
• • •����

//// //gfed`abc
• • •
• • •
• • •

•
• •
• • •

////
�����

////
����

•
• • •
• • •

?????
����� • •

• • •
• • •

////
����

gfed`abc
•
•

• • •?????
�����

OO

//gfed`abc
• •
• •
• • •

//// ����

OO

•
• •
• • •

?????
����

////
����

In this correspondence, a forest of degree −l with k + 1 leaves is sent to a l-
dimensional face of the k-dimensional cube. Thus, we obtain the identification(

Ωk+1(•), ∂
) ∼= (C•(Ik), ∂

)
, k > 0, (21)

where C•(Ik) is the cellular chain complex computing the homology of the k-
dimensional cube with respect to the natural cell decomposition and negative grad-
ing of the cells. Also, one easily shows that:
• The product F1 � F2 corresponds to the Cartesian product of cells
φ(F1) × φ(F2). This also shows that the product F1 ◦ F2 corresponds to the
operation φ(F1)× {1} × φ(F2).
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• The operator ∂ corresponds to the boundary operator in C(Ik).
• Lk corresponds to the highest degree cell in Ik−1.
• The operators di correspond to the various ways of embedding the k-cube into

the (k + 1)-cube as a k-face having the origin as one of its vertices. This is
illustrated in the figure below:

3

2

1

4

d1
!

!

!

!

d2

d3d1

d2

1

2

F1

F2

F1

F2

F3
2

1

3

1

d1

4.4. Proof of Theorem 4.2
We will now prove that (Ω, ◦, di, ∂), together with

L = L1 + L2 + . . . ,

satisfies the universal property of the Maurer-Cartan DB-algebra. The fact that Ω
is a DB-algebra is quite straightforward now. For instance, to check that ∂2 = 0,
one uses the description of ∂ as a derivation with respect to �, and one is left with
checking this equation on the elements a, b and c. We should also prove that ∂ is
a derivation with respect to the product ◦. Using the expression of ◦ in terms of �,
we find:

∂(T ◦ T ′) = ∂(T � c � T ′) = ∂(T ) � c � T ′ + (−1)l(T )∂(c � T ′)
= ∂(T ) � c � T ′ + (−1)l(T )c � ∂(T ′) = ∂(T ) ◦ T ′ + (−1)l(T ) ◦ ∂(T ′).

Next, to see that L is a Maurer-Cartan element, one has to show that, for each k,

∂(Lk) =
k−1∑
j=1

(−1)j+1Lj ◦ Lk−j +
k−1∑
j=1

(−1)jdj(Lk−1),

which follows immediately from:

∂1
jLk = b�j � c � b�(k−j) = Lj ◦ Lk−j,
∂0
jLk = b�j � a � b�(k−j) = djLk−1.

For the universality property of (Ω, L) it is enough to remark that every forest
F ∈ Ω can be written uniquely as

F = di1 . . . dim(Lk1 ◦ · · · ◦ Lks
), (22)
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with i1 > · · · > im.
Finally, the statement about the cohomology follows from the identification with

the cellular complexes of the cubes.

5. Tensor products of representations up to homotopy

The main conclusion of the previous section is that, with Ω at hand, represen-
tations up to homotopy are characterized by their classifying maps (see Corollary
4.3). With this point of view, the construction of tensor products of representations
up to homotopy amounts to the construction of diagonal maps on the DB-algebra
Ω. For each m > 0, we consider the DB-algebra

Ωm = Ω� . . .� Ω︸ ︷︷ ︸
m−times

,

as well as the associated complete DGA Ω̄m. In what follows, e ∈ Ω stands for the
component L1 of the universal Maurer-Cartan element L.

Definition 5.1. A universal Maurer-Cartan element of length m is any
Maurer-Cartan element ω of Ω̄m with the property that its degree 1 component
is

ω1 = e�m (23)

We denote by MCm the set of such Maurer-Cartan elements.

Due to the universal property of Ω, elements ω ∈ MCm can be identified with
morphisms in DBar

∆ω : Ω −→ Ωm,

such that ∆ω(e) = e�m. This last condition will allow us to recover the usual
diagonal tensor product of (strict) representations.

Definition 5.2. A universal Maurer-Cartan element ω is said to be

• symmetric if σ̂(ω) = ω for all σ ∈ Sm (for the action of Sm, see subsection
3.3),

• associative when m = 2 and the induced map ∆ω : Ω −→ Ω � Ω is coasso-
ciative.

Coming back to representations up to homotopy, it is now clear that universal
Maurer-Cartan elements induce tensor product operations. For instance, using the
DB-morphisms ∆ω and mE,F : AE � AF −→ AE⊗F of Proposition 3.6, we now
define:

Definition 5.3. Given ω ∈ MC2 and two representations up to homotopy E and
F , we define E ⊗ω F as the representation up to homotopy with the characteristic
map

kE⊗ωF = mE,F ◦ (kE � kF ) ◦∆ω.
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From the second part of Proposition 3.1 and the naturality of the construction
we deduce the following:

Corollary 5.4. The operations ⊗ω have the following properties:
(1) Any strong gauge equivalence between ω, ω′ ∈ MC2 induces a strong isomor-

phism between E ⊗ω F and E ⊗ω′ F (see Definitions 2.3 and A.5).
(2) If ω is associative or symmetric, then so is the operation ⊗ω.

Similarly, any universal Maurer-Cartan element ω of length m induces a tensor
product operation on m-arguments ⊗ω(E1, . . . , Em), defined by

k⊗ω(E1,...,Em) = mE1,...,Em
◦ (kE1 � . . .� kEm

) ◦∆ω.

As before, a gauge equivalence between Maurer-Cartan elements induces a strong
isomorphism between the corresponding tensor products. Also, if ω is symmetric,
so is the associated tensor product.

Corollary 5.5. A symmetric universal Maurer-Cartan element ω of length m in-
duces a symmetric power operation E 7→ SmE on representations up to homotopy.

In this section we study the universal Maurer-Cartan elements. First of all, we
clarify their existence and uniqueness.

Theorem 5.6. For each m > 0, we have the following:
1. Symmetric universal Maurer-Cartan elements of length m exist.
2. Any two universal Maurer-Cartan elements of length m (symmetric or not)

are strongly gauge equivalent, and any two gauge equivalences are homotopic.

Hence the resulting tensor product and symmetric power operations are uniquely
defined up to strong isomorphisms. However, as the next theorem shows, the tensor
product operation does not posses all the properties one would hope for. Namely:

Corollary 5.7. For m = 2,
1. There exist universal Maurer-Cartan elements that are associative.
2. There is no universal Maurer-Cartan element that is both associative and sym-

metric.

In this section we also discuss a more special class of universal Maurer-Cartan
elements, called rigid, which behave well with respect to the additional product � on
Ω. One advantage of the rigid Maurer-Cartan elements is that they can be described
completely. More importantly, the resulting tensor products preserve the unitality.
To describe them, we begin by extending the product � from Ω to Ωm by the usual
formula

(a1 � a2) � (b1 � b2) = (−1)l(a2)l(b1)(a1 � b1)� (a2 � b2),

giving (Ωm, �) the structure of a unital algebra with unit e�m.

Definition 5.8. A universal Maurer-Cartan element ω ∈ MCm is called rigid if
its characteristic map ∆ω : Ω→ Ωm is a map of unital algebras with respect to the
product �.
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Here are the main properties of the rigid Maurer-Cartan elements.

Theorem 5.9. For each m > 2,
1. The set of all rigid Maurer-Cartan elements ω ∈ MCm is in 1-1 correspon-

dence with the set Rm of elements x ∈ Ω2
m(−1) that satisfy the following

equation

∂(x) = c�m − a�m. (24)

The correspondence is characterized by

ω = e�m +
∑
k>1

x�k (25)

2. There exists and is unique a symmetric rigid Maurer-Cartan element inMCm.
3. If ω ∈ MCm is rigid, then the induced tensor product ⊗ω of unital represen-

tations up to homotopy is unital.

In the case m = 2 we deduce the following.

Corollary 5.10. The set of rigid Maurer-Cartan elements in MC2 coincides with
the one-parameter family {ωt}t∈R given by

ωt = e� e+
∑
k>1

(B +At)�k,

where
B = b� a+ c� b, A = b� c+ a� b− b� a− c� b.

Among these, ω 1
2

is the only symmetric one, and ω0 and ω1 are the only associative
ones.

Example 5.11. For ω0, the second component is B and its third component is
B �B. In terms of trees it is given by

• • •
• • •
• • •

⊗
•

• • •
• • •

?????
�����
−
• •
• • •
• • •

////
����
⊗

•
• •
• • •

?????
����

////
���� +

+
• •
• • •
• • •

////
����

⊗
•
• •
• • •

////
�����

////
���� +

•
• • •
• • •

?????
�����
⊗

•
•

• • •?????
����� .

It yields, for the third component of the tensor product of the representations up
to homotopy (E,Rk) and (F,Rk), the expression

R3(g1, g2, g3) =
(
R1(g1) ◦R1(g2) ◦R1(g3)

)
⊗R3(g1, g2, g3)−

−
(
R1(g1) ◦R2(g2, g3)

)
⊗
(
R2(g1, g2g3)

)
+
(
R2(g1, g2) ◦R1(g3)

)
⊗R2(g1g2, g3)

+R3(g1, g2, g3)⊗R1(g1g2g3).
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Remark 5.12. Given ω ∈ MC2, we can interpret the restriction of the charac-
teristic map ∆ω to Ωn+1 as a diagonal on the cubical complex of the n-cube (see
paragraph 4.3 ). If we take the rigid and associative universal Maurer-Cartan ele-
ment ω0, the resulting (associative) coincides with the Serre diagonal present in any
cubical complex ([16]).

The rest of this section is devoted to the proofs of the theorems stated above.

