A RATIONAL OBSTRUCTION TO BE A GOTTLIEB MAP

TOSHIHIRO YAMAGUCHI

(communicated by James Stasheff)

Abstract

We investigate *Gottlieb maps*, which are maps $f : E \to B$ that induce the maps between the Gottlieb groups $\pi_n(f)|_{G_n(E)} : G_n(E) \to G_n(B)$ for all n, from a rational homotopy theory point of view. We will define the obstruction group O(f) to be a Gottlieb map and a numerical invariant o(f). It naturally deduces a relative splitting of E in certain cases. We also illustrate several rational examples of Gottlieb maps and non-Gottlieb maps by using derivation arguments in Sullivan models.

1. Introduction

The *n*th Gottlieb group (evaluation subgroup of homotopy group) $G_n(B)$ of a path connected CW complex *B* with basepoint * is the subgroup of the *n*th homotopy group $\pi_n(B)$ of *B* consisting of homotopy classes of based maps $a: S^n \to B$ *B* such that the wedge $(a|id_B): S^n \vee B \to B$ extends to a map $F_a: S^n \times B \to B$ [7]. The Gottlieb group is a very interesting homotopy invariant (e.g., see [21]) but the calculations are difficult even for spheres [4]. It is well known that the Gottlieb group fails to be a functor since, generally, a based map $f: E \to B$ does not yield a homomorphism $\pi_*(f)|_{G_*(E)}: G_*(E) \to G_*(B)$ for $\pi_*(f): \pi_*(E) \to \pi_*(B)$. For example, $i: E = S^1 \hookrightarrow S^1 \vee S^1 = B$ does not induce $\pi_1(i)|_{G_1(E)}: G_1(E) \to G_1(B)$ since $G_1(S^1) = \mathbb{Z}$ [7, Theorem 5.4] but $G_1(S^1 \vee S^1) = 0$ [7, Theorem 3.1]. Recall that a space *B* is said to be a *Gottlieb space* (or simply *G-space* in this paper) if $G_n(B) = \pi_n(B)$ for all *n*. For example, an H-space is a G-space. It is interesting to consider when is a space a G-space [7],[24],[12]. In this paper, we will give a similar definition for a map and consider when is a map such a map.

Definition A. If a map $f : E \to B$ induces $\pi_n(f)G_n(E) \subset G_n(B)$ for all n, we call it a *Gottlieb map* (or simply *G*-map in this paper).

We note some sufficient conditions to be a G-map. If B is a G-space, any map $f: E \to B$ is a G-map. So 'G-map' is a natural generalization of 'G-space'. When

It is a pleasure to thank someone for his kind and useful suggestions for the first version of this paper. He informed me the works of [19], [20], [10], [3] and indicated that they are closely related to the splitting of Theorem 1.3. Also he pointed out a mistake in Lemma 2.3.

Received November 05, 2009, revised February 14, 2010; published on March 17, 2010.

 $^{2000 \ {\}rm Mathematics} \ {\rm Subject} \ {\rm Classification:} \ 55P62, 55R05, 55Q70.$

Key words and phrases: Gottlieb group, Gottlieb space, Gottlieb map, Sullivan minimal model, derivation.

^{© 2010,} Toshihiro Yamaguchi. Permission to copy for private use granted.

 $E = S^n$, a G-map f is an nth Gottlieb element of B; i.e., $[f] \in G_n(B)$. Also the projection $S^{d(n+1)-1} \to \mathbb{F}P^n$ for $d = \dim_{\mathbb{R}} \mathbb{F}$ is a G-map under a certain condition [5]. Here $\mathbb{F}P^n$ is the *n*-projective space over $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}$. If a map f is homotopic to the constant map; i.e., $f \simeq *$, then it is a G-map. Put $X \xrightarrow{j} E \xrightarrow{f} B$ the homotopy fibration where X is the homotopy fiber of f. Note that f is a G-map if the fibration is fibre-homotopically trivial. Also the connecting map $\partial : \Omega B \to X$ is a G-map [6].

