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A RATIONAL OBSTRUCTION TO BE A GOTTLIEB MAP
TOSHIHIRO YAMAGUCHI
(communicated by James Stasheff)

Abstract

We investigate Gottlieb maps, which are maps f : E —
B that induce the maps between the Gottlieb groups
()l (e) : Gn(E) — Gn(B) for all n, from a rational homo-
topy theory point of view. We will define the obstruction group
O(f) to be a Gottlieb map and a numerical invariant o(f). It
naturally deduces a relative splitting of F in certain cases. We
also illustrate several rational examples of Gottlieb maps and
non-Gottlieb maps by using derivation arguments in Sullivan
models.

1. Introduction

The nth Gottlieb group (evaluation subgroup of homotopy group) G,(B) of
a path connected CW complex B with basepoint * is the subgroup of the nth
homotopy group m,(B) of B consisting of homotopy classes of based maps a : S™ —
B such that the wedge (alidg) : S™V B — B extends to a map F, : S" x B — B
[7]. The Gottlieb group is a very interesting homotopy invariant (e.g., see [21]) but
the calculations are difficult even for spheres [4]. It is well known that the Gottlieb
group fails to be a functor since, generally, a based map f : E — B does not yield
a homomorphism 7.(f)|a., (g) : G«(E) — G.(B) for m.(f) : m«(E) — m.(B). For
example, i : E = S' — S§'v S = B does not induce 71 (i)|g, (g) : G1(E) — G1(B)
since G1(S1) = Z [7, Theorem 5.4] but G1(S* v S') = 0 [7, Theorem 3.1]. Recall
that a space B is said to be a Gottlieb space (or simply G-space in this paper) if
G (B) = m,(B) for all n. For example, an H-space is a G-space. It is interesting to
consider when is a space a G-space [7],[24],[12]. In this paper, we will give a similar
definition for a map and consider when is a map such a map.

Definition A. If amap f : E — B induces m,(f)Gn(E) C Gy (B) for all n, we call
it a Gottlieb map (or simply G-map in this paper).

We note some sufficient conditions to be a G-map. If B is a G-space, any map
f: E — Bisa G-map. So ‘G-map’ is a natural generalization of ‘G-space’. When
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E = 8" a G-map f is an nth Gottlieb element of B; i.e., [f] € G, (B). Also the
projection S¥*+1)=1 _ FP" for d = dimg F is a G-map under a certain condition
[5]. Here FP"™ is the n-projective space over F = R, C, H. If a map f is homotopic to

the constant map; i.e., f ~ %, then it is a G-map. Put X 4. 5L Bthe homotopy
fibration where X is the homotopy fiber of f. Note that f is a G-map if the fibration
is fibre-homotopically trivial. Also the connecting map 9 : 2B — X is a G-map [6].

The definition of G,,(B) is generalized by replacing the identity by an arbitrary
based map f : E — B [27]. The nth evaluation subgroup G, (B, E; f) of the map f
is the subgroup of 7, (B) for the evaluation map map(E, B; f) — B. It is represented
by maps a : S — B such that (a|f) : S"VE — B extends to amap Fy, : S" X E —
B.Put G(Y) = @;50G;(Y) for aspace Y and G(B, F; f) = ®;50Gi(B, E; f). ;From
the definitions, there is a map 7.(f) : G(E) — G(B, E; f) and G(B, E; f) D G(B).
Therefore, the following is obvious.

Lemma 1.1. If G(B,E; f) C G(B), then f : E — B is a G-map.
So if f has a right homotopy inverse, f is a G-map [7, Proposition 1-4]([28,

Remark 3]). For example, since the free loop fibration QX — LX 4. X has a
section, the evaluation map f is a G-map. See §3 for the other sufficient conditions.

Suppose E and B have the homotopy types of nilpotent CW complexes. Put
ep : B — Bg and fp = epo f: E — Bg to be the rationalizations of B and
[+ E — B, respectively [11]. Then 7,(Bg) = m,(B)q := m(B) ® Q for n > 1.
By the universality of rationalization, fg is equivalent to fg : Ey — Bg, often we
do not distinguish from fg in this paper. When E is a finite complex, G, (Fg) =
Gn(E)g := Gn(E)®Q [13] and G(Eg) is oddly graded [1]. Recall that By is a G-
space if and only if it is an H-space. But it seems difficult to search a useful necessary
and sufficient condition to be a rationalized G-map. If a map f : F — B induces
7+ (fo)G(E) C G(Bg) or m.(fg)G(Eq) C G(Bg), we call f a rational Gottlieb map
(or simply 7.G-map). Of course, a G-map between nilpotent spaces is an r.G-map.
For a map, we can define an obstruction group:

Definition B. The nth obstruction group of a map f : E — B to be a G-map is
given by Oy (f) :=Im( m(f)lc, () ) C mn(B)/Gn(B). Namely,

On(f) i=Tm ( Gu(B) ™Y 7, (B)=m0(B) /Gn(B) ).
Also put O(f) := ®p>00,(f) and denote dim O(fg) as o(f).