5.1. Proof of Theorem 5.6

That universal Maurer-Cartan elements exist can be derived abstractly using
Proposition A.3 from the appendix (for r = 3). However, the existence will also
follow from the results on rigid Maurer-Cartan elements. Note also that starting
with any Maurer-Cartan element ω ∈ MCm, one can produce a symmetric one by
averaging:

Av(ω) =
1
m!

∑
σ∈Sm

σ̂(ω).

For the second part of the theorem we use Proposition A.6 of the appendix applied
to r = 2 and to the complete DG-algebra associated to Ωm. Denoting by . . . ⊂
F2 ⊂ F1 ⊂ F0 the associated filtration of Ω̄m, we have Fk/Fk+1 = Ωk(•). Note
that any universal Maurer-Cartan element is congruent to e�m modulo F2 and the
induced differential on F2/F3 becomes ∂. On the other hand, the cochain complex
(Ωkm(•), ∂) is the the tensor product of the m copies of the complex (Ωk(•), ∂).
Hence, from the last part of Theorem 4.2, it has trivial cohomology in non-zero
degrees. In conclusion, for the cohomology of Fk/Fk+1 indexed by the total degree
(as needed in the theorem of the appendix), we obtain

Hi(Fk/Fk+1) = 0 ∀ i 6= k

and we can apply Proposition A.6.

5.2. Proof of Theorem 5.9

For the first part of the theorem, let ∆ω : Ω → Ωm be the map associated to a
rigid element ω ∈ MCm. We verify immediately that x = ∆ω(b) satisfies Equation
(24) by applying ∂ on both sides. For the converse, we need to show that given x,
there is a unique way to extend it to a rigid Maurer-Cartan element ω. Recall that
the kth component ωk of ω is ∆ω(Lk). Since Lk = b�(k−1) and ∆ω is required to
respect �, we conclude that if ω exists, then ωk = x�(k−1) for k > 2 and ω1 = e�m.
Now we only need to prove that such ω is a Maurer-Cartan element. Note that for
x ∈ Ωk(x)

m and y ∈ Ωk(y)
m with k(x) > 0 and k(y) > 0, the following identities hold:

x ◦ y = x � c�m � y,
dk(x)(x � y) = x � a�m � y.
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Using also that ∂ is a derivation with respect to �, we have

∂(x�k−1) =
k−1∑
i=1

(−1)i+1
(
x�(i−1) � (c�m − a�m) � x�(k−i−1)

)
,

=
k−1∑
i=1

(−1)i+1
(
x�(i−1) ◦ x�(k−i−1) − dix�(k−2)

)
,

hence ω is a Maurer-Cartan element.
For the existence of the second part of the theorem, note that the symmetric

element

xm =
1
m!

∑
σ∈Sm

m−1∑
j=0

σ̂

c� · · ·� c︸ ︷︷ ︸
j times

�b� a� · · ·� a︸ ︷︷ ︸
m−j−1 times


belongs to Rm. This follows by direct computation (recall that ∂(b) = c− a and ∂
kills a and c). For the uniqueness, note first that the elements of the form

Xj = c�j � b� a�m−j−1, 0 6 j 6 m− 1

span a vector space consisting of representatives of the orbits the action of the per-
mutation group on Ω2

m(−1). Since ∂ commutes with the action of the permutation
group, averaging gives a 1-1 correspondence between symmetric solutions of the
equation (24) a and solutions of type X =

∑
i aiXi of the same equation, with

ai-some coefficients. It is now easy to see that the resulting equation on the ai’s has
the unique solution ai = 1.

The last part of the theorem requires a more conceptual understanding of the
unitality of representations up to homotopy and is postponed to the final subsection
of this section.

5.3. The case m = 2: the proof of Corollary 5.7 and of Corollary 5.10
We start with the proof of Corollary 5.10. In view of Theorem 5.9, in order to

prove that ωt is a rigid Maurer-Cartan element, it is enough to show that B+At ∈
R2. A simple computation shows that:

∂(B) = c�m − a�m

∂A = 0.

For the uniqueness note that, in general, Rm is an affine space with underlying
vector space consisting of ∂-cocycles in Ω2

m(−1). Due to the identification with the
cellular complex of the cubes, this vector space coincides with Z1(C(Im)). When
m = 2, this is easily seen to be 1-dimensional, hence the family {ωt} exhausts all
the rigid elements.

For the last part of the corollary, let ∆t : Ω → Ω� Ω be the characteristic map
of the rigid element ωt ∈ MC2. For each t ∈ R, ωt produces an associative tensor
product of representations up to homotopy if and only if ∆t is coassociative. Since
∆t respects �, we only need to check coassociativity on the generators a, b c and e.
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This always holds for on a, c and e. A direct computation shows that

(∆t � id)(B +At) = (id�∆t) ◦ (B +At)

if and only if t ∈ {0, 1}. A similar argument shows that ∆t is symmetric if and only
if t = 1

2 .
Turning to Corollary 5.7, we are left with proving the last part. Assume that

ω ∈ MC2 is symmetric and we show that it cannot be associative. We claim that
∆ω(b) must belong to R2. Indeed, since ∆Ω is a DB-morphism and ∂(b) = c − a,
c = e2, a = d1(e), we have

∂(∆ω(b)) = ∆ω(c)−∆ω(a) = ∆ω(e)2 − d1(∆ω(e)) = c�2 − a�2.

Hence, from the uniqueness of symmetric elements of Rm, ∆ω(b) must coincide
with A. But, a simple computation similar to the one above show that But a simple
computation shows that

(∆ω � id)(A) 6= (id�∆ω)(A),

hence ω cannot be associative.

5.4. End of proof of Theorem 5.9: unitality
In this paragraph, we look at tensor products of unital representations up to

homotopy, proving in particular the last part of Theorem 5.9. We start by expressing
the unitality in terms of the characteristic map kE : Ω→ AE of the representation
up to homotopy. This brings us to the question of the unitality of the DB-algebras
Ω and AE themselves. So far, Ω has been nonunital (Ωk is nontrivial only for
k > 1). On the other hand, AE does have a unit (the vector bundle identity map
idE ∈ A0

E)- but we did not use it so far. Unital representations up to homotopy
force us to consider unital DB-algebras: throughout this section, we regard AE as
a unital DB-algebra with unit idE , and we formally adjoint a unit to Ω in degree
0, which we denote by 1 and interpret as the empty tree. The characteristic map
becomes unital by imposing

kE(1) = idE .

Remark 5.13. The set of Maurer-Cartan elements MC1(Ā) are not concerned
by the unitality of the DB-algebra A, since we require these elements to have no
component in degree zero. For instance, the universal element L = L1+L2+L3+· · ·
in the nonunital Ω remains the same in its unital version.

Definition 5.14. Let AE be the DB-algebra associated to a representation up to
homotopy (E,Rk) of a Lie groupoid G over M . For each k > 1, we define the
following operators

si : AkE −→ Ak−1
E , i = 1, . . . , k

by the formula

si(c)(g1, . . . , gk−1) = c(g1, . . . , gi−1, xi, gi, . . . , gk−1),

where xi = s(gi−1) = t(gi). For k = 1, we define s1(c) to be the restriction of c
to the unit space M of the groupoid. We extend these operators to the powers A�nE
diagonally.
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Clearly, (E,Rk) is unital if and only if s1(R1) = idE and si(Rk) = 0 for k > 1
and i =, 1 . . . , k. Now let us define the corresponding operators at the universal
level:

Definition 5.15. For k > 1, we define the operators

si : Ωk → Ωk−1, i = 1, . . . , k,

as follows. Let F ∈ Ωk be a short forest. We denote by Fi the forest with k−1 leaves
obtained from F by deleting its i-th leaf. Then,

1. if Fi is a short forest, we set si(F ) = Fi.
2. if Fi is not a short forest (its i-th leaf is now of height 1), writing F = F1 ◦

L1 ◦ F2, we set

si(F ) =

{
F1 ◦ F2, if k(F1) = i− 1,
0, otherwise.

For k = 1, we set s1(L1) = 1. We extend the si’s diagonally to Ωm.

Example 5.16. Applying s2 to the short forests

F =
• •
• •
• • •����

////
, G =

• • •
• • •
• • •

H =
• •
• • •
• • •

////
����
,

respectively, yields the short forests c for F and G, and 0 for H.

Deleting the i-th leaf of a short forest F ∈ Ωk corresponds, at the universal
level, to plugging a groupoid unit in the i-th argument slot of the operator kE(F )
in AkE . In particular, we see that the si’s commute with the characteristic map
kE : Ω → AE of a representation up to homotopy if and only if the representation
is unital. Namely, our definitions yield that s1 ◦ kE(L1) is the restriction of R1 to
the unit space and that kE ◦ s1(L1) is the identity idE . For n > 1, we have that
si ◦ kE(Ln) is the operator Rn restricted to the unit space at its i-th slot and, on
the other hand, that kE ◦ si(Ln) = 0.

Now we are ready to characterize the universal Maurer-Cartan elements whose
associated tensor products preserve the unitality of the representations.

Definition 5.17. We will say that a universal Maurer-Cartan element ω ∈ MCm
is unital if its characteristic map ∆ω commutes with the si’s.

Lemma 5.18. Let ω ∈MCm be a unital Maurer-Cartan element. Then the tensor
product of m unital representations up to homotopy with respect to ω is also unital.

Proof. The characteristic map

k⊗ω(E1,...,Em) = mE1,...,Em ◦ (kE1 � . . .� kEm) ◦∆ω,

of the tensor product ⊗ω(E1, . . . , Em) of the unital representations E1, . . . , Em is a
composition of three maps, each of which commutes with the si’s. Hence the com-
position itself also commutes si’s and the resulting representation up to homotopy
is unital. �

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 6(2), 2011 263

Proposition 5.19. For any x ∈ Ω2
m(−1),

si(x�k) = 0, k > 0, 1 6 i 6 k + 1.

In particular, if x ∈ Rm, then the associated rigid Maurer-Cartan element ω (of
Theorem 5.9) is unital.