The definition of $G_n(B)$ is generalized by replacing the identity by an arbitrary based map $f: E \to B$ [27]. The *n*th evaluation subgroup $G_n(B, E; f)$ of the map fis the subgroup of $\pi_n(B)$ for the evaluation map $map(E, B; f) \to B$. It is represented by maps $a: S^n \to B$ such that $(a|f): S^n \lor E \to B$ extends to a map $F_a: S^n \times E \to B$. Put $G(Y) = \bigoplus_{i>0} G_i(Y)$ for a space Y and $G(B, E; f) = \bigoplus_{i>0} G_i(B, E; f)$. From the definitions, there is a map $\pi_*(f): G(E) \to G(B, E; f)$ and $G(B, E; f) \supset G(B)$. Therefore, the following is obvious.

Lemma 1.1. If $G(B, E; f) \subset G(B)$, then $f : E \to B$ is a G-map.

So if f has a right homotopy inverse, f is a G-map [7, Proposition 1-4]([28, Remark 3]). For example, since the free loop fibration $\Omega X \to LX \xrightarrow{f} X$ has a section, the evaluation map f is a G-map. See §3 for the other sufficient conditions.

Suppose E and B have the homotopy types of nilpotent CW complexes. Put $e_B : B \to B_{\mathbb{Q}}$ and $f_{\mathbb{Q}} = e_B \circ f : E \to B_{\mathbb{Q}}$ to be the rationalizations of B and $f : E \to B$, respectively [11]. Then $\pi_n(B_{\mathbb{Q}}) \cong \pi_n(B)_{\mathbb{Q}} := \pi_n(B) \otimes \mathbb{Q}$ for n > 1. By the universality of rationalization, $f_{\mathbb{Q}}$ is equivalent to $\tilde{f}_{\mathbb{Q}} : E_{\mathbb{Q}} \to B_{\mathbb{Q}}$, often we do not distinguish from $f_{\mathbb{Q}}$ in this paper. When E is a finite complex, $G_n(E_{\mathbb{Q}}) \cong G_n(E)_{\mathbb{Q}} := G_n(E) \otimes \mathbb{Q}$ [13] and $G(E_{\mathbb{Q}})$ is oddly graded [1]. Recall that $B_{\mathbb{Q}}$ is a G-space if and only if it is an H-space. But it seems difficult to search a useful necessary and sufficient condition to be a rationalized G-map. If a map $f : E \to B$ induces $\pi_*(f_{\mathbb{Q}})G(E) \subset G(B_{\mathbb{Q}})$ or $\pi_*(f_{\mathbb{Q}})G(E_{\mathbb{Q}}) \subset G(B_{\mathbb{Q}})$, we call f a rational Gottlieb map (or simply r.G-map). Of course, a G-map between nilpotent spaces is an r.G-map. For a map, we can define an obstruction group:

Definition B. The *n*th obstruction group of a map $f : E \to B$ to be a *G*-map is given by $O_n(f) := \operatorname{Im}(\overline{\pi_n(f)|_{G_n(E)}}) \subset \pi_n(B)/G_n(B)$. Namely,

$$O_n(f) := \operatorname{Im} \left(G_n(E) \stackrel{\pi_n(f)}{\to} \pi_n(B) \twoheadrightarrow \pi_n(B) / G_n(B) \right).$$

Also put $O(f) := \bigoplus_{n>0} O_n(f)$ and denote dim $O(f_{\mathbb{Q}})$ as o(f).

