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A RATIONAL OBSTRUCTION TO BE A GOTTLIEB MAP

TOSHIHIRO YAMAGUCHI

(communicated by James Stasheff)

Abstract
We investigate Gottlieb maps, which are maps f : E →

B that induce the maps between the Gottlieb groups
πn(f)|Gn(E) : Gn(E) → Gn(B) for all n, from a rational homo-
topy theory point of view. We will define the obstruction group
O(f) to be a Gottlieb map and a numerical invariant o(f). It
naturally deduces a relative splitting of E in certain cases. We
also illustrate several rational examples of Gottlieb maps and
non-Gottlieb maps by using derivation arguments in Sullivan
models.

1. Introduction

The nth Gottlieb group (evaluation subgroup of homotopy group) Gn(B) of
a path connected CW complex B with basepoint ∗ is the subgroup of the nth
homotopy group πn(B) of B consisting of homotopy classes of based maps a : Sn →
B such that the wedge (a|idB) : Sn ∨ B → B extends to a map Fa : Sn × B → B
[7]. The Gottlieb group is a very interesting homotopy invariant (e.g., see [21]) but
the calculations are difficult even for spheres [4]. It is well known that the Gottlieb
group fails to be a functor since, generally, a based map f : E → B does not yield
a homomorphism π∗(f)|G∗(E) : G∗(E) → G∗(B) for π∗(f) : π∗(E) → π∗(B). For
example, i : E = S1 ↪→ S1 ∨ S1 = B does not induce π1(i)|G1(E) : G1(E) → G1(B)
since G1(S1) = Z [7, Theorem 5.4] but G1(S1 ∨ S1) = 0 [7, Theorem 3.1]. Recall
that a space B is said to be a Gottlieb space (or simply G-space in this paper) if
Gn(B) = πn(B) for all n. For example, an H-space is a G-space. It is interesting to
consider when is a space a G-space [7],[24],[12]. In this paper, we will give a similar
definition for a map and consider when is a map such a map.

Definition A. If a map f : E → B induces πn(f)Gn(E) ⊂ Gn(B) for all n, we call
it a Gottlieb map (or simply G-map in this paper).

We note some sufficient conditions to be a G-map. If B is a G-space, any map
f : E → B is a G-map. So ‘G-map’ is a natural generalization of ‘G-space’. When

It is a pleasure to thank someone for his kind and useful suggestions for the first version of this
paper. He informed me the works of [19], [20], [10], [3] and indicated that they are closely related
to the splitting of Theorem 1.3. Also he pointed out a mistake in Lemma 2.3.
Received November 05, 2009, revised February 14, 2010; published on March 17, 2010.
2000 Mathematics Subject Classification: 55P62,55R05,55Q70.
Key words and phrases: Gottlieb group, Gottlieb space, Gottlieb map, Sullivan minimal model,
derivation.
c© 2010, Toshihiro Yamaguchi. Permission to copy for private use granted.



Journal of Homotopy and Related Structures, vol. 5(1), 2010 98

E = Sn, a G-map f is an nth Gottlieb element of B; i.e., [f ] ∈ Gn(B). Also the
projection Sd(n+1)−1 → FPn for d = dimR F is a G-map under a certain condition
[5]. Here FPn is the n-projective space over F = R,C,H. If a map f is homotopic to

the constant map; i.e., f ' ∗, then it is a G-map. Put X
j→ E

f→ B the homotopy
fibration where X is the homotopy fiber of f . Note that f is a G-map if the fibration
is fibre-homotopically trivial. Also the connecting map ∂ : ΩB → X is a G-map [6].

The definition of Gn(B) is generalized by replacing the identity by an arbitrary
based map f : E → B [27]. The nth evaluation subgroup Gn(B, E; f) of the map f
is the subgroup of πn(B) for the evaluation map map(E,B; f) → B. It is represented
by maps a : Sn → B such that (a|f) : Sn∨E → B extends to a map Fa : Sn×E →
B. Put G(Y ) = ⊕i>0Gi(Y ) for a space Y and G(B, E; f) = ⊕i>0Gi(B, E; f). ¿From
the definitions, there is a map π∗(f) : G(E) → G(B,E; f) and G(B, E; f) ⊃ G(B).
Therefore, the following is obvious.

Lemma 1.1. If G(B, E; f) ⊂ G(B), then f : E → B is a G-map.

So if f has a right homotopy inverse, f is a G-map [7, Proposition 1-4]([28,

Remark 3]). For example, since the free loop fibration ΩX → LX
f→ X has a

section, the evaluation map f is a G-map. See §3 for the other sufficient conditions.
Suppose E and B have the homotopy types of nilpotent CW complexes. Put

eB : B → BQ and fQ = eB ◦ f : E → BQ to be the rationalizations of B and
f : E → B, respectively [11]. Then πn(BQ) ∼= πn(B)Q := πn(B) ⊗ Q for n > 1.
By the universality of rationalization, fQ is equivalent to f̃Q : EQ → BQ, often we
do not distinguish from fQ in this paper. When E is a finite complex, Gn(EQ) ∼=
Gn(E)Q := Gn(E)⊗Q [13] and G(EQ) is oddly graded [1]. Recall that BQ is a G-
space if and only if it is an H-space. But it seems difficult to search a useful necessary
and sufficient condition to be a rationalized G-map. If a map f : E → B induces
π∗(fQ)G(E) ⊂ G(BQ) or π∗(fQ)G(EQ) ⊂ G(BQ), we call f a rational Gottlieb map
(or simply r.G-map). Of course, a G-map between nilpotent spaces is an r.G-map.
For a map, we can define an obstruction group:

Definition B. The nth obstruction group of a map f : E → B to be a G-map is
given by On(f) := Im( πn(f)|Gn(E) ) ⊂ πn(B)/Gn(B). Namely,

On(f) := Im ( Gn(E)
πn(f)→ πn(B)³πn(B)/Gn(B) ).

Also put O(f) := ⊕n>0On(f) and denote dimO(fQ) as o(f).