Proof. For the purpose of this proof, we will say that an element y ∈ Ωm is nor-
malized if si(y) = 0 for all i. The set of elements of the form e1 � · · · � em, where
ei ∈ {a, b, c} and b occurs exactly once, form a basis of Ω2

m(−1). Such a string is
normalized if one of its factors is normalized; since b is normalized, all elements
x ∈ Ω2

m(−1) are normalized. Next, suppose that all the powers x�k are normalized
for k < n. Then one immediately sees that x�n is normalized if and only if

s2(x�n) = 0.

On the other hand, since

s2(x�n) = s2(x � x � (x�n−2)) = s2(x � x) � (x�n−2),

we conclude that it is enough to prove that x�x is normalized. Let us show that this is
the case. First note that x�x = 1

2 [x, x]�, where [ , ]� is the graded commutator of the
associative product �. Therefore, it is enough to show that the graded commutator
of two elements of the basis of Ω2

m(−1) mentioned above is always normalized. Let
v = v1 � · · · � vm be a basis vector with the unique occurrence of b at position j,
and let w = w1 � · · ·�wm be another basis vector with b at position l. If j = l, we
are done, since the factor bb will appear in both terms of the commutator. If j < l,
we have that

[v, w] = v1 � w1 ⊗ · · · ⊗ vm � wm − w1 � v1 � · · ·� wm � vm,

the minus sign reflecting that the unique b in v “passes over” the unique b in
w while carrying out the product. Since both v and w are normalized, we only
need to show that s2 vanishes on the commutator. This follows from the fact that
s2(x�y) = s2(y�x), for x, y ∈ {a, b, c}. This last statement can be checked by direct
inspection. �

6. Tensor products of morphisms

In the previous section, we have introduced the sets MCm of universal Maurer-
Cartan elements, and we have shown that any ω ∈MCm induces a tensor product
operation ⊗ω on the objects of Rep∞(G). In this section, we discuss tensor product
operations for the morphisms. We will proceed in a way that is completely similar
to the tensor product of representations up to homotopy:

• introduce the notion of a DB-module over a DB-algebra.

• describe morphisms between representations up to homotopy in terms of Maurer-
Cartan morphisms.

• introduce the Maurer-Cartan module T (the analogue of Ω).
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• study universal Maurer-Cartan morphism x (between two universal Maurer-
Cartan elements ω and η): existence and uniqueness.

• show that any such x induces a tensor product operation ⊗x on morphisms
between representations up to homotopy.

Moreover, we check that the basic properties of the resulting tensor products (e.g.
associativity) hold up to homotopy. The main conclusion will be that the homotopy
category D(G) has a monoidal structure uniquely defined up to natural isomor-
phism.

6.1. Universal Maurer-Cartan morphisms
We start with the notion of a DB-module.

Definition 6.1. Given a DB-algebra A, a left DB-module E over A, or simply a
left A-module, is a bigraded vector space

E =
⊕

l∈Z,k>0

Ek(l),

together with a differential ∂ and operations di, as in the definition of DB-algebras,
and an operation

◦ : Ak(l)⊗ Ek
′
(l′) −→ Ek+k′(l + l′), (a, x) 7→ a ◦ x.

These are required to satisfy the same equations (10) and (11) as in Definition 3.2,
with a ∈ A, b ∈ E. Similarly, one defines the notion of right DB-module.

We will be interested in A-B-bimodules with A and B two DB-algebras. There
is a version of the functor

K : DBar −→ DGA

from the category ofA-B-bimodules to the category of complete Ā-B̄-DG-bimodules.
Thus, given an A-B-bimodule E , there is a complete Ā-B̄-DG-bimodule (Ē , dtot),
where the left and right actions are defined using the signed operation ? (see equa-
tion (13)). Given two Maurer-Cartan elements θ ∈ MC(Ā) and ω ∈ MC(B̄), we
consider the set of Maurer-Cartan Ē-morphisms (see the appendix):

Ē(ω, θ) = {x ∈ Ē0 : x ? ω − θ ? x = dtot(x)}.

Let G be a Lie groupoid over M and (E, ∂), (F, ∂) two cochain complexes of
vector bundles over M . There is a AF -AE bimodule that we will denote by EE,F
and which is defined as follows. In bidegree (k, l):

EkE,F (l) := Γ(Gk,Homl(s∗E, t∗F )),

and the structure maps are defined exactly as for AE . We can now characterize
morphisms of representations up to homotopy in this language.

Proposition 6.2. There is a natural bijective correspondence between morphisms

Φ : E −→ F
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in Rep∞(G) and elements
x ∈ ĒE,F (RE , RF ).

Moreover, two morphisms Φ,Ψ : E −→ F are homotopic if and only if the corre-
sponding elements x, y ∈ ĒE,F (RE , RF ) are homotopic in the sense of the appendix.

Proof. The statements follow from comparing the definitions in the appendix with
equation (4) in the definition of morphism, and equation (5) in the definition of
homotopy. �

Let E be an A-B-bimodule, where A and B are DB-algebras endowed with
Maurer-Cartan elements θ ∈ MC1(Ā) and ω ∈ MC1(B̄). Then, using the charac-
teristic maps associated to θ and ω, E can be given the structure of an Ω-bimodule
by the formulas

a ◦ x := kθ(a) ◦ x, x ◦ b := x ◦ kω(b), a, b ∈ Ω, x ∈ E .

This Ω-bimodule will be denoted by Eω,θ and the associated DG module by Ēω,θ.
For an Ω-bimodule S, we denote by

HomDBar(S, Eω,θ)

the space of morphisms of Ω-bimodules. Given S ∈ S(L,L), where L is the universal
Maurer-Cartan element of Ω, there is an induced map

HomDBar(S, Eω,θ) −→ Ē(ω, θ), f 7→ f(S). (26)

Definition 6.3. A universal Maurer-Cartan module is an Ω-bimodule T , to-
gether with an element T ∈ T (L,L), with the property that

HomDBar(T , Eω,θ) −→ Ē(ω, θ), f 7→ f(T ) (27)

is bijective for all (A, θ, E ,B, ω) as above. Given x ∈ E(ω, η), the associated map
will be denoted by

kx : T −→ E

and will be called the characteristic map of x.

Theorem 6.4. The Maurer-Cartan DB-module T exists and is unique up to iso-
morphism. Moreover, for each k, Hm(T k(•), ∂) = 0 for all m 6= 0.

Proof. The uniqueness follows from the universal property. For the existence part,
we will construct T explicitly. As a vector space, T is spanned by expressions of
type (A,X,B), where each A and B are short forests in S

∐
{∅}, and X belongs to

the space of short trees T
∐
{∅}. Note that A, B and X may be the empty tree,

which we denote by 1. The bimodule structure is described by the following natural
formulas:

C ◦ (A,X,B) = (C ◦A,X,B), (A,X,B) ◦ C = (A,X,B ◦ C).

We introduce the bigrading on T by

k(A,X,B) = k(A) + k(X) + k(B), l(A,X,B) = l(A) + (l(X)− 1) + l(B),
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where we put k(1) = l(1) = 0. The operators di are defined exactly as in the case
of Ω. Finally, the differential ∂ is defined as follows. Denote by Tn the element
(1, Ln, 1) ∈ T and T0 = (1, 1, 1). We set

∂(Tn) =
n−1∑
i=0

(−1)iTi ◦ Ln−i −
n∑
i=1

Li ◦ Tn−i +
n−1∑
i=1

(−1)i+1di(Tn−1),

and extend ∂ by forcing it to be a derivation and to commute with the operators
di. In order to prove that ∂2 = 0, it is enough to show that ∂2(Tn) = 0 for all n,
and this can be checked by a simple computation. The universal Maurer-Cartan
morphism in T is

T = (1, 1, 1) +

(
1,
•
•
•
, 1

)
+

(
1,
•
• •
• •

2222
����
, 1

)
+

(
1,

•
• • •
• • •

?????
�����
, 1

)
+ · · · .

By construction, T satisfies the universal property. Finally, the statement about the
cohomology is analogous to that of Ω. �

Next we consider the Ωm-bimodule

Tm := T � . . .� T︸ ︷︷ ︸
m times

.

Definition 6.5. Given ω, θ ∈ MCm, a universal Maurer-Cartan morphism
from ω to θ is any Maurer-Cartan morphism x ∈ T̄m(ω, θ) with the property that
its degree 0 component is

x0 = T0 � . . .� T0︸ ︷︷ ︸
m times

.

We denote by MCm(ω, θ) the set of such elements.

Because of the universal property of T , an element x ∈ MCm(ω, θ) may be
interpreted as a map of Ω-bimodules

∆x : T −→ Tm,ω,θ.

Definition 6.6. Let E , E ′ be Ω-bimodules and φ, φ′ : E → E ′ morphisms. We say
that φ and φ′ are homotopic if there exists a degree −1 linear map h that commutes
with the Ω action and the di operators such that hd + dh = φ − φ′. In this case, h
is called a homotopy between φ and φ′.

Lemma 6.7. Let A,B be DB algebras and θ, ω Maurer-Cartan elements of A and
B, respectively. Suppose also that E is an A-B-bimodule and that x and y belong
to E(ω, θ). Then homotopies between x and y correspond naturally to homotopies
between the characteristic maps kx : T → Eω,θ and ky : T → Eω,θ.

Proof. The correspondence sends a homotopy h : T → Eω,θ to h(T ) ∈ Eω,θ. Clearly,
since h commutes with the Ω action and the di operators, it is determined by the
value of h(T ). On the other hand, the equation hd + dh = φ − φ′ corresponds
precisely to the equation

x− y = dtoth(T ) + h(T ) ? ω + θ ? h(T ).
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�

As before, Maurer-Cartan morphisms induce tensor product operations between
morphisms of representations up to homotopy. Given x ∈ Tm(ω, θ) and morphisms
between representations up to homotopy Φi : Ei −→ Fi, 1 6 i 6 m, we define a
morphism

Φ = ⊗x(Φ1, . . . ,Φm) : ⊗ω(E1, . . . , Em) −→ ⊗θ(F1, . . . , Fm)

by specifying its characteristic map:

kΦ := m� ◦ (kΦ1 � . . .� kΦm) ◦∆x : T −→ EE,F ,

where E = ⊗ω(E1, . . . , Em), F = ⊗θ(F1, . . . , Fm), and

m� : EE1,F1 � . . .� EEm,Fm −→ EE,F
is defined, as in Proposition 3.6, by:

m�(φ1 � · · ·� φm)(g1, . . . , gk) = φ1(g1, . . . , gk)⊗ · · · ⊗ φm(g1, . . . , gk).

