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HOMOTOPY DG ALGEBRAS INDUCE HOMOTOPY BV
ALGEBRAS
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(communicated by James Stasheff)

Abstract
Let TA denote the space underlying the tensor algebra of

a vector space A. In this short note, we show that if A is a
differential graded algebra, then TA is a differential Batalin-
Vilkovisky algebra. Moreover, if A is an A∞ algebra, then TA
is a commutative BV∞ algebra.

1. Main Statement

Let (A, dA) be a complex over a commutative ring R. Our convention is that dA

is of degree +1. The space TA =
⊕

n>0 A⊗n is graded by declaring monomials of
homogeneous elements a1 ⊗ · · · ⊗ an ∈ A⊗n to be of degree |a1|+ · · ·+ |an|+ n.

There is a shuffle product • : TA⊗ TA → TA generated by

(a1 ⊗ · · · ⊗ an) • (an+1 ⊗ · · · ⊗ an+m) :=
∑

σ∈S(n,m)

(−1)κ · aσ−1(1) ⊗ · · · ⊗ aσ−1(n+m),

where S(n,m) is the set of all (n,m)-shuffles, i.e. S(n,m) is the set of all permu-
tations σ ∈ Σn+m with σ(1) < · · · < σ(n) and σ(n + 1) < · · · < σ(n + m), (cf. [6]).
Here (−1)κ is the Koszul sign, which introduces a factor of (|ai|+1)(|aj |+1) when-
ever the elements ai and aj move past one another in a shuffle. Note that for degree
zero elements of A, this Koszul sign is just sgn(σ), the sign of the permutation
σ. The shuffle product makes TA into a graded commutative associative algebra.
Recall that TA is also a coalgebra under the usual tensor coproduct.

There is a differential d : TA → TA (of degree +1) given by extending the
differential dA : A → A as a coderivation of the tensor coproduct, see e.g. [7]:

d(a1 ⊗ · · · ⊗ an) =
n∑

i=0

(−1)|a1|+···+|ai−1|+i−1a1 ⊗ · · · ⊗ dA(ai)⊗ · · · ⊗ an

The second author was partially supported by the Max-Planck Institute in Bonn, Germany. The
third author was supported in part by a grant from The City University of New York PSC-CUNY
Research Award Program. We would like to thank Gabriel Drummond-Cole and Bruno Vallette
for useful discussions about BV∞ algebras.
Received December 21, 2010, revised March 02, 2011; published on July 12, 2011.
2000 Mathematics Subject Classification: 16E45, 17B60, 18G55.
Key words and phrases: Batalin-Vilkovisky BV algebra, homotopy BV algebra, tensor algebra,
shuffle product, A-infinity algebra.
c© 2011, John Terilla, Thomas Tradler and Scott O. Wilson. Permission to copy for private use
granted.



Journal of Homotopy and Related Structures, vol. 6(1), 2011 178

and together with the shuffle product, the triple (TA, d, •) is a differential graded
commutative associative algebra.

If µA : A ⊗ A → A is an associative product, then there is another differential
∆ = µ̃A : TA → TA, of degree −1, given by extending the multiplication as a
coderivation,

∆(a1 ⊗ · · · ⊗ an) =
n−1∑

i=1

(−1)|a1|+···+|ai|+i−1a1 ⊗ · · · ⊗ µA(ai, ai+1)⊗ · · · ⊗ an.

In Section 2 we show:

Theorem 1. If (A, dA, µA) is a differential graded algebra, then (TA, d, ∆, •) de-
fines a dBV algebra. The construction is functorial: If f : A → B is a morphism of
differential associative algebras, then the induced map from TA to TB is a morphism
of dBV algebras.

Recall that a dBV algebra (X, d, ∆, •) is a differential graded commutative asso-
ciative algebra (X, d, •), with d of degree +1, and differential ∆ of degree −1 such
that d graded commutes with ∆ (so that d∆ + ∆d = 0), and finally the deviation
{, } of ∆ from being a derivation of •,

{x, y} = (−1)|x|∆(x • y)− (−1)|x|∆(x) • y − x •∆(y)

satisfies,

{x, y} = −(−1)(|x|+1)(|y|+1){y, x} (Anti-symmetry),
{x • y, z} = x • {y, z}+ (−1)|y|(|z|+1){x, z} • y(Leibniz relation).