Roughly speaking, On(f) is of “non-Gottlieb” elements in πn(B) yet “Gottlieb”
in πn(E). Recall that G1(B) is contained in the center of π1(B) [7, Corollary 2.4].
We have that O(f) = 0 if and only if f is a G-map. Note that o(f) is a numerical ra-
tional homotopy invariant of a map with 0 6 o(f) 6 min{dim G(EQ), dim π∗(B)Q−
dim G(BQ)} and it is a measure of the rational non-triviality of the homotopy fibra-
tion X → E → B. If f : Y → Z and g : X → Y are G-maps, then the composition
f ◦g : X → Z is a G-map from π∗(f)◦π∗(g) = π∗(f ◦g). It induces that o(f ◦g) = 0
if o(f) = 0 and o(g) = 0. It is generalized as

Theorem 1.2. For any maps f : Y → Z and g : X → Y between simply connected
complexes of finite type, there is an inequality: o(f ◦ g) 6 o(f) + o(g).
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Notice that an element of O(fQ) is represented by a map from the product
of rationalized spheres a : K = Sn1

Q × · · · × Snk

Q → BQ by certain composi-
tions ([3, p.494]). Suppose that a makes odd-spherical generators. Then there are

a rational space Ba and a fibration Ba
ja→ BQ

pa→ K given by the KS-extension
(Λ(w1, .., wk), 0) → (ΛW,dB) → (ΛWk, dB) = M(Ba) with |wi| = ni, w∗i = a|Sni

Q
and W = Q{w1, .., wk} ⊕Wk in Sullivan’s model theory [2] (see §2), which satisfies

pa ◦ a ' idK . Put XQ
g→ F

fa→ Ba the pull-back fibration of XQ → EQ
fQ→ BQ by ja.

We call it the pull-back fibration associated to a. Oprea’s homotopical splittings of
rational spaces ([19], [20], [10], [3]) implies the following result.

Theorem 1.3. Let f : E → B be a map between simply connected complexes of
finite type and X

j→ E
f→ B the homotopy fibration. If a map a : K = (Sn1 × · · · ×

Snk)Q → BQ of odd-spherical generators of BQ represents an element in O(fQ), then
the fibre-inclusion g : XQ → F of the pull-back fibration associated to a induces a
splitting ψf,a : EQ ' F ×K such that

XQ

g

²²

jQ // EQ

' ψf,a

²²
F

i1
// F ×K

and EQ
fQ // BQ

F ×K

'ψ−1
f,a

OO

K

a

OO

i2
oo

with i1(x) = (x, ∗) and i2(x) = (∗, x) homotopically commute. Moreover, this split-
ting does not come from that of BQ; i.e., the maps ai : Sni

Q ↪→ K
a→ BQ cannot be

extended to Sni

Q ×B′
i ' BQ for any space B′

i.
Conversely, if there exists such a splitting ψf,a : EQ ' F ×K for a map f : E →

B, then the map a : K → BQ of odd-spherical generators represents an element of
O(fQ), in particular k 6 o(f).

Thus, if a map fQ : EQ → BQ is a G-map, then there exists no above splitting
ψf,a of EQ. That is a necessary condition to be a G-map but is not sufficient (see
Example 3.2(4)). Notice that Oprea [19, Theorem 1], [20, (RFDT)] gives a rational
decomposition of the fibre X of a fibration X → E → B (see Remark 2.8). Also
Halperin [10, Lemma 1.1] and Félix-Lupton [3, Theorem 1.6] (when we restrict their
generalized evaluation map [3, Definition 1.1] to a : K → EQ itself) give a rational
decomposition of a space E and our theorem seems a relative one of it.

Though Definition A is defined for all connected based CW complexes, we fo-
cus on simply connected CW complexes E with rational homology of finite type
with dim G(EQ) < ∞ when we consider rational homotopy types (Sullivan mini-
mal models). We do not distinguish between a map and the homotopy class that it
represents. Our tool is the derivations ([1], [17],[18],[25]) of Sullivan models [25],
which are prepared in §2. So we assume that the reader is familiar with the basics of
rational homotopy theory [2]. We see a property of O(fQ) in Lemma 2.3 and prove
Theorem 1.2 and Theorem 1.3 in §2. We will illustrate some rational examples in §3,
in which we note examples of r.G-maps which do not satisfy Lemma 1.1 in Exam-
ple 3.3. Also we mention interactions with Gottlieb trivialities [18] in Remark 3.4,
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cyclic maps [26]([16]) in Example 3.6 and W-maps (see Definition C) in Example
3.7.

2. Derivations of Sullivan models

We use the Sullivan minimal model M(Y ) of a nilpotent space Y of finite type. It
is a free Q-commutative differential graded algebra (DGA) (ΛV, d) with a Q-graded
vector space V =

⊕
i>1 V i where dim V i < ∞ and a decomposable differential; i.e.,

d(V i) ⊂ (Λ+V · Λ+V )i+1 and d ◦ d = 0. Here Λ+V is the ideal of ΛV generated
by elements of positive degree. Denote the degree of a homogeneous element x of a
graded algebra as |x| and the Q-vector space of basis {vi}i as Q{vi}i. Then xy =
(−1)|x||y|yx and d(xy) = d(x)y + (−1)|x|xd(y). A map f : X → Y has a minimal
model which is a DGA-map M(f) : M(Y ) → M(X). Notice that M(Y ) determines
the rational homotopy type of Y . Especially there is an isomorphism Homi(V,Q) ∼=
πi(X)Q. See [2] for a general introduction and the standard notations.