Roughly speaking, O, (f) is of “non-Gottlieb” elements in 7, (B) yet “Gottlieb”
in 7, (F). Recall that G1(B) is contained in the center of 7 (B) [7, Corollary 2.4].
We have that O(f) = 0 if and only if f is a G-map. Note that o(f) is a numerical ra-
tional homotopy invariant of a map with 0 < o(f) < min{dim G(Eg), dim m..(B)g—
dim G(Bgp)} and it is a measure of the rational non-triviality of the homotopy fibra-
tion X = F - B. If f:Y — Z and g: X — Y are G-maps, then the composition
fog: X — Zis a G-map from 7. (f)omi(g) = m«(f og). It induces that o(fog) =0
if o(f) =0 and o(g) = 0. It is generalized as

Theorem 1.2. For any maps f :Y — Z and g : X — Y between simply connected
complexes of finite type, there is an inequality: o(f o g) < o(f) + o(g).
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Notice that an element of O(fg) is represented by a map from the product
of rationalized spheres a : K = Sg' x --- x Sg* — Bg by certain composi-
tions ([3, p.494]). Suppose that a makes odd-spherical generators. Then there are

a rational space B, and a fibration B, } By K given by the KS-extension
(A(wy, .., wg),0) = (AW, dp) — (AW, dp) = M(B,) with |w;| = n;, w}
and W = Q{wz, .., w } ® Wy, in Sullivan’s model theory [2] (see §2), which satisfies
paoa~idg. Put Xo > F Iy B, the pull-back fibration of Xq — Eg 3 Bg by ja.
We call it the pull-back fibration associated to a. Oprea’s homotopical splittings of
rational spaces ([19], [20], [10], [3]) implies the following result.

= a‘S"i

Theorem 1.3. Let f: E — B be a map between simply connected complexes of
finite type and X - E L. B the homotopy fibration. If a map a : K = (8™ X -+ x
S™ ) — Bg of odd-spherical generators of By represents an element in O( fg), then
the fibre-inclusion g : Xo — F of the pull-back fibration associated to a induces a
splitting vy q : Fg ~ F x K such that

Xog—"2 s Ey and Eg—1 By

T

F*i>F><K FxK~<~——K
1 2

with i1 (x) = (x,*) and i2(x) = (*,2) homotopically commute. Moreover, this split-
ting does not come from that of Bg; i.e., the maps a; : S&* — K% Bg cannot be
extended to Si* x Bj =~ Bq for any space Bj.

Conversely, if there exists such a splitting V¢, : Eg ~ F X K for a map f: E —
B, then the map a : K — Bg of odd-spherical generators represents an element of
O(faq), in particular k < o(f).

Thus, if a map fgp : Eg — Bg is a G-map, then there exists no above splitting
Y q of Eg. That is a necessary condition to be a G-map but is not sufficient (see
Example 3.2(4)). Notice that Oprea [19, Theorem 1], [20, (RFDT)] gives a rational
decomposition of the fibre X of a fibration X — E — B (see Remark 2.8). Also
Halperin [10, Lemma 1.1} and Félix-Lupton [3, Theorem 1.6] (when we restrict their
generalized evaluation map [3, Definition 1.1] to a : K — Eg itself) give a rational
decomposition of a space E and our theorem seems a relative one of it.

Though Definition A is defined for all connected based CW complexes, we fo-
cus on simply connected CW complexes E with rational homology of finite type
with dim G(Eg) < oo when we consider rational homotopy types (Sullivan mini-
mal models). We do not distinguish between a map and the homotopy class that it
represents. Our tool is the derivations ([1], [17],[18],[25]) of Sullivan models [25],
which are prepared in §2. So we assume that the reader is familiar with the basics of
rational homotopy theory [2]. We see a property of O(fp) in Lemma 2.3 and prove
Theorem 1.2 and Theorem 1.3 in §2. We will illustrate some rational examples in §3,
in which we note examples of r.G-maps which do not satisfy Lemma 1.1 in Exam-
ple 3.3. Also we mention interactions with Gottlieb trivialities [18] in Remark 3.4,
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cyclic maps [26]([16]) in Example 3.6 and W-maps (see Definition C) in Example
3.7.

2. Derivations of Sullivan models

We use the Sullivan minimal model M (Y") of a nilpotent space Y of finite type. It
is a free Q-commutative differential graded algebra (DGA) (AV, d) with a Q-graded
vector space V = @i>1 V' where dim V? < oo and a decomposable differential; i.e.,
dV?) c (ATV - ATV)™*! and dod = 0. Here ATV is the ideal of AV generated
by elements of positive degree. Denote the degree of a homogeneous element = of a
graded algebra as |z| and the Q-vector space of basis {v;}; as Q{v;};. Then zy =
(=1)l#Wlyg and d(zy) = d(z)y + (=1)*lzd(y). A map f: X — Y has a minimal
model which is a DGA-map M (f) : M(Y) — M(X). Notice that M (Y") determines
the rational homotopy type of Y. Especially there is an isomorphism Hom;(V, Q) &
7;(X)g. See [2] for a general introduction and the standard notations.