Theorem 6.8. Let ω, θ be elements of MCm and Φi : Ei −→ Fi, for 1 6
i 6 m, morphisms of representations up to homotopy, E = ⊗ω(E1, . . . , Em), F =
⊗θ(F1, . . . , Fm). Then:

1. MCm(ω, θ) is nonempty. Moreover, every two elements in MCm(ω, θ) are
homotopic in the sense of the appendix.

2. Any homotopy between x, y ∈ MCm(ω, θ) induces a homotopy between the
morphisms ⊗x(Φ1, . . . ,Φm) and ⊗y(Φ1, . . . ,Φm).

3. For any x ∈MCm(ω, θ), the zeroth component of ⊗x(Φ1, . . . ,Φm) is the tensor
product of the zeroth components of the Φi’s. Also, if Φi are strict morphisms,
then so is ⊗x(Φ1, . . . ,Φm).

4. Symmetric Maurer-Cartan morphisms exist. Moreover, any symmetric x in-
duces a symmetric power operation on morphisms.

5. The tensor product of morphisms is well defined on homotopy classes. Namely,
if Φ′i is homotopic to Φi then ⊗x(Φ′1, . . . ,Φ

′
m) is homotopic to ⊗x(Φ1, . . . ,Φm).

6. For any x ∈ MCm(ω, ω), the tensor product of the identity morphisms
⊗x(idE1 , . . . , idEn) is homotopic to the identity morphism on ⊗ω(E1, . . . , En).

Proof. The first claim is a direct application of Proposition A.4 from the appendix.
The second claim is a consequence of Proposition 6.2. The third part follows from
the condition

x0 = T0 � . . .� T0

for elements of MCm(ω, θ). The statement about the symmetric elements holds,
because given a Maurer-Cartan morphism, one can construct a symmetric one by
averaging.

Let us now prove that the tensor product of morphisms is well defined on homo-
topy classes. Since homotopy is a transitive relation, we can assume that φi = φ′i for
i > 1. Now fix a homotopy h1 between the characteristic maps kφ1 and kφ′1 . Then

m ◦ (h1 � kφ2 � . . .� kΦm
) ◦∆x : T −→ EE,F
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is a homotopy between the characteristic maps of ⊗x(Φ′1, . . . ,Φ
′
m) and

⊗x(Φ1, . . . ,Φm). By Lemma 6.7, we conclude that the two morphisms are homo-
topic.

We turn now to the last claim. Consider the natural map of Ω-bimodules π :
T → Ω, defined on generators by π(T0) = 1, and π(Tn) = 0 for n > 1. In particular,
π does not vanish only for those triples (A,X,B) such that X = 1, in which case
we obtain

π(A, 1, B) = A ◦B.

This induces a map of Ω-bimodules

π�m : (T �m)ω,ω −→ Ωm.

Because we are taking tensor products of identity morphisms, the characteristic
map of ⊗x(idE1 , . . . , idEm

) factors as follows:

T
∆x- (T �m)ω,ω

m� ◦ (kidE1
� . . .� kidEm

)
- EE,F

Ωm

π�m

?
γ

-

π �
m

◦∆
x -

where γ is characterized by the commutativity of the diagram. On the other hand,
the characteristic map of the identity morphism of E is given by the composition

T
kidE- EE,E

Ωm

ι

?
γ

-

where ι is the map of Ω-bimodules defined on generators as ι(T0) = 1, and ι(Tn) = 0
for n > 0. Thus, it is enough to prove that the maps ι and π�m ◦∆x are homotopic.
In view of the universal property of T and Lemma 6.7, we only need to prove that
the Maurer-Cartan morphisms xι, xπ�m◦∆ ∈ Ω̄2(ω, ω) associated to ι and π�m ◦∆x

are homotopic in the sense of the appendix. For this, we observe that they coincide
modulo F1Ω̄m, and since

H−p(Ωpm(•), ∂) = 0, ∀p > 1,

we can use Corollary A.6 to conclude the claim. �

6.2. Composition of Maurer-Cartan morphisms
We will now express the composition of morphisms of representations up to

homotopy in terms of the Maurer-Cartan DB-module T in order to show that the
homotopy category D(G) has a monoidal structure. For this, we need to consider
the tensor product of DB-modules. Suppose that A,B, C are DB-algebras, E is
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an A-B-modules and E ′ is an B-C-bimodule. Then one can construct the A-C DB-
bimodule E ⊗B E ′ as follows. As a bigraded vector space, E ⊗B E ′ it is the same as
the vector space underlying the usual tensor product of graded bimodules over an
algebra. The operators di are given by the formulas:

di(v ⊗ w) =
{
di(v)⊗ w if i 6 k1,
v ⊗ di−k1(w) if i > k1.

The operation ∂ is given by:

∂(v ⊗ w) = ∂(v)⊗ w + (−1)l(v)v ⊗ ∂(w).

This construction has the property that:

E1 ⊗B E2 ∼= E1 ⊗B E2.

Now let us go back to our initial goal, which is to express the composition of
Maurer-Cartan morphisms in terms of T : consider a sequence of Maurer-Cartan
morphisms:

(Ā, ω) x1−→ (B̄, θ) x2−→ (C̄, ν),

where x1 ∈ Ē1(ω, θ) and x2 ∈ Ē2(θ, ν).
As explained in the appendix, the composition x2 ◦ x1 is defined as the tensor

product x1⊗B̄ x2 in the Ā-C̄-DG-bimodule Ē1⊗B̄ Ē2. The characteristic map kx2◦x1

of the composition x2 ◦ x1 can be expressed in terms of the characteristic maps kx1

and kx2 as follows:

T Λ−→ T ⊗Ω T
kx1⊗Ωkx2−→ (E1)ω,θ ⊗Ω (E2)θ,ν −→ (E1 ⊗B E2)ω,ν , (28)

where Λ a canonical map of Ω-bimodules that is completely determined by

Λ(Tn) =
n∑
i=0

Ti ⊗ Tn−i.

For morphisms of representations up to homotopy,

(ĀE1 , R1)
φ1−→ (ĀE2 , R2)

φ2−→ (ĀE3 , R3),

the morphisms live in the bimodules ĒE1,E2 and ĒE2,E3 . In order to obtain the
characteristic map of the composition kφ2◦φ1 we need to further compose (28) with
the canonical morphism

m⊗ : EE1,E2 ⊗Ω EE2,E3 −→ EE1,E3 ,

which is defined as

m⊗(φ⊗ ψ)(g1, . . . , gn) = ψ(g1, . . . , gk) ◦ φ(gk+1, . . . , gn).

Our next goal is to prove that tensor products and compositions of representation
up to homotopy are compatible

Proposition 6.9. Suppose we have ω1, ω2, ω3 ∈MC2, together with

x1 ∈MC2(ω1, ω2), x2 ∈MC2(ω2, ω3), x3 ∈MC2(ω1, ω3).
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Then for any representations up to homotopy Ei and Fi, for i = 1, 2, 3, and any
morphisms φj : Ej → Ej+1 and ψj : Fj → Fj+1, for j = 1, 2, the composition of
the tensor products

E1 ⊗ω1 F1

φ1⊗x1ψ1−→ E2 ⊗ω2 F2

φ2⊗x2ψ2−→ E3 ⊗ω3 F3

is homotopic to the tensor product of the compositions

(φ2 ◦ φ1)⊗x3 (ψ2 ◦ ψ1).

Proof. There is a morphism of Ω-bimodules:

u : (T ⊗Ω T )� (T ⊗Ω T )→ EE1⊗E3,F1⊗F3 ,

defined by the formula u = m ◦ (uE � uF ) where:

uE : T ⊗Ω T → EE1,E3

is the composition of the map:

kφ2 ⊗Ω kφ1 : T ⊗Ω T → EE2,E3 ⊗Ω EE1,E2

with the natural quotient map:

EE2,E3 ⊗Ω EE1,E2 → EE1,E3 .

Similarly,
uF : T ⊗Ω T → EF1,F3

is the composition of the map:

kψ2 ⊗Ω kψ1 : T ⊗Ω T → EF2,F3 ⊗Ω EF1,F2

with the natural quotient map:

EF2,F3 ⊗Ω EF1,F2 → EF1,F3 .

There is also a canonical morphism of Ω-bimodules

p : (T � T )⊗Ω (T � T )→ (T ⊗Ω T )� (T ⊗Ω T ),

given by the formula:

(a� b)⊗ (c� d) 7→ (−1)l(b)l(c)(a⊗ c)� (b⊗ d).

A simple computation shows that the characteristic map k : T → EE1⊗F1,E3⊗F3 of
(Φ2 ⊗Ψ2) ◦ (Φ1 ⊗Ψ1) is given by the composition

k = u ◦ p ◦ (∆x1 ⊗∆x2) ◦ Λ : T → EE1⊗F1,E3⊗F3 .

On the other hand, the characteristic map k′ : T → EE1⊗F1,E3⊗F3 of (Φ2 ◦Φ1)⊗
(Ψ2 ◦Ψ1) is given by the composition

k′ = u ◦ (Λ� Λ) ◦∆x3 : T → EE1⊗F1,E3⊗F3 .