Let A be a DGA A = (A∗, dA) with A∗ = ⊕i>0A
i, A0 = Q, A1 = 0 and the

augmentation ε : A → Q. Define DeriA the vector space of self-derivations of A
decreasing the degree by i > 0, where θ(xy) = θ(x)y + (−1)i|x|xθ(y) for θ ∈ DeriA.
We denote ⊕i>0DeriA by DerA. The boundary operator δ : Der∗A → Der∗−1A
is defined by δ(σ) = dA ◦ σ − (−1)|σ|σ ◦ dA. For a DGA-map φ : A → B,
define a φ-derivation of degree n to be a linear map θ : A∗ → B∗−n with
θ(xy) = θ(x)φ(y) + (−1)n|x|φ(x)θ(y) and Der(A,B; φ) the vector space of φ-
derivations. The boundary operator δφ : Der∗(A,B; φ) → Der∗−1(A,B; φ) is
defined by δφ(σ) = dB ◦ σ − (−1)|σ|σ ◦ dA. Note Der∗(A,A; idA) = Der∗(A).
For φ : A → B, the composition with ε′ : B → Q induces a chain map
ε′∗ : Dern(A,B; φ) → Dern(A,Q; ε). For a minimal model A = (ΛZ, dA), de-
fine Gn(A,B; φ) := Im(H(ε′∗) : Hn(Der(A,B;φ)) → Homn(Z,Q)). Especially
G∗(A, A; idA) = G∗(A). Note that z∗ ∈ Hom(Z,Q) (z∗ is the dual of the basis ele-
ment z) is in Gn(A,B;φ) if and only if z∗ extends to a derivation θ ∈ Der(A,B;φ)
with δφ(θ) = 0.

Theorem 2.1. [1],[17],[25] When E and B are simply connected, Gn(BQ, EQ; fQ)
∼= Gn(M(B),M(E); M(f)), in particular Gn(BQ) ∼= Gn(M(B)).

Let ξ : X
j→ E

f→ B be a fibration. Put M(B) = (ΛW,dB). Then the model
(not minimal in general) of E → B is given by a KS(Koszul-Sullivan)-extension
(ΛW,dB) → (ΛW ⊗ ΛV, D) with D|ΛW = dB and a DGA-commutative diagram

(ΛW, dB)
i // (ΛW ⊗ ΛV, D)

ψ'
²²

// (ΛV, D)

∼=
²²

(ΛV, d)

M(B)
M(f) // M(E)

M(j) // M(X),

where ‘'’ means to be quasi-isomorphic [2, §15]. Then Gn(M(B),M(E); M(f)) =
Gn((ΛW,dB), ((ΛW ⊗ΛV, D); i). In this paper, we consider the models of r.G-maps
mainly in KS-extensions.
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Example 2.2. In general, ψ is not a DGA-isomorphism. For example, put M(E) =
M(S3) = (Λ(x), 0) and M(B) = (Λ(w1, w2, u), dB) with |wi| = 3, dBwi = 0 and
dBu = w1w2. Suppose that a map f : S3 → B satisfies M(f)(w1) = x, M(f)(w2) =
0, M(f)(u) = 0. Then (ΛV,D) = (Λ(v1, v2), 0) with |v1| = 2 and |v2| = 4 and
ψ : (Λ(w1, w2, u, v1, v2), D) → (Λx, 0) is given by Dv1 = w2, Dv2 = u + w1v1,
ψ(w1) = x and the others to zero. It is quasi-isomorphic but not isomorphic.

From Theorem 2.1 and Definition B for a map f : E → B, we have

Lemma 2.3. For W = Q{wi}i∈I where π∗(B)Q = Hom(W,Q) with |wi| 6 |wj |
if i < j, put I ′ := {i ∈ I|[wi] 6= 0 in H∗(W ⊕ V, Q(D))}. Then there is an
isomorphism

O(fQ) ∼= Q{w∗i , i ∈ I ′| w∗i satisfies (i) and (ii) }
where (i) δE(w∗i +σ) = 0 for some σ ∈ Der(ΛW ⊗ΛV, δE) with σ(wj) = 0 for j 6 i
and (ii) δB(w∗i + τ) 6= 0 for any τ ∈ Der(ΛW, δB) with τ(wj) = 0 for j 6 i.

Here Q(D) is the linear part of D. For example, O(f)Q ∼= Q{w∗1} in Example 2.2
since in particular δE((w1, 1)− (u, v1)) = 0 (see Notation below).

Theorem 1.2 follows from

Proposition 2.4. For any maps f : Y → Z and g : X → Y between simply
connected spaces, there is an inclusion O(fQ ◦ gQ) ⊂ O(fQ)⊕O(gQ).

Proof. Put a model of f ◦ g : X → Y → Z as the commutative diagram

(ΛW, dB) // (ΛW ⊗ ΛV, D)

'
²²

// (ΛW ⊗ ΛV ⊗ ΛU, D′)

'
²²

M(Z)
M(f) // M(Y )

M(g) // M(X),

where D|ΛW = dZ and D′|ΛW⊗ΛV = D. For W = Q{wi}i∈I , I ′ = {i ∈ I|[wi] 6=
0 in H∗(W⊕V, Q(D))} and I ′ ⊃ I ′′ := {i ∈ I|[wi] 6= 0 in H∗(W⊕V ⊕U,Q(D′))},
from Lemma 2.3,

O(gQ) ∩W ∗ = Q{w∗i , i ∈ I ′′| w∗i satisfies (i) and (ii) }
where (i) δX(w∗i + σ) = 0 for some σ ∈ Der(ΛW ⊗ ΛV ⊗ ΛU) with σ(wj) = 0 for
j 6 i and (ii) δY (w∗i + τ) 6= 0 for any τ ∈ Der(ΛW ⊗ΛV ) with τ(wj) = 0 for j 6 i,

O(fQ) = Q{w∗i , i ∈ I ′| w∗i satisfies (iii) and (iv) }
where (iii) δY (w∗i + σ) = 0 for some σ ∈ Der(ΛW ⊗ ΛV ) with σ(wj) = 0 for j 6 i
and (iv) δZ(w∗i + τ) 6= 0 for any τ ∈ Der(ΛW ) with τ(wj) = 0 for j 6 i, and