Let A be a DGA A = (A*,d4) with A* = @,;504%, A’ = Q, A' = 0 and the
augmentation € : A — Q. Define Der; A the vector space of self-derivations of A
decreasing the degree by i > 0, where 6(zy) = 0(x)y + (—1)"*lz0(y) for 6 € Der; A.
We denote @®;~oDer;A by DerA. The boundary operator § : Der,A — Der, 1A
is defined by 6(¢) = dg oo — (=1)llo 0 dy. For a DGA-map ¢ : A — B,
define a ¢-derivation of degree m to be a linear map 6 : A* — B*™™ with
0(zy) 0(z)p(y) + (—1)"*lp(2)0(y) and Der(A, B;$) the vector space of ¢-
derivations. The boundary operator d4 : Der.(A,B;¢) — Der._1(A,B;¢) is
defined by 84(0) = dp oo — (—=1)I?lo o0 da. Note Der,(A, A;ida) = Der.(A).
For ¢ : A — B, the composition with ¢ : B — @ induces a chain map
€. : Der,(A,B;¢) — Der,(A,Q;¢). For a minimal model A = (AZ,da), de-
fine G, (A, B;¢) = Im(H(€,) : Hy(Der(A,B;¢)) — Hom,(Z,Q)). Especially
G.(A, A;ida) = G.(A). Note that z* € Hom(Z,Q) (z* is the dual of the basis ele-
ment z) is in G, (A4, B; ¢) if and only if 2* extends to a derivation § € Der(A, B; ¢)
with 64(6) = 0.

Theorem 2.1. [1],/17],[25] When E and B are simply connected, G, (Bg, Eg; fo)
=G, (M(B),M(E); M(f)), in particular G,,(Bg) = G,(M(B)).

Let £ : X 4, E L B be a fibration. Put M(B) = (AW,dg). Then the model
(not minimal in general) of E — B is given by a KS(Koszul-Sullivan)-extension
(AW,dp) — (AW ® AV, D) with D|aw = dp and a DGA-commutative diagram

(AW, dp) —> (AW ® AV, D) —— (AV, D) == (AV,d)
| |
M(B) —"P o v " M(x),

where ‘~’ means to be quasi-isomorphic [2, §15]. Then G,,(M(B), M(E); M(f)) =
G ((AW,dg), (AW @AV, D);i). In this paper, we consider the models of r.G-maps
mainly in KS-extensions.
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Example 2.2. In general, ¢ is not a DGA-isomorphism. For example, put M (E) =
M(S?) = (A(z),0) and M(B) = (A(wy1,w2,u),dg) with |w;| = 3, dgw; = 0 and
dpu = wiwy. Suppose that a map f : S® — B satisfies M (f)(w1) = x, M(f)(wg) =
0, M(f)(w) = 0. Then (AV,D) = (A(v1,v2),0) with |v1] = 2 and |vg| = 4 and
¥ o (Awy, we, u,v1,v2), D) — (Az,0) is given by Dv; = we, Dvy = u + wyvy,
¥(wy) = z and the others to zero. It is quasi-isomorphic but not isomorphic.

From Theorem 2.1 and Definition B for a map f : E — B, we have

Lemma 2.3. For W = Q{w; }ier where m.(B)g = Hom(W, Q) with |w;| < |w,]
ifi < g, put I' == {i € Illw;] # 0 in H*W @& V,Q(D))}. Then there is an
isomorphism

O(fo) 2 Q{wy, i € I'l w; satisfies (i) and (ii) }
where (1) dp(w} +0) =0 for some o € Der(AW @ AV, 0g) with o(w;) =0 for j <1
and (i) dp(w} + 1) # 0 for any 7 € Der(AW,0p) with T(w;) =0 for j < i.

Here Q(D) is the linear part of D. For example, O(f)g = Q{w?} in Example 2.2
since in particular dg((w1,1) — (u,v1)) = 0 (see Notation below).
Theorem 1.2 follows from

Proposition 2.4. For any maps f :' Y — Z and g : X — Y between simply
connected spaces, there is an inclusion O(fg o gp) C O(fg) ® O(gg)-

Proof. Put amodel of fog: X —Y — Z as the commutative diagram
(AW,dp) —— (AW @ AV, D) —— (AW ® AV ® AU, D")

-

M(Z) M(X),

M(f) M(g)

M(Y)

where D|AW = dz and DI|AW®AV = D. For W = Q{w,’}igj, I = {Z S I\[wz] 7é
0 in H*(WaV,Q(D)} and I' > I" == {i € I|[w;] £ 0 in H*(WaVaU,QD'))},
from Lemma 2.3,

O(go) NW* = Q{w}, i € I"| w} satisfies (i) and (ii) }

where (i) dx (w} + o) = 0 for some o € Der(AW ® AV ® AU) with o(w;) = 0 for
J <iand (ii) 0y (w} +7) # 0 for any 7 € Der(AW @ AV') with 7(w;) = 0 for j <1,

O(fo) = Q{w}, i € I'| w} satisfies (iii) and (iv) }
where (iii) dy (w} + o) = 0 for some o € Der(AW @ AV) with o(w;) =0 for j <
and (iv) dz(w} + 7) # 0 for any 7 € Der(AW) with 7(w;) = 0 for j < 4, and
O(foogg) = Q{w}, i € I"| w} satisfies (i) and (iv) }.
Since (ii) and (iii) contradict, we have O(fg) N O(gg) = 0 in W* @ V*. Also
it wy € O(fg o gp) and w & O(fg), then w; satisfies (i) but not (iii). Thus
wi € O(gg). O
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Proof of Theorem 1.3. Put the KS-extension of f (AW,dp) — (AW ® AV, D).
For a sub-basis {w1,..,wr} of W, put O(fg) D Q{wf,..,w;} with |w;| = n; odd
and H*(K;Q) = A(wy,..,wg). The assumption induces D(w;) = dg(w;) = 0 for
i=1,..,k. From Lemma 2.3, 0g(w;) = dg(0;) for some o; € Der(AW ®@ AV). Put
Dy =D and D;;; = <pi_1 o D; o p; for p; = id — 0; ® w; inductively for i =1, .., k,
which induce the changes of basis:

@; - (AVVz & AV, Di+1) ® (A(wl, ey wl),O) = (AWi_l & AVv7 Dz) ® (A(wl, ooy wi_l), 0)

for W = W; & Q{wy, .., w;} [10, Lemma 1.1] (the proof of [28, Lemma A]). Thus
there is a DGA-isomorphism

pro--opp: (AW, @ AV, Diy1) @ (Alwy, .., w),0) = (AW @ AV, D).
The model of the pull-back

Bo<~—Eg
fo

is given by the push-out
(AW, dp) — (AW}, @ AV, D)
(AW,dg) —— (AW @ AV, D)

with D|aw, = dp. Notice that M (F) = (AW}, ® AV, D) = (AW}, ® AV, Dy41) and
then the model of g : Xg — F is given by the projection p : (AW, ® AV, Dy11) —
(AV, Dy11) = (AV,d). We have the DGA-commutative diagrams

(A(w17 ..,’lUk),O) ® (AWk ® AV7 Dk+1) - (AWk ® A‘/a Dk-‘rl)

Lplo-uogaklm ip

(AW & AV, D) (AV,d)

and
(A(wl, ..,wk), 0) <~ (A(wl, ..,wk),O) (24 (AWk ® AV, Dk+1)

M(a)T :T(g@lo'“(ﬂpk)l
(AW, dp) (AW @ AV, D).

They are the models of the diagrams in Theorem 1.3.

The converse is given as follows. The odd-spherical generators a; : S&i — K%
By are not in G(Bgp) from the assumption [10, Lemma 1.1]. On the other hand,
'(p;i'sai € G(Eg) from ¢y, : Eg =~ F x Sg! x -+ x Sg*. Since fg o ¢;;|Sgi ~ q;,
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we have a; € O(fg) from Definition B. O

From Theorems 1.2, 1.3 and Proposition 2.4, we have

Corollary 2.5. For maps f:Y — Z and g : X =Y, if there is a splitting V¥fog.q :
Xo > F x K as in Theorem 1.3, where a map a : K = (8™ x --- x 8™ )g — Zg
makes odd-spherical generators of Zg, then k < o(f) + o(g). Also,

(i) Suppose O(fg o gg) = O(fg) ® O(gq). If elements a : K — Yy of O(gg) and b :
K' — Zg of O(fg) make both odd-spherical generators, then there is a decomposition
Xo ~ F x K x K' for some rational space F.

(i1) Suppose that g is an r.G-map. If there is a splitting V¥ og.0 : Xo = F x K as in
Theorem 1.3, then it deduces a splitting V5.q : Yo =~ F' x K for some rational space
F.

Remark 2.6. (1) Put B the homogeneous space SU(6)/SU(3) x SU(3) (SU(n)
is a special unitary group), whose model is given by (A(z,y,v1,v2,v3),dp) with
lz| = 4, ly| = 6, |v1] = 7, |va] = 9, |v3] = 11, dpxr = dpy = 0, dgv; = 22,
dpve = xy and dgvz = y? [8, p.486]. For a map f : E — B of the KS-extension
(A(z,y,v1,v2,v3),dg) — (Ax,y,v1,v2,v3,v), D) with |v| = 3 and Dv = z, we
have o(f) = 0 but there is a splitting 17, : Eg ~ F x (87 x §%)g for a map of
(non-spherical) Gottlieb elements a : (57 x $%)g — Bg and F = S. We note
(S” x §%)g = K4 in Theorem 2.7 below.

(2) For amap f : E — B, if an element ¢ : K = (8™ x --- x §™)g — Bg of
O( fo) makes odd-spherical generators of By, then we see from the second diagram
in the proof of Theorem 1.3 that the pull-back fibration Xg — E’ — K of the
homotopy fibration Xqg — Eg — Bg by a : K — By is fibre-homotopically trivial.
Indeed, the model is given by the push-out

(A(wla ..,’U)k),O) - (A(wh <ty wk) ® A‘/a Dk-‘rl) -
M(G)T T(WO“'O%)I
(AW, dp) —— = (AW ® AV, D).

(Awy, .., wk),0) ® (AV,d)

(3) For a map f : E — B, suppose that f, : FF — B, is the pull-back fibration
associated to a map a : K = (8™ x --- x 8™ )g — Bg of odd-spherical generators

of O(fg). Then o(f,) < of) — k.