The Leibniz relation can be read as saying that bracketing with a fixed element
(on the right) is a graded derivation of the product •. These relations imply that
bracketing with a fixed element on the left is also a graded derivation

{x, y • z} = {x, y} • z + (−1)(|x|+1)yy • {x, z}
and also imply that bracketing with a fixed element is a graded derivation of the
bracket,

{x, {y, z}} = {{x, y}, z}+ (−1)(|x|+1)(|y|+1){y, {x, z}} (Jacobi identity).

A morphism of dBV algebras X and Y is a map f : X → Y that preserves the
structures d, ∆, and •.
Remark 1. In the special case where µA is graded commutative, ∆ becomes a
derivation of • and, thus, the bracket {, } is zero. This is well known in the literature,
see for example [5]. We were surprised we could not find in the literature the fact
that TA becomes a dBV algebra when µA is not necessarily commutative. There
is, however, a similar “Lie” version which is well known: the symmetric algebra of
the underlying vector space of a Lie algebra is a BV algebra (see [8]).

Theorem 1 generalizes naturally. If (A,µ1, µ2, µ3, . . .) is an A∞ algebra, then for
each k = 1, 2, . . ., the linear map µk : A⊗k → A can be extended to a coderivation
of degree 3− 2k of the tensor coproduct ∆3−2k : TA → TA. In Section 3 we show:
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Theorem 2. If (A, µ1, µ2, µ3, . . .) is an A∞ algebra, then (TA, •,∆1, ∆−1, ∆−3, . . .)
defines a commutative BV∞ algebra.

Remark 2. A commutative BV∞ algebra, as defined by Kravchenko [4], is a gener-
alization of a dBV algebra, and a special case of a BV∞ algebra, as shown in [3]. (See
also [1].) The precise definition is given in Section 3, where we show the requisite
property that ∆3−2k has operator-order k with respect to the shuffle product.

From a logical point of view, it is probably better to prove Theorem 2 first, from
which Theorem 1 follows, see Remark 3 below. However, we prefer to give a direct
proof of Theorem 1 using the traditional definition of a dBV algebra, making this an
easy to read self-contained section. This also has the advantage of giving an explicit
formula for the bracket { , }, and gives us the opportunity to illustrate explicitly
how the signs are checked in this context.

2. Proof of the Theorem 1

The identities d2 = 0, ∆2 = 0, • being associative and graded commutative,
and d being a derivation of • are all straightforward. The (graded) anti-symmetry
of the bracket follows formally from the (graded) symmetry of •. The functoriality
statement is immediate. It remains to show that the bracket {, } satisfies the Leibniz
relation.

We abbreviate ai1 ⊗ · · · ⊗ aik
by ai1,...,ik

, and σ−1(i) by σ−1
i for a permutation

σ ∈ Σk. First, we may calculate the bracket as

{a1,...,n, an+1,...,n+m} =
∑

σ∈S(n,m)

±∆(aσ−1
1 ,...,σ−1

n+m
)

− (±∆(a1,...,n) • an+1,...,n+m)− (±a1,...,n •∆(an+1,...,n+m))

We claim that every term in the last two expressions cancels with precisely one
term in

∑
σ∈S(n,m)±∆(aσ−1

1 ,...,σ−1
n+m

) so that {a1,...,n, an+1,...,n+m} equals

∑

σ∈S(n,m)

∑

j∈C
{1,...,n},{n+1,...,n+m}
σ

±aσ−1
1 ,...,σ−1

j−1
⊗ µA(aσ−1

j
, aσ−1

j+1
) ⊗ aσ−1

j+1,...,σ−1
n+m

,

where the set CI,J
σ is defined, for a permutation σ ∈ Σk and disjoint set of indices

I ∪ J ⊆ {1, . . . , k} with I ∩ J = ∅, by

CI,J
σ = {j : σ−1

j ∈ I and σ−1
j+1 ∈ J , or σ−1

j ∈ J and σ−1
j+1 ∈ I}.

In other words, µA is applied in the above sum whenever exactly one of the two
elements aσ−1

j
and aσ−1

j+1
is taken from a1, . . . , an, and the other element is taken

from an+1, . . . , an+m. Since the correct terms appear exactly once, the only difficulty
is to check the cancellation by signs, which we leave to the end of this section.