O(fQ ◦ gQ) = Q{w∗i , i ∈ I ′′| w∗i satisfies (i) and (iv) }.
Since (ii) and (iii) contradict, we have O(fQ) ∩ O(gQ) = 0 in W ∗ ⊕ V ∗. Also
if w∗i ∈ O(fQ ◦ gQ) and w∗i 6∈ O(fQ), then w∗i satisfies (i) but not (iii). Thus
w∗i ∈ O(gQ).
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Proof of Theorem 1.3. Put the KS-extension of f (ΛW,dB) → (ΛW ⊗ ΛV, D).
For a sub-basis {w1, .., wk} of W , put O(fQ) ⊃ Q{w∗1 , .., w∗k} with |wi| = ni odd
and H∗(K;Q) ∼= Λ(w1, .., wk). The assumption induces D(wi) = dB(wi) = 0 for
i = 1, .., k. From Lemma 2.3, δE(w∗i ) = δE(σi) for some σi ∈ Der(ΛW ⊗ ΛV ). Put
D1 = D and Di+1 = ϕ−1

i ◦Di ◦ ϕi for ϕi = id− σi ⊗ wi inductively for i = 1, .., k,
which induce the changes of basis:

ϕi : (ΛWi ⊗ ΛV, Di+1)⊗ (Λ(w1, .., wi), 0) ∼= (ΛWi−1 ⊗ ΛV, Di)⊗ (Λ(w1, .., wi−1), 0)

for W = Wi ⊕ Q{w1, .., wi} [10, Lemma 1.1] (the proof of [28, Lemma A]). Thus
there is a DGA-isomorphism

ϕ1 ◦ · · · ◦ ϕk : (ΛWk ⊗ ΛV, Dk+1)⊗ (Λ(w1, .., wk), 0) ∼= (ΛW ⊗ ΛV, D).

The model of the pull-back

Ba

ja

²²

F
faoo

²²
BQ EQ

fQ
oo

is given by the push-out

(ΛWk, dB) // (ΛWk ⊗ ΛV, D)

(ΛW,dB) //

OO

(ΛW ⊗ ΛV, D)

OO

with D|ΛWk
= dB . Notice that M(F ) = (ΛWk ⊗ ΛV, D) ∼= (ΛWk ⊗ ΛV,Dk+1) and

then the model of g : XQ → F is given by the projection p : (ΛWk ⊗ ΛV, Dk+1) →
(ΛV, Dk+1) = (ΛV, d). We have the DGA-commutative diagrams

(Λ(w1, .., wk), 0)⊗ (ΛWk ⊗ ΛV, Dk+1)

ϕ1◦···◦ϕk ∼=
²²

// (ΛWk ⊗ ΛV, Dk+1)

p

²²
(ΛW ⊗ ΛV, D) // (ΛV, d)

and

(Λ(w1, .., wk), 0) (Λ(w1, .., wk), 0)⊗ (ΛWk ⊗ ΛV,Dk+1)oo

(ΛW,dB)

M(a)

OO

// (ΛW ⊗ ΛV,D).

(ϕ1◦···◦ϕk)−1∼=
OO

They are the models of the diagrams in Theorem 1.3.
The converse is given as follows. The odd-spherical generators ai : Sni

Q ↪→ K
a→

BQ are not in G(BQ) from the assumption [10, Lemma 1.1]. On the other hand,
ψ−1

f,a|Sni
Q
∈ G(EQ) from ψf,a : EQ ' F × Sn1

Q × · · · × Snk

Q . Since fQ ◦ ψ−1
f,a|Sni

Q
' ai,
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we have ai ∈ O(fQ) from Definition B.

From Theorems 1.2, 1.3 and Proposition 2.4, we have

Corollary 2.5. For maps f : Y → Z and g : X → Y , if there is a splitting ψf◦g,a :
XQ ' F ×K as in Theorem 1.3, where a map a : K = (Sn1 × · · · × Snk)Q → ZQ
makes odd-spherical generators of ZQ, then k 6 o(f) + o(g). Also,
(i) Suppose O(fQ ◦ gQ) = O(fQ)⊕O(gQ). If elements a : K → YQ of O(gQ) and b :
K ′ → ZQ of O(fQ) make both odd-spherical generators, then there is a decomposition
XQ ' F ×K ×K ′ for some rational space F .
(ii) Suppose that g is an r.G-map. If there is a splitting ψf◦g,a : XQ ' F ×K as in
Theorem 1.3, then it deduces a splitting ψf,a : YQ ' F ′×K for some rational space
F ′.

Remark 2.6. (1) Put B the homogeneous space SU(6)/SU(3) × SU(3) (SU(n)
is a special unitary group), whose model is given by (Λ(x, y, v1, v2, v3), dB) with
|x| = 4, |y| = 6, |v1| = 7, |v2| = 9, |v3| = 11, dBx = dBy = 0, dBv1 = x2,
dBv2 = xy and dBv3 = y2 [8, p.486]. For a map f : E → B of the KS-extension
(Λ(x, y, v1, v2, v3), dB) → (Λ(x, y, v1, v2, v3, v), D) with |v| = 3 and Dv = x, we
have o(f) = 0 but there is a splitting ψf,a : EQ ' F × (S7 × S9)Q for a map of
(non-spherical) Gottlieb elements a : (S7 × S9)Q → BQ and F = S6

Q. We note
(S7 × S9)Q = K4 in Theorem 2.7 below.

(2) For a map f : E → B, if an element a : K = (Sn1 × · · · × Snk)Q → BQ of
O(fQ) makes odd-spherical generators of BQ, then we see from the second diagram
in the proof of Theorem 1.3 that the pull-back fibration XQ → E′ → K of the
homotopy fibration XQ → EQ → BQ by a : K → BQ is fibre-homotopically trivial.
Indeed, the model is given by the push-out

(Λ(w1, .., wk), 0) // (Λ(w1, .., wk)⊗ ΛV, Dk+1) (Λ(w1, .., wk), 0)⊗ (ΛV, d)

(ΛW,dB) //

M(a)

OO

(ΛW ⊗ ΛV,D).

(ϕ1◦···◦ϕk)−1

OO

(3) For a map f : E → B, suppose that fa : F → Ba is the pull-back fibration
associated to a map a : K = (Sn1 × · · · × Snk)Q → BQ of odd-spherical generators
of O(fQ). Then o(fa) 6 o(f)− k.