For a fibration £ : X 4 E 4, B of rational spaces, there is a decomposi-
tion G (E) = S, @1, ® U, C Go(X)® GH,(§) ® Gn(B, E; f) where U,
Tn(f)(Gr(E)) C Gn(B, E; f) [28, Theorem A] and then O, (f) = U, /(Gn(B)NU,).
Here GH, (&) := Ker( mp(f) : Go(E, X;j) — mn(B) ) / Im( m,(j) : Go(X) —

G.(E, X;j)) is called as the nth Gottlieb homology group of £ [15], [18]. From the
manner of [28, Theorem A], we have

Theorem 2.7. For a fibration & : X ENY RNy of rational spaces, suppose that
there is a decomposition E ~ F x S where a map a: S = (5™ x--- x §™)g — F
makes odd-spherical generators. Then S is uniquely decomposed as S = K1 x Ko X
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K3 x K4 where a|g, makes generators of m.(j)G(X), a|k, makes generators of
GH (E), foalk, makes generators of O(f) and f oa|k, makes generators of G(B).
In particular, Ks = * if f is a G-map and Ko = K3 = * if £ is a trivial fibration.

Remark 2.8. Recall Oprea’s rational fibre decomposition theorem([19],[20],[21]):

For a fibration £ : X ERS Ry of rational spaces with finite betti numbers, there is
a subproduct I C QB and a space F such that X ~ F x K and H*(K) = Im(0* :
H*(X) — H*(QB)). The space K is called the Samelson space of £. If we apply
this theorem to the rationalized Hopf fibration S EN 5§ — S, the Samelson space
is the fibre S3 itself. But it can not be K in Theroem 1.3 since o(j) = 0 for the

induced fibration QSé — S(% EX (5 In general, in Theorem 2.7 for the induced

fibration QB 2 X % FE, we have K1 C K as a subproduct, Ko = % and K; N KC = %
for i = 3,4.

Notation (|22, Definition 16],[25, p.314]). For a DGA-map ¢ : (AV,d) — (AZ,d’),
the symbol (v,h) € Der(AV,AZ;¢) means the ¢-derivation sending an element
v € V to h € AZ and the other to zero. Especially (v,1) = v*. The differential is
given as

Sp(v,h) = d'o(v,h) = ()", h)od = (v,d'h) = +i(u;, ¢(ddu; /0v) - h)

for a basis {u;} of V. If ¢ = M (f) or a KS-extension of M(f), we denote ¢, simply
as dr. We often use the symbol (x, ) in the following section.

3. Examples

Fix the KS-model of a based map f : E — B as a DGA-map i : (AW,dp) —
(AW ®AV, D), where D|w = dp and (AV, D) = (AV,d) = M(X) for the homotopy
fiber X of f.

Example 3.1. Suppose dim H*(E;Q) < oo. If B is pure; ie., dimW < oo,
dpWedd ¢ AWeve™ and dgWe*" = 0, then any map f : E — B is an 1.G-
map. In fact, since G(Egp) has generators of odd degrees [1, Theorem III], we have
7(flo : G(Eg) = Goaa(Eq) — Todd(Bg) = G(Bg). In particular, a map whose
target is a homogeneous space is an r.G-map.

Example 3.2. We note some rational splittings obtained from non-r.G-maps.

(1) Put an odd spherical fibration S™ — E 1, B where M(S™) = (A(v),0) and
M(B) = (AM(wy,wa, -+ ,wap,u),dp) (n > 1) with m = |v| = |w1| + |we| — 1,
|wi], -, |wan|, |u| odd. When dpu = wiwsy---wy, and Dv = wiwy, we have
S(wi 1)) = D(wi,1)(w) + (wi, )D(w) = (wi,)Du = (wi, )(wy - ws,) =
(=) Lwyw; - - - Wi -+ Way. Then Sp((wi, 1) + (—1)*(u,vws - - - Wi “wap)) = 0 for
i=3,---,2n. Thus O(fp) = Q{wj, - ,w3,} from Lemma 2.3; i.e., f is not an
r.G-map. There is a decomposition

EQZFXK:FxS&wslX..,XsJszrJ
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where F' = F’ XSJQ?‘ with M(F") = (A(wy, we,v),d’) with d'w; = 0 and d'v = wyws.

(2) Put M(X) = (A(v,v"),0) and M(B) = (A(wy,ws,ws,wy,u),dg) with
dpw; = 0 and dgu = wywa+wsw, where |w;| are odd (Jv] and |v'| are even). Suppose
that the differential of the model of a map f : £ — B with homotopy fibre X is given
by D(v) = 0, D(v') = wy + wzv. Then we have dg((w1,1) — (u,v") — (wy,v)) = 0.
Thus O(fg) & Q{wj} from Lemma 2.3; i.e., f is not an r.G-map. There is a de-
composition

Eg~F x K = F x S

where F' = F' x K(Q,|v|) with M(F') = (A(ws,wy,u),d’) with d'w; = 0 and
d'u = waws.

(3) Put E = S3 and M(B) = (A(wy,ws,u),dp) with the map of Example 2.2.
Then M (X) 2 (A(v1,v2),0) for the homotopy fibre X and we have

EQzK:S(gm and F =«

in Theorem 1.3. Here M (F) = (AW; ®V, D2) = (A(wa,u,v1,v2), Do) with Dawg =
Dou =0, Dav; = wo and Dave = u (see the proof of Theorem 1.3).