Roughly speaking, $O_n(f)$ is of "non-Gottlieb" elements in $\pi_n(B)$ yet "Gottlieb" in $\pi_n(E)$. Recall that $G_1(B)$ is contained in the center of $\pi_1(B)$ [7, Corollary 2.4]. We have that O(f) = 0 if and only if f is a G-map. Note that o(f) is a numerical rational homotopy invariant of a map with $0 \leq o(f) \leq \min\{\dim G(E_{\mathbb{Q}}), \dim \pi_*(B)_{\mathbb{Q}} - \dim G(B_{\mathbb{Q}})\}$ and it is a measure of the rational non-triviality of the homotopy fibration $X \to E \to B$. If $f: Y \to Z$ and $g: X \to Y$ are G-maps, then the composition $f \circ g: X \to Z$ is a G-map from $\pi_*(f) \circ \pi_*(g) = \pi_*(f \circ g)$. It induces that $o(f \circ g) = 0$ if o(f) = 0 and o(g) = 0. It is generalized as

Theorem 1.2. For any maps $f: Y \to Z$ and $g: X \to Y$ between simply connected complexes of finite type, there is an inequality: $o(f \circ g) \leq o(f) + o(g)$.

Notice that an element of $O(f_{\mathbb{Q}})$ is represented by a map from the product of rationalized spheres $a : K = S_{\mathbb{Q}}^{n_1} \times \cdots \times S_{\mathbb{Q}}^{n_k} \to B_{\mathbb{Q}}$ by certain compositions ([3, p.494]). Suppose that a makes odd-spherical generators. Then there are a rational space B_a and a fibration $B_a \xrightarrow{j_a} B_{\mathbb{Q}} \xrightarrow{p_a} K$ given by the KS-extension $(\Lambda(w_1, ..., w_k), 0) \to (\Lambda W, d_B) \to (\Lambda W_k, \overline{d_B}) = M(B_a)$ with $|w_i| = n_i, w_i^* = a|_{S_{\mathbb{Q}}^{n_i}}$ and $W = \mathbb{Q}\{w_1, ..., w_k\} \oplus W_k$ in Sullivan's model theory [2] (see §2), which satisfies $p_a \circ a \simeq id_K$. Put $X_{\mathbb{Q}} \xrightarrow{g} F \xrightarrow{f_a} B_a$ the pull-back fibration of $X_{\mathbb{Q}} \to E_{\mathbb{Q}} \xrightarrow{f_{\mathbb{Q}}} B_{\mathbb{Q}}$ by j_a . We call it the *pull-back fibration associated to a*. Oprea's homotopical splittings of rational spaces ([19], [20], [10], [3]) implies the following result.

Theorem 1.3. Let $f : E \to B$ be a map between simply connected complexes of finite type and $X \xrightarrow{j} E \xrightarrow{f} B$ the homotopy fibration. If a map $a : K = (S^{n_1} \times \cdots \times S^{n_k})_{\mathbb{Q}} \to B_{\mathbb{Q}}$ of odd-spherical generators of $B_{\mathbb{Q}}$ represents an element in $O(f_{\mathbb{Q}})$, then the fibre-inclusion $g : X_{\mathbb{Q}} \to F$ of the pull-back fibration associated to a induces a splitting $\psi_{f,a} : E_{\mathbb{Q}} \simeq F \times K$ such that

$$\begin{array}{cccc} X_{\mathbb{Q}} \xrightarrow{j_{\mathbb{Q}}} & E_{\mathbb{Q}} & and & E_{\mathbb{Q}} \xrightarrow{f_{\mathbb{Q}}} & B_{\mathbb{Q}} \\ g & & \swarrow & \psi_{f,a} & & \psi_{f,a}^{-1} & & \uparrow a \\ F \xrightarrow{j_{1}} & F \times K & & F \times K \xleftarrow{j_{2}} & K \end{array}$$

with $i_1(x) = (x, *)$ and $i_2(x) = (*, x)$ homotopically commute. Moreover, this splitting does not come from that of $B_{\mathbb{Q}}$; i.e., the maps $a_i : S_{\mathbb{Q}}^{n_i} \hookrightarrow K \xrightarrow{a} B_{\mathbb{Q}}$ cannot be extended to $S_{\mathbb{Q}}^{n_i} \times B'_i \simeq B_{\mathbb{Q}}$ for any space B'_i .