For a fibration ξ : X
j→ E

f→ B of rational spaces, there is a decomposi-
tion Gn(E) = Sn ⊕ Tn ⊕ Un ⊂ Gn(X) ⊕ GHn(ξ) ⊕ Gn(B, E; f) where Un :=
πn(f)(Gn(E)) ⊂ Gn(B, E; f) [28, Theorem A] and then On(f) = Un/(Gn(B)∩Un).
Here GHn(ξ) := Ker( πn(f) : Gn(E, X; j) → πn(B) ) / Im( πn(j) : Gn(X) →
Gn(E,X; j) ) is called as the nth Gottlieb homology group of ξ [15], [18]. From the
manner of [28, Theorem A], we have

Theorem 2.7. For a fibration ξ : X
j→ E

f→ B of rational spaces, suppose that
there is a decomposition E ' F × S where a map a : S = (Sn1 × · · · × Snk)Q → E
makes odd-spherical generators. Then S is uniquely decomposed as S = K1 ×K2 ×
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K3 × K4 where a|K1 makes generators of π∗(j)G(X), a|K2 makes generators of
GH(ξ), f ◦ a|K3 makes generators of O(f) and f ◦ a|K4 makes generators of G(B).
In particular, K3 = ∗ if f is a G-map and K2 = K3 = ∗ if ξ is a trivial fibration.

Remark 2.8. Recall Oprea’s rational fibre decomposition theorem([19],[20],[21]):

For a fibration ξ : X
j→ E

f→ B of rational spaces with finite betti numbers, there is
a subproduct K ⊂ ΩB and a space F such that X ' F × K and H∗(K) ∼= Im(∂∗ :
H∗(X) → H∗(ΩB)). The space K is called the Samelson space of ξ. If we apply

this theorem to the rationalized Hopf fibration S3
Q

j→ S7
Q → S4

Q, the Samelson space
is the fibre S3

Q itself. But it can not be K in Theroem 1.3 since o(j) = 0 for the

induced fibration ΩS4
Q → S3

Q
j→ S7

Q. In general, in Theorem 2.7 for the induced

fibration ΩB
∂→ X

j→ E, we have K1 ⊂ K as a subproduct, K2 = ∗ and Ki ∩K = ∗
for i = 3, 4.

Notation ([22, Definition 16],[25, p.314]). For a DGA-map φ : (ΛV, d) → (ΛZ, d′),
the symbol (v, h) ∈ Der(ΛV, ΛZ; φ) means the φ-derivation sending an element
v ∈ V to h ∈ ΛZ and the other to zero. Especially (v, 1) = v∗. The differential is
given as

δφ(v, h) = d′ ◦ (v, h)− (−1)|v|−|h|(v, h) ◦ d = (v, d′h)−
∑

i

±i(ui, φ(∂dui/∂v) · h)

for a basis {ui} of V . If φ = M(f) or a KS-extension of M(f), we denote δφ simply
as δf . We often use the symbol (∗, ∗) in the following section.

3. Examples

Fix the KS-model of a based map f : E → B as a DGA-map i : (ΛW,dB) →
(ΛW ⊗ΛV,D), where D|W = dB and (ΛV, D) = (ΛV, d) = M(X) for the homotopy
fiber X of f .

Example 3.1. Suppose dim H∗(E;Q) < ∞. If B is pure; i.e., dimW < ∞,
dBW odd ⊂ ΛW even and dBW even = 0, then any map f : E → B is an r.G-
map. In fact, since G(EQ) has generators of odd degrees [1, Theorem III], we have
π(f)Q : G(EQ) = Godd(EQ) → πodd(BQ) = G(BQ). In particular, a map whose
target is a homogeneous space is an r.G-map.

Example 3.2. We note some rational splittings obtained from non-r.G-maps.
(1) Put an odd spherical fibration Sm → E

f→ B where M(Sm) = (Λ(v), 0) and
M(B) = (Λ(w1, w2, · · · , w2n, u), dB) (n > 1) with m = |v| = |w1| + |w2| − 1,
|w1|, · · · , |w2n|, |u| odd. When dBu = w1w2 · · ·w2n and Dv = w1w2, we have
δ(wi, 1)(u) = D(wi, 1)(u) + (wi, 1)D(u) = (wi, 1)Du = (wi, 1)(w1 · · ·w2n) =
(−1)i−1w1w2 · · · ∨wi · · ·w2n. Then δE((wi, 1) + (−1)i(u, vw3 · · · ∨wi · · ·w2n)) = 0 for
i = 3, · · · , 2n. Thus O(fQ) ∼= Q{w∗3 , · · · , w∗2n} from Lemma 2.3; i.e., f is not an
r.G-map. There is a decomposition

EQ ' F ×K = F × S
|w3|
Q × · · · × S

|w2n|
Q
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where F = F ′×S
|u|
Q with M(F ′) ∼= (Λ(w1, w2, v), d′) with d′wi = 0 and d′v = w1w2.

(2) Put M(X) = (Λ(v, v′), 0) and M(B) = (Λ(w1, w2, w3, w4, u), dB) with
dBwi = 0 and dBu = w1w2+w3w4 where |wi| are odd (|v| and |v′| are even). Suppose
that the differential of the model of a map f : E → B with homotopy fibre X is given
by D(v) = 0, D(v′) = w2 + w3v. Then we have δE((w1, 1) − (u, v′) − (w4, v)) = 0.
Thus O(fQ) ∼= Q{w∗1} from Lemma 2.3; i.e., f is not an r.G-map. There is a de-
composition

EQ ' F ×K = F × S
|w1|
Q

where F = F ′ × K(Q, |v|) with M(F ′) ∼= (Λ(w3, w4, u), d′) with d′wi = 0 and
d′u = w3w4.