(4) Put E = SU(6)/SU(3) x SU(3), where M (E) = (A(x,y,v1,v2,v3),dg) with
lz| = 4, |y| = 6, dpx = dgy = 0, dgv; = 22, dgvy = 2y and dgvs = y>. Put
M(B) = (Aw,z,y,v1,v2,v3),dp) with |w| = 3, dgw = dpz = 0, dpy = wz,
dgvi = 22, dgve = zy+wuv1, dpvs = y? +2wv, and the KS-extension of f : E — B
is given by (A(w,z,y,v1,v2,v3),dg) — (Aw,z,y,v1,v2,v3,0), D) with |v] = 2,
Dv = w and D = dp for the other elements. Then O(fg) = Q{v},v5}. But Eg can
not non-trivially decompose; i.e., K >~ x if Eg ~ F' x K, from the DGA-structure of
M(E). Thus the splitting of Theorem 1.3 does not fold for non-spherical generators
of B in general.

Example 3.3. A map f : E — B may be an r.G-map even if G(Bg) #
G(Bg, Eg; fg) (see Lemma 1.1).

(1) The Hopf map f : S3—S5? is a G-map and G,,(S?%, S%; f) = m,(S?) for all n
[18, Example 2.7] but m2(S?) = Z # 0 = G2(5?).

(2) Consider the pull-back fibration of the Hopf fibration S% — S7 — §4 §3 —
E % B = CP?, induced by the map CP2 — S* obtained by pinching out the
2-cell. Put M(S3) = (Av,0) and M(CP?) = (A(w,u),dg) with |w| = 2, |u| = 5,
dpw = 0 and dpu = w3. Then the KS-extension is given by (A(w,u),dg) —
(A(w,u,v),D) — (Av,0) with Dv = w?. Then (A(w,u,v),D) = (A(w,v),D) ®
(A, 0); ie., Eg ~ (5% x 5%)g. Then gq is a G-map. In fact, for G(E)g = G3(E)g®
Gs5(E)g, m3(9)o = 0 and 7w5(9)g : G5(E)o = Q{u*} = G5(B)g. In this case,
G(B)g = Q{u*} Cc Q{w*,u*} = G(B, E; g)g from 64((w,1) — (u,v)) = 0.

(3) Put M(X) = (A(v),0) and M(B) = (A(wy,ws, ws,ws,u),dp) with dgw; =0
and dpu = wjwswzw, where the degrees are odd. If D(v) = wiwy + wawy in
a KS-extension, it is an r.G-map by direct calculation. For example, dg(wq,1) =
(u, wowswy) + (v, ws) and dg((w1,1)+0) # 0 for any derivation o # —(wy,1). Thus
O(fg) = 0 from Lemma 2.3. In this case, G(Bg) = Q{u*} but G(Bg, Fg; fo) =
Q{wf,ws, wi, wi, u*} = m.(B)g. In fact, for example, we have w} € G(By, Eg; fo)
from &¢((w1,1) — (u,vwz)) = 0.
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(4) Put M(X) = (A(v,v"),0) and M(B) = (A(wy,we,ws, wq,u),dp) with
dpw; =0 and dpu = wywowsw, where the degrees are odd. If D(v) = wiwy 4+ w3’
and D(v') = wswy in a KS-extension, by direct calculation, we see O(fg) = 0 from
Lemma 2.3. In this case, G(Bg) = Q{u*} but G(Bg, Eg; fqo) = 7«(B)g.

Remark 3.4. Put h : B — Baut; X the classifying map of a fibration of finite

complexes £ : X 2, £ L. B.If the rationalized Gottlieb sequence [15],[18] deduces

the short exact sequence 0—G,,(X)g e Gn(E,X;j)o gt mn(B)g — 0 for all

n > 1, the fibration £ is said to be rationally Gottlieb-trivial [18]. It is a notion of
the relative triviality of fibration, too. Recall that f : F — B is rationally Gottlieb-
trivial if and only if m.(h)g = 0 [18, Theorem 4.2]. On the other hand, m.(h)g
cannot determine whether f is an r.G-map or not. For example, the Hopf bundle
St g3 L g2 (1) and the fibration (4) of Example 3.3 are not rationally Gottlieb-
trivial since m.(h)g # 0 from [18, Theorem 3.2], but they are r.G-maps. Also for
the fibrations of Example 3.2 (1) and of Example 3.3 (2), (3), we see m.(h)g = 0
from [18, Theorem 3.2]. From the definition of GH (), we see K5 = * in Theorem
2.7 if £ is rationally Gottlieb-trivial.

Example 3.5. (1) Consider the homotopy pull-back diagram of rational spaces:

/

E-LsE

vl lf

B’ T> B
where M(f) : (AW,dg) — (A(W @v),D), M(g) : (AW,dg) — (A(W @v'),D’) and
the homotopy groups are oddly graded. Suppose M(B) = (A(wy, - ,wapn,u),dp)
with dpw; = 0 and dpu = wy - - - wa, (N = 3).