We need to prove that the maps k and k′ are homotopic. Clearly, it is enough to
prove that the maps:

p ◦ (∆x1 ⊗∆x2) ◦ Λ : T → (T ⊗Ω T )� (T ⊗Ω T ),
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and
(Λ� Λ) ◦∆x3 : T → (T ⊗Ω T )� (T ⊗Ω T ),

are homotopic. Let us now prove that this last statement is true for any two maps
of Ω-bimodules a, b : T → (T ⊗Ω T )� (T ⊗Ω T ), provided they take the same value
on T0, which is satisfied in our case. In order to simplify the notation, let us denote
the Ω-bimodule (T ⊗Ω T ) � (T ⊗Ω T ) by P. In view of the universal property of
T we can identify a and b with Maurer-Cartan morphisms a, b ∈ P(L,L). Also,
Lemma 6.7 implies that it is enough to prove that the Maurer-Cartan morphisms
a and b are homotopic. Since a and b coincide when applied to T0 we know that

a ≡ bmod(F1(P)).

By Proposition A.4 applied to the case r = 1, we know that it is enough to prove
that

H0(Fk(P)/Fk+1(P), dL,L) = 0, for all k > 1.

On the other hand, Fk(P)/Fk+1(P) is naturally isomorphic to Pk and, because of
the shift in degree, we obtain that:

H0(Fk(P)/Fk+1(P), dL,L) = H−k(Pk).

Thus, all we need to prove is that the cohomology of Pk vanishes in negative degree.
For this we observe that the complex

Pk = ((T ⊗Ω T )� (T ⊗Ω T ))k

is the tensor product of two copies of the complex (T ⊗Ω T )k and therefore, by
Künneth’s formula, it is enough to prove that the cohomology of that last complex
vanishes in negative degree. This last claim follows from the fact that the cohomol-
ogy of T vanishes in negative degree. �

6.3. Monoidal structure on D(G)
In this paragraph, we show that the tensor product operations defined above give

the homotopy category D(G) a monoidal structure. The reader is referred to [12]
for the basic facts and definitions concerning monoidal categories.

Proposition 6.10. Let us fix a universal Maurer-Cartan element ω ∈MC2 and a
universal Maurer-Cartan morphism x ∈ MC2(ω, ω). The corresponding operations
of tensor product defines a functor:

⊗ω,x : D(G)×D(G) −→ D(G).

Moreover, this functor does not depend on x.

Proof. First we observe that Theorem 6.8 guaranties that the tensor product oper-
ation is well defined on homotopy classes of morphisms and therefore this map is
well defined. Theorem 6.8 and Proposition 6.9 tell us that

idE ⊗x idF ∼ idE⊗ωF ,

(φ2 ◦ φ1)⊗x (ψ2 ◦ φ1) ∼ (φ2 ⊗x ψ2) ◦ (φ1 ⊗x ψ1).
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Observe also that ⊗ω,x does not depend on x since any two x, x′ ∈ MC2(ω, ω) are
homotopic and, thus, the corresponding morphisms coincide in D(G). �

Proposition 6.11. Let ω, ω′ ∈ MC2 be two universal Maurer-Cartan elements.
Then the bifunctors ⊗ω and ⊗ω′ on D(G) are equivalent. Moreover, for any two
representations up to homotopy E1 and E2, the isomorphisms

idE1 ⊗y idE2 : E1 ⊗ω E2 −→ E1 ⊗ω′ E2,

represents an isomorphism in D(G) which is independent of the choice of y ∈
MC2(ω, ω′).

Proof. We need to check that (φ1⊗x′φ2)◦(idE1 ⊗y idE2) is homotopic to (idF1 ⊗y idF2)◦
(φ1 ⊗x φ2) for any x ∈ MC2(ω, ω) and for any x′ ∈ MC2(ω′, ω′) and for any two
representation morphisms φi : Ei → Fi, i = 1, 2. This is guaranteed by Proposition
6.9, which tells us that

(φ1 ⊗x′ φ2) ◦ (idE1 ⊗y idE2) ∼ φ1 ⊗y φ2 ∼ (idF1 ⊗y idF2) ◦ (φ1 ⊗x φ2).

�

We now prove that the bifunctor ⊗ω endows the homotopy category D(G) with
the structure of a monoidal category.

Theorem 6.12. For every ω ∈ MC2, the functor ⊗ω : D(G) × D(G) → D(G)
gives the category D(G) a monoidal structure with unit object given by the trivial
representation. Moreover, any two choices of ω give naturally equivalent monoidal
categories.

Proof. In order to prove that this functor gives D(G) a monoidal structure we need
to show that there is a unit for the tensor product and that there are unitors
and associators that satisfy the pentagon and triangle axiom. The general idea of
the proof is simple: one first shows that the associators and unitors are given by
universal maps at the level of the DB-algebra Ω. Then the commutativity of the
diagrams translates to the statement that certain maps between powers of Ω are
homotopic, which follows from the fact that the algebras are contractible.

The unit is given as usual by the trivial representation. Let us first consider the
existence of the unitors. We will prove that

E ⊗ 1 ∼= E; 1⊗ E ∼= E,

where the maps, which we denote by λr and λl respectively, are given by the obvious
identification of vector bundles.

We denote by kE the characteristic map of E and consider the map of DB-
algebras

π : Ω� Ω→ Ω

defined on generators by setting:

π(a� b) =

{
a if l(b) = 0,
0 otherwise.
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Then, the following diagram commutes:

Ω� Ω
kE�k1//

π

%%LLLLLLLLLLL AE �A1
mE ,1 // AE⊗1

∼= // AE

Ω

∆ω

OO

γ // Ω

kE

44jjjjjjjjjjjjjjjjjjjjj

Thus, we see that the characteristic map of E⊗ω 1 differs from the characteristic
map of E by pre-composing with the map γ : Ω→ Ω. Also, it is clear that γ(L1) =
L1. We claim that γ is the identity. By the universal property of Ω it is enough to
prove that γ(Lk) = Lk. We will prove this assertion inductively. Assume that the
statement is true for i < k. Then:

∂(γ(Lk)) = γ(∂(Lk)) =
k−1∑
j=1

(−1)j+1Lj ◦ Lk−j +
k−1∑
j=1

(−1)jdj(Lk−1) = ∂(Lk).

On the other hand, since γ preserves both the degree and the order, we know that
γ(Lk) is a multiple of Lk. We conclude that they are equal and therefore E = E⊗1
under the obvious identification. By the same argument we know that E = 1⊗ E.

Let us now construct the associators. The characteristic map ∆ω : Ω → Ω2 can
be used to construct two Maurer-Cartan elements α, β ∈ MC3 with characteristic
maps:

∆α = (∆ω � id) ◦∆ω : Ω→ Ω3,

∆β = (id�∆ω) ◦∆ω : Ω→ Ω3.

Theorem 6.8 guaranties that there is a universal Maurer-Cartan morphism u
from α to β and that any two such are homotopic. For any three representations
up to homotopy E1, E2, E3 of G, one can use u to tensor the identity morphisms
Ei 7→ Ei and obtain a map:

û : (E1 ⊗ω E2)⊗ω E3 → E1 ⊗ω (E2 ⊗ω E3),

which we will call the associator of the monoidal structure. Note that since any
two choices of u are homotopic, this map is well defined in D(G). There is an
alternative way to describe the map û. By Theorem 5.6, we know that α and β are
strongly gauge equivalent. By Corollary 5.4 any such gauge equivalence u′ induces
an isomorphism

û′ : (E1 ⊗ω E2)⊗ω E3 → E1 ⊗ω (E2 ⊗ω E3).

This isomorphism is well defined in the homotopy category because any two such
gauge equivalences are homotopic. It is a simple exercise to check that û = û′ in
the homotopy category. In what follows we will make use of both constructions of
the associator.

We need to prove that the associators define a natural transformation between
the functors ((· ⊗ω ·)⊗ω ·) and (· ⊗ω (· ⊗ω ·)). Namely, we need to prove that given
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morphisms of representations up to homotopy φi : Ei → Fi for i = 1, 2, 3, the
following diagram commutes:

(E1 ⊗ω E2)⊗ω E3
û //

(φ1⊗φ2)⊗φ3

��

E1 ⊗ω (E2 ⊗ω E3)

φ1⊗(φ2⊗φ3)

��
(F1 ⊗ω F2)⊗ω F3

û // F1 ⊗ω (F2 ⊗ω F3)

We will use the second description of the associator map. Consider u′ a strong gauge
equivalence from α to β and let x ∈ MC3(α, α) and y ∈ MC3(β, β) be Maurer-
Cartan morphisms which are used to define (φ1 ⊗ φ2) ⊗ φ3 and φ1 ⊗ (φ2 ⊗ φ3),
respectively. We can construct two new Maurer-Cartan morphisms as follows. First
we use the composition in the Maurer-Cartan category (see Appendix A.1) to define

x ◦ u′ ∈ T3 ⊗Ω3
Ω3(α, β),

and

u′ ◦ y ∈ Ω3 ⊗Ω3
T3(α, β).

Then, we apply the canonical morphisms of Ω3 modules:

Ω3 ⊗Ω3
T3 7→ T3

and

T3 ⊗Ω3
Ω3 7→ T3

to x ◦ u′ and u′ ◦ y to obtain elements t, z ∈MC3(α, β).
We now observe that the morphisms û ◦ (φ1 ⊗ φ2)⊗ φ3) and φ1 ⊗ (φ2 ⊗ φ3) ◦ û

are precisely the result of tensoring the morphisms φ1, φ2, φ3 with respect to the
Maurer-Cartan morphisms t, z ∈MC3(α, β). In view of Theorem 6.8 parts (1) and
(2) we know that t and z are homotopic and therefore the corresponding ways of
tensoring the morphisms in the homotopy category coincide.