(3) Put E = S3 and M(B) = (Λ(w1, w2, u), dB) with the map of Example 2.2.
Then M(X) ∼= (Λ(v1, v2), 0) for the homotopy fibre X and we have

EQ ' K = S
|w1|
Q and F = ∗

in Theorem 1.3. Here M(F ) = (ΛW1⊗V, D2) = (Λ(w2, u, v1, v2), D2) with D2w2 =
D2u = 0, D2v1 = w2 and D2v2 = u (see the proof of Theorem 1.3).

(4) Put E = SU(6)/SU(3)× SU(3), where M(E) = (Λ(x, y, v1, v2, v3), dE) with
|x| = 4, |y| = 6, dEx = dEy = 0, dEv1 = x2, dEv2 = xy and dEv3 = y2. Put
M(B) = (Λ(w, x, y, v1, v2, v3), dB) with |w| = 3, dBw = dBx = 0, dBy = wx,
dBv1 = x2, dBv2 = xy+wv1, dBv3 = y2 +2wv2 and the KS-extension of f : E → B
is given by (Λ(w, x, y, v1, v2, v3), dB) → (Λ(w, x, y, v1, v2, v3, v), D) with |v| = 2,
Dv = w and D = dB for the other elements. Then O(fQ) = Q{v∗1 , v∗2}. But EQ can
not non-trivially decompose; i.e., K ' ∗ if EQ ' F ×K, from the DGA-structure of
M(E). Thus the splitting of Theorem 1.3 does not fold for non-spherical generators
of B in general.

Example 3.3. A map f : E → B may be an r.G-map even if G(BQ) 6=
G(BQ, EQ; fQ) (see Lemma 1.1).

(1) The Hopf map f : S3→S2 is a G-map and Gn(S2, S3; f) = πn(S2) for all n
[18, Example 2.7] but π2(S2) = Z 6= 0 = G2(S2).

(2) Consider the pull-back fibration of the Hopf fibration S3 → S7 → S4, S3 →
E

g→ B = CP 2, induced by the map CP 2 ³ S4 obtained by pinching out the
2-cell. Put M(S3) = (Λv, 0) and M(CP 2) = (Λ(w, u), dB) with |w| = 2, |u| = 5,
dBw = 0 and dBu = w3. Then the KS-extension is given by (Λ(w, u), dB) →
(Λ(w, u, v), D) → (Λv, 0) with Dv = w2. Then (Λ(w, u, v), D) ∼= (Λ(w, v), D) ⊗
(Λu, 0); i.e., EQ ' (S2×S5)Q. Then gQ is a G-map. In fact, for G(E)Q = G3(E)Q⊕
G5(E)Q, π3(g)Q = 0 and π5(g)Q : G5(E)Q = Q{u∗} ∼= G5(B)Q. In this case,
G(B)Q = Q{u∗} ⊂ Q{w∗, u∗} = G(B, E; g)Q from δg((w, 1)− (u, v)) = 0.

(3) Put M(X) = (Λ(v), 0) and M(B) = (Λ(w1, w2, w3, w4, u), dB) with dBwi = 0
and dBu = w1w2w3w4 where the degrees are odd. If D(v) = w1w2 + w3w4 in
a KS-extension, it is an r.G-map by direct calculation. For example, δE(w1, 1) =
(u, w2w3w4)+(v, w2) and δE((w1, 1)+σ) 6= 0 for any derivation σ 6= −(w1, 1). Thus
O(fQ) = 0 from Lemma 2.3. In this case, G(BQ) = Q{u∗} but G(BQ, EQ; fQ) =
Q{w∗1 , w∗2 , w∗3 , w∗4 , u∗} = π∗(B)Q. In fact, for example, we have w∗1 ∈ G(BQ, EQ; fQ)
from δf ((w1, 1)− (u, vw2)) = 0.
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(4) Put M(X) = (Λ(v, v′), 0) and M(B) = (Λ(w1, w2, w3, w4, u), dB) with
dBwi = 0 and dBu = w1w2w3w4 where the degrees are odd. If D(v) = w1w2 +w3v

′

and D(v′) = w3w4 in a KS-extension, by direct calculation, we see O(fQ) = 0 from
Lemma 2.3. In this case, G(BQ) = Q{u∗} but G(BQ, EQ; fQ) = π∗(B)Q.

Remark 3.4. Put h : B → Baut1X the classifying map of a fibration of finite
complexes ξ : X

j→ E
f→ B. If the rationalized Gottlieb sequence [15],[18] deduces

the short exact sequence 0→Gn(X)Q
πn(j)Q→ Gn(E, X; j)Q

πn(f)Q→ πn(B)Q → 0 for all
n > 1, the fibration ξ is said to be rationally Gottlieb-trivial [18]. It is a notion of
the relative triviality of fibration, too. Recall that f : E → B is rationally Gottlieb-
trivial if and only if π∗(h)Q = 0 [18, Theorem 4.2]. On the other hand, π∗(h)Q
cannot determine whether f is an r.G-map or not. For example, the Hopf bundle
S1 → S3 f→ S2 (1) and the fibration (4) of Example 3.3 are not rationally Gottlieb-
trivial since π∗(h)Q 6= 0 from [18, Theorem 3.2], but they are r.G-maps. Also for
the fibrations of Example 3.2 (1) and of Example 3.3 (2), (3), we see π∗(h)Q = 0
from [18, Theorem 3.2]. From the definition of GH(ξ), we see K2 = ∗ in Theorem
2.7 if ξ is rationally Gottlieb-trivial.

Example 3.5. (1) Consider the homotopy pull-back diagram of rational spaces:

E′

f ′

²²

g′ // E

f

²²
B′

g
// B

where M(f) : (ΛW,dB) → (Λ(W ⊕ v), D), M(g) : (ΛW,dB) → (Λ(W ⊕ v′), D′) and
the homotopy groups are oddly graded. Suppose M(B) = (Λ(w1, · · · , w2n, u), dB)
with dBwi = 0 and dBu = w1 · · ·w2n (n > 3).