Put Dv = wy ---wy and D'v' = wyws. Then o(g) = o(f og') = 2n — 2, o(f) =

2n—4 and o(g’) = 2. Then o(fog’) = o(f)+0o(g’), especially O(fog’) = O(f)®O(g').
Thus there is a decomposition

E/ZFXKxK’:FXSgUMX”.XS(SHQM

as in Corollary 2.5 (i). Here M (F) = (A(wy,w2,v"), D") @ (A(v,u),0), K = S('g)wﬂ >

Sg“' for ¢’ and K’ = S(S"sl X o+ee X S(gu"’”l for f. Also from o(f’) = 0, the above
decomposition deduces

I ! lws| . [wan |
B~ F'x 537 x x Sy

as in Corollary 2.5 (ii). Here M (F') = (A(w1,w2,v"), D") @ (Au,0).
Put Dv = wy ---wyq and D'v' = wswg. Then o(g) = 2n — 2, o(f) = 2n — 4,
o(gof'y=o0(fog") =2n—6 and o(f') = o(g’) = 0. Then there is a decomposition

/o el o . s glweal
E'~F x SQ X X SQ
and it deduces

B~ F xSy xox Sl and B P <SP xcox e
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as in Corollary 2.5 (ii). Here M (F) = (A(wy, -+ ,we,v,v"), D")®(Au,0) with D"v =
Dv and D"v' = D'V, M(F') = (A(w1,-- ,ws,v"), D) ® (Au,0) and M(F") =
(A(wy, -+ ,wg,v), D) ® (Au, 0).

(2) Consider maps f : Y — Z and g : X — Y of rational spaces whose
homotopy groups are oddly graded. For even-integers [,m,n with 2 < [ <
m < n, put M(Z) = (A(wy, -+ ,wp,w),dz) with dzw; = 0 and dzw =
wy e Wey, M(Y) = (Alwy, -+, Wy, w,v), D) with Dv = wy---w; and M(X) =
(Awy, - Wy, w,v,u,u’), D) with D'v = wy---w;, D'u = wyws and D'u’ =
wy - Wy, Then O(f) = Q{wiy1, -+ ,wn}, O(g) = Q{ws, -+ ,w;} and O(f o g) =
Qfws, -+ ,w;, W1, ,wn . Thuso(f) =n—1,0(g) =1—-2,0(fog) =l—m+n—2
and in particular o(f) + o(g) — o(f o g) = m — [ can be arbitrarily large.

Example 3.6. For the homotopy set [E, B] of based maps from E to B, define the
subset G'(E, B) := {[f] € [E,B] | fisa G-map}. A map f from E to B is said
to be a cyclic map if (f|1) : EV B — B admits an extension F' : E x B — B [26].
The set of homotopy classes of cyclic maps f : E — B is denoted as G(F, B). Since
a cyclic map is a G-map from Im 7.(f) C G(B) [24, Lemma 2.1]([16, Corollary
2.2]), there is an inclusion G(F, B) C G/(E, B). The quotient map f : G — G/K
for a Lie group G and any closed subgroup K is a cyclic map [24]. Also the Hopf
map 7 : S® — S? is a cyclic map. From [14, Theorem 2.1], the map 7 induces
. (S3) =2 G, (S?) for all n. Therefore, if a space E is 2-connected, then any map
f:E — S?isa G-map. A Gottlieb map is not a cyclic map in general. For example,
the identity map S?" = S2" is not a cyclic map [16, Theorem 3.2] but of course
a G-map. In general, a self-equivalence map f : B = B is a G-map. We note that
a cyclic map factors through an H-space, which entails numerous consequences for
a cyclic map [16]. But, for our G-map, it seems difficult to search such a useful
property.

(1) When H*(B;Q) = Qw]/(w**1) with |w| = 2n, recall that G(Eg, Bg)
H*1)=1(E: Q) [16, Example 4.4]. On the other hand, G'(Eq, Bo) = [Eg, Bo)
A x gD -1(B: Q) where A = {a € H?>"(E;Q)|a**! = 0}.

(2) When H*(B; Q) = Qw] ® A(z,y)/(wzy + w®) with |w| = 2, |z = 3,]y| =
5. Then B is a cohomological symplectic space with formal dimension 16 where
M(B) =2 (AW,dp) = (A(w,z,y,u),dg) with |u| = 9, dpw = dpz = dpy = 0
and dpu = wry + w®. Put E = 83 x §% x §% ie., M(E) = (A(v1,v2,v3),0) with
|vi] = 3,|va] = 5,|us] = 9. From degree arguments we can put M(f)(w) = 0,
M(f)(x) = avi, M(f)(y) = bue, M(f)(u) = cvs for some a,b,c € Q. Note that, if
a#0, b# 0 and c # 0, it is rational homotopy equivalent to the S!-fibration S' —
E — B ~ ES! x5 E, where the model is (AW, dg) — (AW ® Av, D) — (Av,0)
with |v| =1 and Dv = w [9]. We see that f is an r.G-map if and only if a=0=0
since G(E)q = Q{v},v3,vi} and G(B)g = Q{u*}. Thus [Eg, Bg] 2 Q x Q x Q by
f@ = (avbv C) and G/(EQ7BQ) = G(EQ7BQ) =Q by f@ = (0,0,C).

[t

Example 3.7. Put P,(Y) the nth center of the homotopy Lie algebra 7, (2Y); i.e.,
the subgroup of elements a in m,(Y") with [a,b] = 0 (Whitehead product) for all
be m(Y). AspaceY is called a W-space if P, (Y) = m,(Y) for all n [24, Definition
1.8(b)].
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Definition C. We will call a map f: E — B a W-map if 7, (f)P.(E) C P,(B) for
all n.