Assuming this, if we abbreviate the expression ai1,...,ij−1⊗µA(aij , aij+1)⊗aij+1,...,ik

by a
(j,j+1)
i1,...,ik

, then we can write,

{a1,...,n, an+1,...,n+m} =
∑

σ∈S(n,m)

∑

j∈C
{1,...,n},{n+1,...,n+m}
σ

±a
(j,j+1)

σ−1
1 ,...,σ−1

n+m
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With this, we can check that {a1,...,n • an+1,...,n+m, an+m+1,...,n+m+p} equals

=
∑

σ∈S(n,m)

±{aσ−1
1 ,...,σ−1

n+m
, an+m+1,...,n+m+p}

=
∑

ρ∈S(n,m,p)

∑

j∈C
{1,...,n+m},{n+m+1,...,n+m+p}
ρ

±a
(j,j+1)

ρ−1
1 ,...,ρ−1

n+m+p

=
∑

ρ∈S(n,m,p)

∑

j∈C
{1,...,n},{n+m+1,...,n+m+p}
ρ

±a
(j,j+1)

ρ−1
1 ,...,ρ−1

n+m+p

+
∑

ρ∈S(n,m,p)

∑

j∈C
{n+1,...,n+m},{n+m+1,...,n+m+p}
ρ

±a
(j,j+1)

ρ−1
1 ,...,ρ−1

n+m+p

= a1,...,n • {an+1,...,n+m, an+m+1,...,n+m+p}
±{a1,...,n, an+m+1,...,n+m+p} • an+1,...,n+m,

where S(n,m, p) ⊆ Σn+m+p consists of those permutations ρ ∈ Σn+m+p that satisfy
ρ(1) < · · · < ρ(n), ρ(n+1) < · · · < ρ(n+m), and ρ(n+m+1) < · · · < ρ(n+m+p).
By a careful consideration of the signs similar to the check below, it follows that
the Leibniz identity holds.

Now, we check the sign mentioned above. If we shuffle an+1,...,n+j past ai, for
1 6 i 6 n and 1 6 j 6 m, and then apply ∆, we obtain the term

a1,...,i−1 ⊗ an+1,...,n+j ⊗ µA(ai, ai+1)⊗ ai+2,...n ⊗ an+j+1,...,n+m

with sign
(−1)(|ai|+···+|an|+n−i+1)(|an+1|+···+|an+j |+j)+(|a1|+···+|ai−1|+|an+1|+···+|an+j |+|ai|+(i−1+j))

while in the other order, ∆ then shuffle, we obtain the same term with sign

(−1)(|a1|+···+|ai|+i+1)+(|µ(ai,ai+1)|+|ai+2|+···+|an|+n−i)(|an+1|+···+|an+j |+j)

and these agree. This special case implies the general case, for any shuffle, since a more
general shuffle introduces the same additional sign in both cases.

Similarly, shuffling ai+1,...,n past an+j+1 for 1 6 i < n and 1 6 j < m, and then
applying ∆, we obtain the term

a1,...,i ⊗ an+1,...,n+j−1 ⊗ µA(an+j , an+j+1)⊗ ai+1,...,n ⊗ an+j+2,...,n+m

with sign

(−1)(|ai+1|+···+|an|+n−i)(|an+1|+···+|an+j+1|+j+1)+(|a1|+···+|ai|+|an+1|+···+|an+j |+i+j+1)

while in the other order we obtain the same term with sign

(−1)(|an+1|+···+|an+j−1|+j−1)+(|ai+1|+···+|an|+n−i)(|an+1|+···+|an+j−1|+|µ(an+j ,an+j+1)|+j)

These differ by (−1)|a1|+···+|an|+n, as expected. Again, this special case implies the general
case, as before. This completes the proof of Theorem 1.

3. Proof of Theorem 2

Let (X, •) be a graded commutative associative algebra. An operator ∆ : X → X has
operator-order n if and only if

∑
(−1)n+1−r+κ∆(xi1 • · · · • xir ) • xir+1 • · · · • xin+1 = 0



Journal of Homotopy and Related Structures, vol. 6(1), 2011 181

where the sum is taken over nonempty subsets {i1, . . . , ir : i1 < . . . < ir} ⊆ {1, . . . , n + 1}
and {1, . . . , n + 1} \ {i1, . . . , ir} has been ordered ir+1 < · · · < in+1, and κ comes from the
usual Koszul sign rule.