Let us now prove that the units are compatible with the associators. We need to
prove the triangle axiom, which is the commutativity of the following diagram in
D(G):

(E1 ⊗ω 1)⊗ω E2
û //

λr⊗id

��

E1 ⊗ω (1⊗ω E2)

id⊗λluukkkkkkkkkkkkkk

E1 ⊗ω E2

By the last part of Theorem 6.8 we know that idE1 ⊗ idE2 is homotopic to the
identity morphism on E1 ⊗ E2. Therefore, it suffices to prove that the following
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commutes:

(E1 ⊗ω 1)⊗ω E2
û //

=

��

E1 ⊗ω (1⊗ω E1)

=

��
E1 ⊗ω E2

idE2 ⊗ idE2 // E1 ⊗ω E2

Let us consider the characteristic map ∆u : T → T3,α,β and the map of Ω-
bimodules: µ : T3,α,β → T2,ω,ω defined on generators by the formula:

µ(a1 � a2 � a3) =

{
a1 � a3 if l(a2) = 0,
0 otherwise.

We will show that µ is a map of right modules, the other case follows by a symmetric
argument. For a ∈ Ω3 and T ∈ T3 one easily checks that:

µ(Ta) = µ(T ) ((π � id)(a)) ,

where π : Ω2 → Ω is the map defined above, for which we proved that π ◦∆ω = id.
Now we take F ∈ Ω and compute:

µ(TF ) = µ(T (∆ω � id)(∆ω)(F )) = µ(T )(π � id)(∆ω � id)(∆ω)(F ))
= µ(T )∆ω(F ) = µ(T )F.

Thus, µ is indeed a map of Ω bimodules. We now observe that the characteristic
map of the morphism

û : (E1 ⊗ω 1)⊗ω E2 → E1 ⊗ω (1⊗ω E2)

factors through the map µ : T3,α,β → T2,ω,ω which implies that the diagram above
commutes. We conclude that the unit is compatible with the associators.

Let us now prove that these associators satisfy the pentagon axiom. We need to
prove that for any four representations up to homotopy E1, E2, E3, E4 the following
composition is the identity.

((E1 ⊗ω E2)⊗ω E3)⊗ω E4

û⊗id

��

(E1 ⊗ω E2)⊗ω (E3 ⊗ω E4)
û−1

oo

(E1 ⊗ω (E2 ⊗ω E3))⊗ω E4

û

��

E1 ⊗ω (E2 ⊗ω ((E3 ⊗ω E4))

û−1

OO

E1 ⊗ω ((E2 ⊗ω E3)⊗ω E4)

id⊗û
33hhhhhhhhhhhhhhhhhhh

Observe that the five ways of putting brackets in the tensor product correspond
to five elements θi ∈ MC4 which one can construct from ω. These elements are
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given by maps ∆θi : Ω→ Ω4 defined as follows:

∆θ1 = (∆α � id) ◦∆ω corresponds to ((E1 ⊗ω E2)⊗ω E3)⊗ω E4,

∆θ2 = (∆β � id) ◦∆ω corresponds to (E1 ⊗ω (E2 ⊗ω E3))⊗ω E4,

∆θ3 = (id�∆α) ◦∆ω corresponds to E1 ⊗ω ((E2 ⊗ω E3)⊗ω E4),
∆θ4 = (id�∆β) ◦∆ω corresponds to E1 ⊗ω (E2 ⊗ω ((E3 ⊗ω E4)),
∆θ5 = (∆ω �∆ω) ◦∆ω corresponds to (E1 ⊗ω E2)⊗ω (E3 ⊗ω E4).

Here, as before ∆α = (∆ω � id) ◦ ∆ω and ∆β = (id�∆ω) ◦ ∆ω. Now, the
morphisms that appear in the pentagon axiom are induced by Maurer-Cartan mor-
phisms between the elements θi. In order to write them down we choose specific
characteristic maps ∆x : T → T2,ω,ω, ∆u : T → T3,α,β and ∆u−1 : T → T3,β,α

which induce the tensor product of morphisms and the associators in D(G). The
Maurer-Cartan morphisms φi : θi → θi+1 for i = 1, . . . , 5 (mod 5) are determined
by maps ∆φi : T → T4,θi,θi+1 given by the formulas:

∆φ1 = (∆u � id) ◦∆x,

∆φ2 = (id�∆x � id) ◦∆u,

∆φ3 = (id�∆u) ◦∆x,

∆φ4 = (id� id�∆x) ◦∆u−1 ,

∆φ5 = (∆x � id� id) ◦∆u−1 .

Let us consider the composition of Maurer-Cartan morphisms:

φ := φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1 ∈ P (θ1, θ1),

where P is the Ω-bimodule defined by:

P := (T4,θ5,θ1)⊗Ω T4,θ4,θ5 ⊗Ω (T4,θ3,θ4)⊗Ω (T4,θ2,θ3)⊗Ω (T4,θ1,θ2).

The element φ is related to the maps in the pentagon as follows. There is a natural
map of Ω-bimodules σ : P → T4,θ1,θ1 and this defines a universal Maurer-Cartan
morphism σ(φ) ∈ MC4(θ1, θ1). The composition of all the maps in the diagram is
precisely given by:

⊗σ(φ)(idE1 , . . . , idE4) : ((E1 ⊗ω E2)⊗ω E3)⊗ω E4 → ((E1 ⊗ω E2)⊗ω E3)⊗ω E4.

By the last part of Theorem 6.8 we know that this morphism is homotopic to the
identity, and therefore equal to the identity in D(G).

We conclude that any ω defines a monoidal structure on D(G). In a similar
manner one can show that the natural equivalences defined in Proposition 6.11 are
compatible with the associators and therefore are equivalences of monoidal cate-
gories. �

7. Canonical tensor products on morphisms

In this section we point out another universal property of the universal Maurer-
Cartan module, a property which reveals relationships with Hochschild cohomology
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and non-commutative differential forms. In particular, using the universal deriva-
tion, we show that any universal Maurer-Cartan element ω ∈MCm comes together
with a canonical (and explicit) universal Maurer-Cartan endomorphism

xω ∈ Tm(ω, ω).

As an immediate consequence, once a Maurer-Cartan element ω ∈ MCm is fixed,
there is a canonical way of taking tensor products of morphisms. This is important
when one is forced to work in the category Rep∞(G) instead of the derived category
(e.g. in the search of infinitesimal models for the cohomology of classifying spaces).
Note that, at the level of Rep∞(G), the resulting ⊗ω is a “functor up to homotopy”.

We begin with the description of the universal derivation.

Proposition 7.1. The Ω-bimodule T admits a unique biderivation δ : Ω → T of
bidegree (0,−1), which is compatible with the di’s and which sends Ln to Tn.

Moreover, δ does not commute with ∂, instead, for A ∈ Ω:

δ(∂(A)) + ∂(δ(A)) = T0A−AT0.

In other words, δ : Ω −→ T is a linear map which sends elements of bidegree (k, l)
into those of bidegree (k, l− 1), commutes with the di’s and satisfies the derivation
condition

δ(A ◦B) = δ(A)B + (−1)l(A)A ◦ δ(B).

Since Ω is generated as a DB-algebra by the Ln’s, the proposition is straightforward.

Remark 7.2. Let us explain how derivations come into the picture (even before
T !), starting from the notion of morphisms between Maurer-Cartan elements. Let A
and B be two DB-algebras, E be an A-B-DB-module, θ ∈MC(Ā) and ω ∈MC(B̄).
Let us try to understand elements x ∈ E(ω, θ) directly in terms of Ω; one would
like to re-interpret the components xk of x as images of the elements Lk ∈ Ω of a
certain map

δx : Ω −→ E .

The equations that the xk’s must satisfy (involving ω and θ) indicate that δx should
be required to be a derivation on the bimodule Eω,θ. Adding the extra-condition that
δx commutes with the di’s, δx will be determined uniquely. In turn, the fact that
x ∈ E(ω, θ) is equivalent to the equation

δx(∂(A)) + ∂(δx(A)) = x0A−Ax0

for all A ∈ Ω. Note also that δx does not make use of x0, hence we are really looking
at triples (E , δ, x0) with such properties. Among these, (T , δ, T0) shows up as the
universal one. See also Remark 7.5 below.

In order to simplify formulas (and rather intricate signs) we will need some
formalism. Let us first introduce some terminology.

Consider the category VSB of B-vector spaces, whose objects are collections
V = {V k, di} consisting of vector spaces V k (one for each integer k > 0) and maps
di : V k −→ V k+1 for 1 6 i 6 k satisfying djdi = didj−1 for i < j. A morphism
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from V to W consists of families of maps from V k to W k, commuting with all the
operators di; such morphisms form the hom-spaces HomB(V,W ). As in the case
of simplicial vector spaces, one can realize VSB as the category of contravariant
functors from a small category B to the category V of vector spaces.

Associated to VB is the category Gr(VSB) of graded objects of VSB and Ch(VSB)
of cochain complexes in VSB . Given X and Y graded objects in VSB , one defines
the graded hom Hom∗B(X,Y ) whose degree l-part is

Homl
B(X,Y ) =

∏
p

HomB(X(p), X(p+ l)).

When X and Y are complexes in VSB , then Hom∗B(X,Y ) has a natural differential:

∂(f) = ∂ ◦ f − (−1)l(f)f ◦ ∂,

where l(f) is the degree of f . Note that the internal hom of Ch(VSB) is the space
of zero-cocycles of Hom∗B .

The category VSB comes with a tensor product operation ⊗ which makes it into
a monoidal category: for V and W in VSB , V ⊗W is defined by

(V ⊗W )k =
⊕

k1+k2=k

V k1 ⊗W k2 ,

with the operators di given by the formulas:

di(v ⊗ w) =
{
di(v)⊗ w if i 6 k1,
v ⊗ di−k1(w) if i > k1,

where k1 is the degree of v. There is an obvious notion of tensor products of mor-
phisms in VSB , and the unit is the base field concentrated in degree zero. This
tensor product operation extends to Gr(VSB) and Ch(VSB) in the standard way:

(X ⊗ Y )(l) =
⊕

l1+l2=l

X(l1)⊗X(l2)

It also extends to the graded-hom’s using the standard sign conventions:

⊗ : Homl
B(X,X ′)×Homl′

B(Y, Y ′) −→ Homl+l′

B (X ⊗ Y,X ′ ⊗ Y ′),

(f ⊗ g)(x⊗ y) = (−1)l(g)l(x)f(x)⊗ g(y).