Conversely, if there exists such a splitting $\psi_{f,a} : E_{\mathbb{Q}} \simeq F \times K$ for a map $f : E \rightarrow B$, then the map $a : K \rightarrow B_{\mathbb{Q}}$ of odd-spherical generators represents an element of $O(f_{\mathbb{Q}})$, in particular $k \leq o(f)$.

Thus, if a map $f_{\mathbb{Q}} : E_{\mathbb{Q}} \to B_{\mathbb{Q}}$ is a G-map, then there exists no above splitting $\psi_{f,a}$ of $E_{\mathbb{Q}}$. That is a necessary condition to be a G-map but is not sufficient (see Example 3.2(4)). Notice that Oprea [19, Theorem 1], [20, (RFDT)] gives a rational decomposition of the fibre X of a fibration $X \to E \to B$ (see Remark 2.8). Also Halperin [10, Lemma 1.1] and Félix-Lupton [3, Theorem 1.6] (when we restrict their generalized evaluation map [3, Definition 1.1] to $a : K \to E_{\mathbb{Q}}$ itself) give a rational decomposition of a space E and our theorem seems a relative one of it.

Though Definition A is defined for all connected based CW complexes, we focus on simply connected CW complexes E with rational homology of finite type with dim $G(E_{\mathbb{Q}}) < \infty$ when we consider rational homotopy types (Sullivan minimal models). We do not distinguish between a map and the homotopy class that it represents. Our tool is the derivations ([1], [17],[18],[25]) of Sullivan models [25], which are prepared in §2. So we assume that the reader is familiar with the basics of rational homotopy theory [2]. We see a property of $O(f_{\mathbb{Q}})$ in Lemma 2.3 and prove Theorem 1.2 and Theorem 1.3 in §2. We will illustrate some rational examples in §3, in which we note examples of r.G-maps which do not satisfy Lemma 1.1 in Example 3.3. Also we mention interactions with Gottlieb trivialities [18] in Remark 3.4, cyclic maps [26]([16]) in Example 3.6 and *W*-maps (see Definition C) in Example 3.7.

2. Derivations of Sullivan models

We use the Sullivan minimal model M(Y) of a nilpotent space Y of finite type. It is a free Q-commutative differential graded algebra (DGA) $(\Lambda V, d)$ with a Q-graded vector space $V = \bigoplus_{i \ge 1} V^i$ where dim $V^i < \infty$ and a decomposable differential; i.e., $d(V^i) \subset (\Lambda^+ V \cdot \Lambda^+ V)^{i+1}$ and $d \circ d = 0$. Here $\Lambda^+ V$ is the ideal of ΛV generated by elements of positive degree. Denote the degree of a homogeneous element x of a graded algebra as |x| and the Q-vector space of basis $\{v_i\}_i$ as $\mathbb{Q}\{v_i\}_i$. Then xy = $(-1)^{|x||y|}yx$ and $d(xy) = d(x)y + (-1)^{|x|}xd(y)$. A map $f : X \to Y$ has a minimal model which is a DGA-map $M(f) : M(Y) \to M(X)$. Notice that M(Y) determines the rational homotopy type of Y. Especially there is an isomorphism $Hom_i(V, \mathbb{Q}) \cong$ $\pi_i(X)_{\mathbb{Q}}$. See [2] for a general introduction and the standard notations.