If ∆ has operator-order one, then it is a derivation of •. If ∆ has operator-order two,
then its deviation from being a derivation of •, is a derivation of •. This means that if we
define { , } to be the deviation of ∆ from being a derivation of •, then { , } and • satisfy
the Leibniz relation.

Remark 3. Using this fact, one can prove Theorem 1 without reference to the bracket—
here is an outline: any map µA : A ⊗ A → A becomes an order 2 operator ∆ : TA →
TA with respect to the shuffle product when it is lifted as a coderivation of the tensor
coproduct (as we will show in the lemma below). It is straightforward to check that µA

being associative implies that ∆2 = 0, since ∆2 is the lift of the associator of µA to a
coderivation. So, if (A, dA, µA) is a differential graded algebra, with µA of degree zero, ∆
has degree −1, and since dA is a derivation of µA, then d : TA → TA and ∆ : TA → TA
commute. That proves that (TA, d, ∆, •) is a dBV algebra.

To generalize: a Kravchenko commutative BV∞ algebra consists of a graded commuta-
tive differential graded algebra (X, d, •) and a collection {∆k : X → X}k=1,−1,−3,−5,... of
operators satisfying

• ∆1 = d,
• each ∆3−2k has degree 3− 2k and operator-order k,
• for each n,

∑
j+k=n ∆j∆k = 0.

We use the degree convention in [4] but note that in [3] the opposite convention is used
(there, d has degree −1 and the higher ∆ operators have positive degree). As a special case,
a dBV algebra is a Kravchenko commutative BV∞ algebra with ∆−3 = ∆−5 = · · · = 0.

To prove Theorem 2, assume that (A, µ1, µ2, µ3 . . .) is an A∞ algebra. By definition of
an A∞ algebra, each µk lifts to a degree 3 − 2k coderivation ∆3−2k : TA → TA, with
∆1 = d and relations

∑
j+k=n ∆j∆k = 0. Thus it only remains to prove, that each ∆3−2k

has order k with respect to the shuffle product •. This follows from the following general
lemma.

Lemma. Let f : A⊗n → A be any linear map and let F : TA → TA be the lift of f to a
coderivation. Then F has order n with respect to the shuffle product.

Proof. Let X1, . . . , Xn+1 be monomials in TA. So, Xi = ai
1 ⊗ · · · ⊗ ai

si
with each ai

` ∈ A.
Then (−1)n+1−r+κF (Xi1 • · · · •Xir ) •Xir+1 · · · •Xin+1 consists of a sum of terms of the
form

± . . .⊗ f(a
i′1
`1
⊗ · · · ⊗ a

i′n
`n

)⊗ . . . (the rest of the ai
`’s are outside of f), (1)

where f is applied to a
i′1
`1
⊗· · ·⊗a

i′n
`n

, and the remaining tensor products are applied outside
of f . The list {i′1, . . . , i′n} may contain repetition, and we may order the list from smallest
to largest without repetition as {i1, . . . , ik}. Every term of the form (1) which contains
only the indices {i1, . . . , ik} inside f , appears for each index set J = {j1, . . . , jq} with
{i1, . . . , ik} ⊆ J ⊆ {1, . . . , n + 1} exactly once in the sum of (−1)n+1−q+κF (Xj1 • · · · •
Xjq ) •Xjq+1 · · · •Xjn+1 . Now, for a fixed expression in Equation (1) induced by different
index sets J , the only difference in the sign of (1) is a factor of (−1)q, where q = |J |, and
all other signs coincide for varying J . We thus need to show that summing (−1)|J| over all
J with {i1, . . . , ik} ⊆ J ⊆ {1, . . . , n + 1} vanishes. Since there are exactly n + 1− k choose
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q − k such subsets J with q elements, we obtain that

∑
J

(−1)|J| =

n+1∑

q=k

(
n + 1− k

q − k

)
· (−1)q = (−1)k ·

n+1−k∑

q′=0

(
n + 1− k

q′

)
· (−1)q′

= (−1)k · (−1 + 1)n+1−k = 0,

where we used the binomial theorem in the second to last equality. This completes the
proof of the lemma.
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