Note that a DB-algebra is the same as a monoid in the monoidal category
Ch(VSB). With this in mind, there is a B-version of Hochschild cohomology. Given
a DB-algebra A and an A-bimodule E , we consider the vector spaces

Cp,l(A, E) := Homl
B(A⊗p, E),

and the space of Hochschild cochains:

Cn(A, E) =
⊕
p+l=n

Cp,l(A, E).
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We define the differentials by the same formulas as in the case of DG-algebras, but
taking into account only the l-degree. More precisely, the horizontal differential

b : Cp,l(A, E) −→ Cp+1,l(A, E),

is given by

b(c)(a1, . . . ap+1)= (−1)l(a1)la1c(a2, . . . , ap+1)+
p∑
i=1

(−1)ic(a1, . . . , aiai+1, . . . , ap+1)

+(−1)p+1c(a1, . . . , ak)ap+1.

The vertical differential

dv : Cp,l(A, P ) −→ Cp,l+1(A, P ),

is given by

dv(c)(a1, . . . , ap) = d(c(a1, . . . , ap))−
p∑
i=1

(−1)εic(a1, . . . , δ(ai), . . . , ap),

where εi = l + l(a1) + . . . + l(ai−1). These two differentials commute and we will
denote the resulting total complex by C∗B(A, E). For any ζ ∈ Cp,lB (A, E) we define
ζ̄ ∈ Cp,l(Ā, Ē) by

ζ̄(a1, . . . , an) = (−1)εζ(a1, . . . , an), where ε =
∑

16i<j6n

k(ai)|aj |.

Note that this expression is well defined even if the ai are infinite sums, because
the map ζ preserves the k degree.

Lemma 7.3. The map

C∗B(A, E) −→ C∗(Ā, Ē), ζ 7→ ζ̄

is a morphism of cochain complexes.

Proof. That the horizontal differentials commute is straightforward. For the other
direction, recall that the differential dtot in A is given by:

dtot = ∂ + (−1)nd,

where d is the alternating sum of the operators di. The formula for the vertical
differential in C∗(Ā, Ē) decomposes in two pieces, one corresponding to ∂ and one
corresponding to (−1)nd. One can easily check that the first part corresponds to
the vertical differential in C∗B(A, E), while the second part vanishes on ζ̄, because ζ
commutes with the operators di. �

The derivation δ : Ω→ T together with the component T0 can now be interpreted
as a canonical Hochschild cochain of degree zero:

ζu := δ + T0 ∈ C0(Ω, T ).

Using cup-product operations, one obtains new cochains in C0(Ωm, Tm) as fol-
lows. To simplify notations, we consider the case m = 2. Consider the two cocycles:

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 6(2), 2011 280

ζ1 = δ � Id + T0 � 1 ∈ C(Ω2, T � Ω),

ζ2 = Id� δ + 1� T0 ∈ C(Ω2,Ω� T ),

where Id = IdΩ, 1 is the unit of Ω and the operations

(−)� Id : Hom∗B(Ω, T ) −→ Hom∗B(Ω� Ω, T � Ω),

Id� (−) : Hom∗B(Ω, T ) −→ Hom∗B(Ω� Ω,Ω� T ),

are defined with the usual sign conventions. Using the composition

◦ : (T � Ω)⊗ (Ω� T ) −→ T � T = T2,

we now form the cup-product

ζ := ζ1 ∪ ζ2 ∈ C(Ω2, T2).

Using the construction from the last part of the appendix, we define

xω := ζ̄(ω).

Lemma A.8 gives us the following.

Proposition 7.4. For any ω ∈MC2, xω is an universal Maurer-Cartan morphism
from ω to itself.

Remark 7.5. Here is one final remark on the structures involved. In this paper we
have thought of a representation up to homotopy as a cochain complex of vector
bundles (E, ∂) together with the extra-data {Rk : k > 1}; the relevant algebraic
structure was that of DB-algebra and Maurer-Cartan elements with vanishing 0-
component. One can follow a slightly different route, which has some advantages
when it comes to the universal Maurer-Cartan module: think of a representation up
to homotopy as a graded vector bundle together with the extra-data {Rk : k > 0}.
The relevant algebraic structure is that of B-algebra, which is defined exactly as
that of DB-algebra but giving up on the differential ∂ and requiring unitality. In
terms of the formalism discussed above, the resulting category Bar of B-algebras
coincides with the category GrAlg(VSB) of (unital) graded algebras associated to
the monoidal category VSB . Then, for a graded vector bundle E, AE is a B-algebra
and representations up to homotopy on E correspond to Maurer-Cartan elements
of AE (with no restriction on the zero-component). As analogues of Ω and T , one
looks at

• Ωα ∈ Bar together with a Maurer Cartan element Lα ∈ MC(Ω̄α) which is
universal among pairs (A, ω) consisting of a Maurer Cartan element in a B-
algebra.

• T∂ which has the same universal property as T , but for bimodules over B-
algebras.
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It is not surprising that one can explicitly construct Ωα out of Ω by adjoining to it
a unit and a formal element α of bidegree (0, 1):

Ωkα(l) = Ωk(l) + α ◦ Ωk(l − 1),

except in bidegrees (0, 0) and (0, 1) where

Ω0
α(0) = Q,Ω0

α(1) = Qα.

One defines the algebra structure on Ωα by requiring

α2 = 0, α ◦ a− (−1)l(a)a ◦ α = ∂(a),

while the di’s are defined by

di(a+ α ◦ b) = di(a) + α ◦ di(b).

Finally, one sets Lα = α+ L.
For Tα the situation is similar but a bit simpler:

Tα = T + α ◦ T

and the differential ∂ of T is encoded in the bimodule structure of Tα:

x ◦ α = (−1)l(x)(α ◦ x− ∂(x)),

for x ∈ T .
The analogue δα : Ωα −→ Tα of the derivation δ has a nicer universal property:

it is universal among all derivations on Ωα-bimodules. Using the straightforward
B-version of Hochschild cohomology and non-commutative forms, we see that Tα
must be the space of non-commutative 1-forms associated to the B-algebra Ωα. This
also gives another description of Tα (and then of T ) out of Ωα:

Tα = Ωα ⊗ Ωα, where Ωα = Ωα/1 · R,

and where a tensor a⊗b should be interpreted as a non-commutative 1-form aδα(b).
Since T can be recovered as the subspaces of elements which are not of type α ◦ x,
the derivation property of δα shows that T is spanned by the following types of
elements:

Aδα(T )B,

where A is either 1 or an element of Ω, similarly for B, and T is either a tree or α.
This corresponds to our original description of T in terms of trees and forests. It
is interesting to point out that the appearance of ∅ in that description encodes two
types of elements: 1 (on the forest side) and δ(α) (on the tree side).

A. Appendix

A.1. Maurer-Cartan elements
In this appendix we put together some definitions and results that are used in

the paper.
We begin with some standard notions regarding Maurer-Cartan elements in Dif-

ferential Graded Algebras (DGAs).
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1. A Maurer-Cartan element in a DGA (A, d) is an element γ ∈ A of degree one
satisfying d(ω) + ω2 = 0. We denote by MC(A) the set of all Maurer-Cartan
elements.

2. A gauge equivalence between ω and θ ∈MC(A) is an invertible element u ∈ A
of degree zero satisfying uωu−1 − θ = (du)u−1.

3. Given two Maurer-Cartan elements θ and ω of two DGAs (A, d) and (B, d),
respectively, and a DG A-B bimodule (P, d), a Maurer-Cartan P -morphism
from ω to θ is an element x ∈ P of degree zero satisfying xω− θx = d(x). We
denote by P (ω, θ) the set of such P -morphisms.

4. With the same notations, we say that x, y ∈ P (ω, θ) are homotopic if there
exists h ∈ P of degree −1 such that x − y = dh + hω + θh. We denote by
P [ω, θ] the set of all homotopy classes of P -morphisms from ω to θ.

Altogether, one obtains a category whose objects are DGAs endowed with a
Maurer-Cartan element where the morphisms from (B,ω) to (A, θ) are pairs (P, x)
consisting of a DG A-B bimodule P and an element x ∈ P (ω, θ). If (Q, y) is another
morphism from (C, η) to (B,ω), then their composition is defined as

(P, x) ◦ (Q, y) = (P ⊗B Q, x⊗ y).

It is easy to check that x ⊗ y satisfies the required equation and also that this
operation is compatible with the notion of homotopy. In particular, one obtains a
quotient of this category in which homotopic morphisms become equal.

We will now concentrate our attention on complete DGAs and complete DG
modules. By a filtered algebra we mean an algebra A together with a filtration

· · · ⊂ F2A ⊂ F1A ⊂ F0A = A,

satisfying
FpA · FqA ⊂ Fp+qA.

Note that, in particular, FpA is an ideal in A for all p, hence we can consider the
quotient algebras, which fit into a tower

A/F1A← A/F2A← · · · .
We denote by Ā the inverse limit of this tower. Note that Ā has a natural filtration,
with FpĀ being the inverse limit of

FpA/Fp+1A← FpA/Fp+2A← · · · .
Moreover, there is a canonical map c : A −→ Ā that is a map of filtered algebras.

Definition A.1. A complete algebra is an algebra A together with a filtration F•A,
such that the canonical map c : A −→ Ā is an isomorphism.

A complete DGA is a DGA (A, d) that also has the structure of a complete
algebra, such that each space FpA of the filtration is a subcomplex of (A, dA).

A similar discussion applies to modules over filtered algebras. Given A as above,
a filtered left A-module P is required to carry a filtration

· · · ⊂ F2P ⊂ F1P ⊂ F0P = P,
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satisfying
FpA · FqP ⊂ Fp+qP.