Put Dv = w1 · · ·w4 and D′v′ = w1w2. Then o(g) = o(f ◦ g′) = 2n − 2, o(f) =
2n−4 and o(g′) = 2. Then o(f◦g′) = o(f)+o(g′), especially O(f◦g′) = O(f)⊕O(g′).
Thus there is a decomposition

E′ ' F ×K ×K ′ = F × S
|w3|
Q × · · · × S

|w2n|
Q

as in Corollary 2.5 (i). Here M(F ) = (Λ(w1, w2, v
′), D′)⊗ (Λ(v, u), 0), K = S

|w3|
Q ×

S
|w4|
Q for g′ and K ′ = S

|w5|
Q × · · · × S

|w2n|
Q for f . Also from o(f ′) = 0, the above

decomposition deduces

B′ ' F ′ × S
|w3|
Q × · · · × S

|w2n|
Q

as in Corollary 2.5 (ii). Here M(F ′) = (Λ(w1, w2, v
′), D′)⊗ (Λu, 0).

Put Dv = w1 · · ·w4 and D′v′ = w5w6. Then o(g) = 2n − 2, o(f) = 2n − 4,
o(g ◦ f ′) = o(f ◦ g′) = 2n− 6 and o(f ′) = o(g′) = 0. Then there is a decomposition

E′ ' F × S
|w7|
Q × · · · × S

|w2n|
Q

and it deduces

B′ ' F ′ × S
|w7|
Q × · · · × S

|w2n|
Q and E ' F ′′ × S

|w7|
Q × · · · × S

|w2n|
Q
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as in Corollary 2.5 (ii). Here M(F ) = (Λ(w1, · · · , w6, v, v′), D′′)⊗(Λu, 0) with D′′v =
Dv and D′′v′ = D′v′, M(F ′) = (Λ(w1, · · · , w6, v

′), D′) ⊗ (Λu, 0) and M(F ′′) =
(Λ(w1, · · · , w6, v), D)⊗ (Λu, 0).

(2) Consider maps f : Y → Z and g : X → Y of rational spaces whose
homotopy groups are oddly graded. For even-integers l, m, n with 2 6 l 6
m 6 n, put M(Z) = (Λ(w1, · · · , wn, w), dZ) with dZwi = 0 and dZw =
w1 · · ·wn, M(Y ) = (Λ(w1, · · · , wn, w, v), D) with Dv = w1 · · ·wl and M(X) =
(Λ(w1, · · · , wn, w, v, u, u′), D′) with D′v = w1 · · ·wl, D′u = w1w2 and D′u′ =
wl · · ·wm. Then O(f) = Q{wl+1, · · · , wn}, O(g) = Q{w3, · · · , wl} and O(f ◦ g) =
Q{w3, · · · , wl, wm+1, · · · , wn}. Thus o(f) = n−l, o(g) = l−2, o(f ◦g) = l−m+n−2
and in particular o(f) + o(g)− o(f ◦ g) = m− l can be arbitrarily large.

Example 3.6. For the homotopy set [E,B] of based maps from E to B, define the
subset G′(E, B) := {[f ] ∈ [E, B] | f is a G-map}. A map f from E to B is said
to be a cyclic map if (f |1) : E ∨ B → B admits an extension F : E × B → B [26].
The set of homotopy classes of cyclic maps f : E → B is denoted as G(E,B). Since
a cyclic map is a G-map from Im π∗(f) ⊂ G(B) [24, Lemma 2.1]([16, Corollary
2.2]), there is an inclusion G(E, B) ⊂ G′(E, B). The quotient map f : G → G/K
for a Lie group G and any closed subgroup K is a cyclic map [24]. Also the Hopf
map η : S3 → S2 is a cyclic map. From [14, Theorem 2.1], the map η induces
πn(S3) ∼= Gn(S2) for all n. Therefore, if a space E is 2-connected, then any map
f : E → S2 is a G-map. A Gottlieb map is not a cyclic map in general. For example,
the identity map S2n =→ S2n is not a cyclic map [16, Theorem 3.2] but of course
a G-map. In general, a self-equivalence map f : B

'→ B is a G-map. We note that
a cyclic map factors through an H-space, which entails numerous consequences for
a cyclic map [16]. But, for our G-map, it seems difficult to search such a useful
property.

(1) When H∗(B;Q) ∼= Q[w]/(wk+1) with |w| = 2n, recall that G(EQ, BQ) ∼=
H2n(k+1)−1(E;Q) [16, Example 4.4]. On the other hand, G′(EQ, BQ) ∼= [EQ, BQ] ∼=
A×H2n(k+1)−1(E;Q) where A = {a ∈ H2n(E;Q)|ak+1 = 0}.

(2) When H∗(B;Q) ∼= Q[w] ⊗ Λ(x, y)/(wxy + w5) with |w| = 2, |x| = 3, |y| =
5. Then B is a cohomological symplectic space with formal dimension 16 where
M(B) ∼= (ΛW,dB) ∼= (Λ(w, x, y, u), dB) with |u| = 9, dBw = dBx = dBy = 0
and dBu = wxy + w5. Put E = S3 × S5 × S9; i.e., M(E) ∼= (Λ(v1, v2, v3), 0) with
|v1| = 3, |v2| = 5, |v3| = 9. From degree arguments we can put M(f)(w) = 0,
M(f)(x) = av1, M(f)(y) = bv2, M(f)(u) = cv3 for some a, b, c ∈ Q. Note that, if
a 6= 0, b 6= 0 and c 6= 0, it is rational homotopy equivalent to the S1-fibration S1 →
E → B ' ES1 ×S1 E, where the model is (ΛW,dB) → (ΛW ⊗ Λv,D) → (Λv, 0)
with |v| = 1 and Dv = w [9]. We see that f is an r.G-map if and only if a = b = 0
since G(E)Q = Q{v∗1 , v∗2 , v∗3} and G(B)Q = Q{u∗}. Thus [EQ, BQ] ∼= Q×Q×Q by
fQ ≡ (a, b, c) and G′(EQ, BQ) = G(EQ, BQ) ∼= Q by fQ ≡ (0, 0, c).