For example, if 7. (f) is surjective, f is a W-map. In spaces, there are the impli-
cations: ‘H-space = G-space = W-space’ [24]. But ‘G-map = W-map’ is false
in general. For example, put M(B) = (A(wy, w2, u),dp) with |w;| odd, dgw; = 0
and dpu = wiwsy. If the KS-extension M(B) — (A(w,ws,u,v1,va,v3,v4), D) of
amap f: EF — B is given by Dv; = Dvy = 0, Dvg = w; and Dvy = wauvyva,
then fg is a G-map but not a W-map since wj ¢ G.(Eg) but wi € P.(Eg) and
P,(Bg) = Q{u"}.

Example 3.8. For a fibration, D.Gottlieb proposed a question: Which homotopy
equivalences of the fiber into itself can be extended to fiber homotopy equivalences of
the total space into itself ? [6, §5]. We consider a question: Which map f: F — B
can be extended to a map between fibrations over a sphere, that is, for a fibrations
£€:E — E' — S"! does there exist a fibration n : B — B’ — S"*! and a map
f'+ E' — B’ such that the diagram

(Z) EF——F —— Sn-‘,—l

fJ/ f
v

B—— B/ —— gn+l

homotopically commutes ? If f : E — B is extended to a map between £ and 7,
from the result [6] of Gottlieb, we have a commutative diagram for all n

a5,
(1) Ty (S"TY) S Ga(E)

anill \Lﬂ'n(f)

Gn(B) —S— 7,(B),

where 0,11 is the n 4+ 1th connecting homomorphisms in the long exact homotopy
sequence of fibration. Therefore we have

Claim: If f : E — B is not a G-map, then there is an E-fibration over a sphere
where f can not be extended to the map f' satisfying (4).

In fact, suppose that 0 # 7, (f)(z) € Gn(B) for some = € G, (F). Then there is
a non-trivial fibration &, : E — E' — S"*! with 823_1(34) = x for the generator y
of mp11(S™*1) [12, Thorem 1.2]. Here &, is constructed as follows ([21, page 11]).
Choose a preimage & of z under the evaluation map m,(aut1 E) — G, (E). From
Tnt1(Baut1 E) & m,(aut1 E), we may consider & € m,41(Baut; E) with represen-
tative S"*! — Baut, E. Pull back the universal fibration over this map to get &,.
On the other hand, for any B-fibration n over S"*!, G,(B) 3 8], (y) # 7 (f)(x)
from the assumption. Therefore (i7) does not commute.

But to be a G-map is not sufficient for the above extension problem. Let f :
E = 5% x §° — S% = B be the projection given by f(a,b) = b. Evidently this is a
G-map. Suppose that a fibration ¢ : E — E’ — S3 is given by a classifying map h
with m(h)g : m3(5%)g = m3(Baut1S® x S°)g. Then the KS-extension of ¢ is given
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by (A(w),0) — (A(w,v,v"), D) — (A(v,v"),0) with D(v) =0, D(v') = wv, |w| = 3,
|v] = 3 and |v'| = 5 [18, Theorem 3.2]. Then for any fibration n: B = S°> — B’ —
S3, there is not a map f’ that satisfies (i) since 7 is rationally trivial from degree
arguments.

Example 3.9. In Example 3.2(1), we see an example of “non-Gottlieb” map whose
homotopy fibre X has the rational homotopy type of an odd sphere $2*+1. But if the
homotopy fibre X has the rational homotopy type of an even sphere $27, then a map
f is an r.G-map. Indeed, put M(S?") = (A(z,y),d) with |z| = 2n, |y| = 4n — 1,
dr = 0 and dy = 2%. We know that Dxr = 0 and Dy = 22 + ax + b for some
a,b € AW in a KS-extension. Suppose w € W and w* ¢ G(Bg). Then we have, for
any o; € AW and 3; € AW @ AT (z,y) with W = Q{w; }ier,

Op((w, 1) + (Y winaa)) # 67((Y_ wis B:)
i€l icl
in Der,| (AW, AV @ AW). Tt deduces G(Bg, Eq; fo) C G(Bg) from Theorem 2.1
and then f is an r.G-map from Lemma 1.1.

Recall that an elliptic space is one whose rational homology and rational ho-
motopy are both finite dimensional and that an elliptic space X is said to be
an Fyp-space if the Euler characteristic is positive [2]. When X is an Fy-space,
for some even degree elements x1,..,x;, there is an isomorphism H*(X;Q) =
Q[ajla e axl}/(fh o afl) with a regular sequence (fla e 7fl) in Q[xh o axl}; i'e'7
9fs € (fis-+ , fi1) implies g € (fi, -+, fi_1) for any g € Qry,--- 2] and all i.
For example, S?" is an Fy-space with H*(S?"; Q) = Q[z]/(2?). For an Fy-space X,
S.Halperin conjectures that Dz; = 0 for ¢ = 1,..;1, which deduces a fibration with
fibre X is totally non-cohomologous to zero [2]. For example, it holds when X is a
homogeneous space [23]. If the homotopy fibre X of a map f is an Fp-space, then
is f an r.G-map ?
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