The completion P̄ of P is the inverse limit of P/FpP (a left Ā-module). If A is
a complete algebra, we say that P is a complete (left) A-module if the canonical
map from P to P̄ is an isomorphism. If (A, d) is a complete DGA, a complete (left)
DG module over (A, d) (or simply A-module) is a DG module (P, d) that also has
the structure of complete A-module such that each FpP is a subcomplex of (P, d).
Right modules and bimodules are treated similarly.

In general, for a filtered algebra A, Ā is complete and is called the completion of
A.

Example A.2. If A = ⊕k,lAk(l) is a (differential) bigraded algebra, then it can
also be viewed as a (differential) graded algebra with A = ⊕nAn, where

An = ⊕k+l=nA
k(l).

In this case, A carries a natural filtration with

FpA = ⊕k>pAk(l).

The resulting completion Ā is given by

Ān = Πk+l=nA
k(l).

A.2. The case of complete DGAs
We now consider the existence problem for Maurer-Cartan elements whose class

modulo FrA (for some r > 1) is given. Let γ ∈ A be of degree one, and suppose
that we look for a Maurer-Cartan element ω that is equivalent to γ modulo FrA.
This condition forces:

dγ + γ2 ≡ 0 modFrA. (29)

Any γ ∈MC(A) induces a new differential on A:

dγ(a) = d(a) + [γ, a] = d(a) + γa− (−1)|a|aγ.

This differential descends to a differential dγ on all the quotients FpA/Fp+1A. Actu-
ally, for dγ to be a differential on the quotients, one does not need the full Maurer-
Cartan condition on γ but only (29) for r = 1. Hence given any γ of degree 1
satisfying (29) for some r > 1, it makes sense to talk about the cohomology of
(FpA/Fp+1A, dγ).

Proposition A.3. Let A be a complete DGA. Then for any degree one element γ
satisfying (29) and

H2(FpA/Fp+1A, dγ) = 0, ∀ p > r,

there exists ω ∈MC(A) such that ω ≡ γ mod FrA.

Proof. We will inductively construct ωr, ωr+1, . . . with the property that

dωk + ω2
k = 0, mod FkA,
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in such a way that

ωk = ωk−1 mod Fk−1A, ∀ k > r + 1, ωr = γ.

Assuming that ωk has been constructed, we are now looking for a ∈ FkA such that

ωk+1 := ωk + a

satisfies the Maurer-Cartan equation modulo Fk+1A. Writing out the equation and
using that a2 ∈ Fk+1A, the equation to solve is

−dωk
(a) = (dωk + ω2

k) mod Fk+1A.

This can be seen as an equation in FkA/Fk+1A. Moreover, on the quotient, dωk
= dγ

because ωk−γ ∈ F1(A). Hence, due to the cohomological condition in the statement,
we only have have to check that the right hand side of the last equation is closed
for dωk

. But its differential (modulo Fk+1A) is

d(ω2
k + dωk) + ωk(ω2

k + dωk)− (ω2
k + dωk)ωk = 0.

In conclusion, we obtain the desired sequence (ωk)k>r. Due to completeness of A, we
obtain an element γ ∈ A such that ω = ωk modFkA for all k > r. Since the Maurer-
Cartan expression in ω is congruent, modulo FkA, to the one of ωk, hence to zero,
we deduce (again from the completeness of A) that ω ∈ MC(A). By construction,
ω = γ modFrA. �

There is an analogous result for Maurer-Cartan morphisms. Given two Maurer-
Cartan elements ω and θ of two complete DGAs (A, d) and (B, d), respectively, and
let (P, d) be a a complete DG-A-B bimodule. Then the differential d of P can be
twisted by ω and θ to define a new differential:

dω,θ(x) = d(x) + θx− (−1)|x|xω.

The following is proven exactly as the previous result.

Proposition A.4. Let r > 1, and assume that

H1(FpP/Fp+1P, dω,θ) = 0, ∀ p > r.

Then for any x ∈ P satisfying

xω − θx = dx mod FrP,

one can find y ∈ P (ω, θ) such that y = x mod FrP . Moreover, if the same cohomo-
logical condition holds in degree zero, then any two such y’s are homotopic.

Gauge equivalence in complete DGAs: In the context of complete DGAs,
there is a refined notion of gauge transformation that we now explain. We associate
a group G1(A) to a complete DGA A as follows

G1(A) = {x ∈ A0 : x ≡ 1 mod F1A} = 1 + (F1A)0.

One can see that G1(A) is a group with respect to the multiplication in A from the
power series expression

(1− α)−1 =
∑
k>0

αk,
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where, for α ∈ F1A, completeness implies that the right hand side makes sense as
an element of A .

Note that, strictly speaking, the definition of G1(A) requires A to be unital.
However, the role of the elements “1” is purely formal. In other words, G1(A) makes
sense even without the unitality condition. Equivalently, taking this as a definition
for unital A’s, for a general A, one can replace A by the new (complete) DGA A+

obtained by adding a unit to A. Define G1(A) as G1(A+). In the case that A already
has a unit 1A, the map 1A + x 7→ 1 + x identifies the two definitions.

Definition A.5. Given a complete DGA A, a gauge equivalence u between two
Maurer-Cartan elements ω and θ of A is called strong if u ∈ G1(A). If such a u
exists, we say that ω and θ are strongly gauge equivalent.

Proposition A.6. Let A be a complete DGA and ω, θ ∈MC(A), such that

ω = θ mod FrA,

with r > 1. If

H1(FpA/Fp+1A, dω) = 0, ∀ p > r,

then ω and θ are strongly gauge equivalent.

Proof. This proof is very similar to the one of Proposition A.3. We construct in-
ductively a sequence ur, ur+1, . . . of degree zero elements of A with the property
that

ukω − θuk = duk mod FkA

for all k > r. Moreover, the sequence will be constructed so that

uk = uk−1 mod Fk−1A ∀ k > r + 1, ur = 1.

Assuming that uk has been constructed, we are looking for x ∈ FkA such that

(uk + x)ω − θ(uk + x) = d(uk + x) mod Fk+1A.

Note that, since ω − θ ∈ FrA ⊂ F1A,

θx− xω = ωx− xω mod Fk+1

whenever x ∈ FkA. We see that the previous equation can be written as an equation
in FkA/Fk+1A:

dωx = −duk + ukω − θuk mod Fk+1A.

Because of the hypothesis, it suffices to show that the right hand side is closed in
the quotient. Denoting the right hand side by y, and using that

dω(y) = d(y) + θy + yω,

the desired equation follows immediately.
With the sequence ur, ur+1, . . . constructed, one uses again the completeness of

A to obtain u ∈ A of degree zero such that u = 1 modFrA, uω − θu = du. �
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Remark A.7. The gauge equivalence comes from an action of G1(A) on MC(A),
given by the usual gauge formula:

u · ω = uωu−1 − du · u−1 u ∈ G1(A), ω ∈MC(A).

Our discussion has an infinitesimal counterpart. First of all, “the Lie algebra of
G1(A)” is defined as

g1(A) := {α ∈ A0 : α ≡ 0 mod F1A},

with the commutator bracket

[α, β] = αβ − βα.

The exponential map
exp : g1(A) −→ G1(A)

is defined by the usual power series

exp(α) =
∑
k>0

1
k!
αk.

The completeness of A make sense of exp(α) for α ∈ F1A. The action of G1(A)
on MC(A) has an infinitesimal counterpart: an action of the Lie algebra g1(A) on
MC(A), which is familiar in the discussion of Maurer-Cartan elements in differential
graded Lie algebras:

α · γ = [α, γ] + dα, α ∈ g1(A), γ ∈MC(A).

A.3. Relation with Hochschild cohomology
Let A be a DGA and M be an A-bimodule. Here we explain that, given a Maurer-

Cartan element ω of A, one can associate a Maurer-Cartan morphism to a degree
zero P -valued Hochschild cocycle on A. In low degrees, the idea is very simple: by
applying a biderivation D : A −→ P to the Maurer-Cartan equation for a Maurer-
Cartan element ω, one obtains an element D(ω) ∈ P (ω, ω). We now discuss what
happens for general degree zero Hochschild cocycles. For each k and l, we denote
by Ck,l(A,P ) the space of all linear maps

c : A⊗ . . .⊗A︸ ︷︷ ︸
k times

−→ P

which raises the total degree by l. The horizontal differential

b : Ck,l(A,P ) −→ Ck+1,l(A,P )

is given by

b(c)(a1, . . . ak+1)= (−1)|a1|la1c(a2, . . . , ak+1)+
k∑
i=1

(−1)ic(a1, . . . , aiai+1, . . . , ak+1)

+(−1)k+1c(a1, . . . , ak)ak+1.

The vertical differential

dv : Ck,l(A,P ) −→ Ck,l+1(A,P )
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is given by

dv(c)(a1, . . . , ak) = d(c(a1, . . . , ak))−
k∑
i=1

(−1)εic(a1, . . . , d(ai), . . . , ak),

where εi = l+ |a1|+ . . .+ |ai−1|. These two differentials commute, and we obtain a
complex Cn(A,P ) =

⊕
k+l=n C

k,l(A,P ) with D = dv + (−1)lb as total differential.
We are interested in 0-cocycles. Such a cocycle is a finite sum

ζ = ζ0 + ζ1 + . . . , with ζk ∈ Ck,−k(A,P ), (30)

satisfying
b(ζi) + (−1)id(ζi+1) = 0.

For any such ζ, we consider the induced polynomial function

ζ̂ : A1 −→ P 0, ζ(a) = ζ0 + ζ1(a) + ζ2(a, a) + . . . .

The following is straightforward:

Lemma A.8. For any Hochschild cocycle ζ ∈ C0(A,P ) and any ω ∈ MC(A),
ζ̂(ω) ∈ P (ω, ω). Moreover:
• If ζ and ζ ′ are cohomologous, then ζ(ω) and ζ ′(ω) are homotopic.
• This construction is compatible with cup-products.
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