Example 3.7. Put Pn(Y ) the nth center of the homotopy Lie algebra π∗(ΩY ); i.e.,
the subgroup of elements a in πn(Y ) with [a, b] = 0 (Whitehead product) for all
b ∈ π∗(Y ). A space Y is called a W-space if Pn(Y ) = πn(Y ) for all n [24, Definition
1.8(b)].
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Definition C. We will call a map f : E → B a W-map if πn(f)Pn(E) ⊂ Pn(B) for
all n.
For example, if π∗(f) is surjective, f is a W-map. In spaces, there are the impli-
cations: ‘H-space ⇒ G-space ⇒ W-space’ [24]. But ‘G-map ⇒ W-map’ is false
in general. For example, put M(B) = (Λ(w1, w2, u), dB) with |wi| odd, dBwi = 0
and dBu = w1w2. If the KS-extension M(B) → (Λ(w1, w2, u, v1, v2, v3, v4), D) of
a map f : E → B is given by Dv1 = Dv2 = 0, Dv3 = w1 and Dv4 = w2uv1v2,
then fQ is a G-map but not a W-map since w∗2 6∈ G∗(EQ) but w∗2 ∈ P∗(EQ) and
P∗(BQ) = Q{u∗}.
Example 3.8. For a fibration, D.Gottlieb proposed a question: Which homotopy
equivalences of the fiber into itself can be extended to fiber homotopy equivalences of
the total space into itself ? [6, §5]. We consider a question: Which map f : E → B
can be extended to a map between fibrations over a sphere, that is, for a fibrations
ξ : E → E′ → Sn+1, does there exist a fibration η : B → B′ → Sn+1 and a map
f ′ : E′ → B′ such that the diagram

(i) E

f

²²

// E′

f ′

²²

// Sn+1

B // B′ // Sn+1

homotopically commutes ? If f : E → B is extended to a map between ξ and η,
from the result [6] of Gottlieb, we have a commutative diagram for all n

(ii) πn+1(Sn+1)

∂ η
n+1

²²

∂ ξ
n+1 // Gn(E)

πn(f)

²²
Gn(B) ⊂ // πn(B),

where ∂n+1 is the n + 1th connecting homomorphisms in the long exact homotopy
sequence of fibration. Therefore we have
Claim: If f : E → B is not a G-map, then there is an E-fibration over a sphere
where f can not be extended to the map f ′ satisfying (i).

In fact, suppose that 0 6= πn(f)(x) 6∈ Gn(B) for some x ∈ Gn(E). Then there is
a non-trivial fibration ξx : E → E′ → Sn+1 with ∂ξx

n+1(y) = x for the generator y
of πn+1(Sn+1) [12, Thorem I.2]. Here ξx is constructed as follows ([21, page 11]).
Choose a preimage x̂ of x under the evaluation map πn(aut1E) → Gn(E). From
πn+1(Baut1E) ∼= πn(aut1E), we may consider x̂ ∈ πn+1(Baut1E) with represen-
tative Sn+1 → Baut1E. Pull back the universal fibration over this map to get ξx.
On the other hand, for any B-fibration η over Sn+1, Gn(B) 3 ∂η

n+1(y) 6= πn(f)(x)
from the assumption. Therefore (ii) does not commute.

But to be a G-map is not sufficient for the above extension problem. Let f :
E = S3 × S5 → S5 = B be the projection given by f(a, b) = b. Evidently this is a
G-map. Suppose that a fibration ξ : E → E′ → S3 is given by a classifying map h
with π(h)Q : π3(S3)Q ∼= π3(Baut1S

3 × S5)Q. Then the KS-extension of ξ is given
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by (Λ(w), 0) → (Λ(w, v, v′), D) → (Λ(v, v′), 0) with D(v) = 0, D(v′) = wv, |w| = 3,
|v| = 3 and |v′| = 5 [18, Theorem 3.2]. Then for any fibration η : B = S5 → B′ →
S3, there is not a map f ′ that satisfies (i) since η is rationally trivial from degree
arguments.

Example 3.9. In Example 3.2(1), we see an example of “non-Gottlieb” map whose
homotopy fibre X has the rational homotopy type of an odd sphere S2n+1. But if the
homotopy fibre X has the rational homotopy type of an even sphere S2n, then a map
f is an r.G-map. Indeed, put M(S2n) = (Λ(x, y), d) with |x| = 2n, |y| = 4n − 1,
dx = 0 and dy = x2. We know that Dx = 0 and Dy = x2 + ax + b for some
a, b ∈ ΛW in a KS-extension. Suppose w ∈ W and w∗ 6∈ G(BQ). Then we have, for
any αi ∈ ΛW and βi ∈ ΛW ⊗ Λ+(x, y) with W = Q{wi}i∈I ,

δf ((w, 1) + (
∑

i∈I

wi, αi)) 6= δf ((
∑

i∈I

wi, βi))

in Der|w|(ΛW,ΛV ⊗ ΛW ). It deduces G(BQ, EQ; fQ) ⊂ G(BQ) from Theorem 2.1
and then f is an r.G-map from Lemma 1.1.

Recall that an elliptic space is one whose rational homology and rational ho-
motopy are both finite dimensional and that an elliptic space X is said to be
an F0-space if the Euler characteristic is positive [2]. When X is an F0-space,
for some even degree elements x1, .., xl, there is an isomorphism H∗(X;Q) ∼=
Q[x1, · · · , xl]/(f1, · · · , fl) with a regular sequence (f1, · · · , fl) in Q[x1, · · · , xl]; i.e.,
gfi ∈ (f1, · · · , fi−1) implies g ∈ (f1, · · · , fi−1) for any g ∈ Q[x1, · · · , xl] and all i.
For example, S2n is an F0-space with H∗(S2n;Q) ∼= Q[x]/(x2). For an F0-space X,
S.Halperin conjectures that Dxi = 0 for i = 1, .., l, which deduces a fibration with
fibre X is totally non-cohomologous to zero [2]. For example, it holds when X is a
homogeneous space [23]. If the homotopy fibre X of a map f is an F0-space, then
is f an r.G-map ?
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