Let A be a DGA $A = (A^*, d_A)$ with $A^* = \bigoplus_{i \ge 0} A^i$, $A^0 = \mathbb{Q}$, $A^1 = 0$ and the augmentation $\epsilon : A \to \mathbb{Q}$. Define $Der_i A$ the vector space of self-derivations of A decreasing the degree by i > 0, where $\theta(xy) = \theta(x)y + (-1)^{i|x|}x\theta(y)$ for $\theta \in Der_i A$. We denote $\bigoplus_{i>0} Der_i A$ by Der A. The boundary operator $\delta : Der_* A \to Der_{*-1} A$ is defined by $\delta(\sigma) = d_A \circ \sigma - (-1)^{|\sigma|} \sigma \circ d_A$. For a DGA-map $\phi : A \to B$, define a ϕ -derivation of degree n to be a linear map $\theta : A^* \to B^{*-n}$ with $\theta(xy) = \theta(x)\phi(y) + (-1)^{n|x|}\phi(x)\theta(y)$ and $Der(A, B; \phi) \to Der_{*-1}(A, B; \phi)$ is defined by $\delta_{\phi}(\sigma) = d_B \circ \sigma - (-1)^{|\sigma|} \sigma \circ d_A$. Note $Der_*(A, A; id_A) = Der_*(A)$. For $\phi : A \to B$, the composition with $\epsilon' : B \to \mathbb{Q}$ induces a chain map $\epsilon'_* : Der_n(A, B; \phi) \to Der_n(A, \mathbb{Q}; \epsilon)$. For a minimal model $A = (\Lambda Z, d_A)$, define $G_n(A, B; \phi) := \operatorname{Im}(H(\epsilon'_*) : H_n(Der(A, B; \phi)) \to Hom_n(Z, \mathbb{Q}))$. Especially $G_*(A, A; id_A) = G_*(A)$. Note that $z^* \in Hom(Z, \mathbb{Q})$ (z^* is the dual of the basis element z) is in $G_n(A, B; \phi)$ if and only if z^* extends to a derivation $\theta \in Der(A, B; \phi)$ with $\delta_{\phi}(\theta) = 0$.

Theorem 2.1. [1],[17],[25] When E and B are simply connected, $G_n(B_{\mathbb{Q}}, E_{\mathbb{Q}}; f_{\mathbb{Q}}) \cong G_n(M(B), M(E); M(f))$, in particular $G_n(B_{\mathbb{Q}}) \cong G_n(M(B))$.

Let $\xi : X \xrightarrow{j} E \xrightarrow{f} B$ be a fibration. Put $M(B) = (\Lambda W, d_B)$. Then the model (not minimal in general) of $E \to B$ is given by a KS(Koszul-Sullivan)-extension $(\Lambda W, d_B) \to (\Lambda W \otimes \Lambda V, D)$ with $D|_{\Lambda W} = d_B$ and a DGA-commutative diagram

where ' \simeq ' means to be quasi-isomorphic [2, §15]. Then $G_n(M(B), M(E); M(f)) = G_n((\Lambda W, d_B), ((\Lambda W \otimes \Lambda V, D); i))$. In this paper, we consider the models of r.G-maps mainly in KS-extensions.

Example 2.2. In general, ψ is not a DGA-isomorphism. For example, put $M(E) = M(S^3) = (\Lambda(x), 0)$ and $M(B) = (\Lambda(w_1, w_2, u), d_B)$ with $|w_i| = 3$, $d_Bw_i = 0$ and $d_Bu = w_1w_2$. Suppose that a map $f: S^3 \to B$ satisfies $M(f)(w_1) = x$, $M(f)(w_2) = 0$, M(f)(u) = 0. Then $(\Lambda V, \overline{D}) = (\Lambda(v_1, v_2), 0)$ with $|v_1| = 2$ and $|v_2| = 4$ and $\psi: (\Lambda(w_1, w_2, u, v_1, v_2), D) \to (\Lambda x, 0)$ is given by $Dv_1 = w_2$, $Dv_2 = u + w_1v_1$, $\psi(w_1) = x$ and the others to zero. It is quasi-isomorphic but not isomorphic.

From Theorem 2.1 and Definition B for a map $f: E \to B$, we have

Lemma 2.3. For $W = \mathbb{Q}\{w_i\}_{i \in I}$ where $\pi_*(B)_{\mathbb{Q}} = Hom(W, \mathbb{Q})$ with $|w_i| \leq |w_j|$ if i < j, put $I' := \{i \in I | [w_i] \neq 0 \text{ in } H^*(W \oplus V, Q(D)) \}$. Then there is an isomorphism

$$O(f_{\mathbb{Q}}) \cong \mathbb{Q}\{w_i^*, i \in I' \mid w_i^* \text{ satisfies } (i) \text{ and } (ii) \}$$

where (i) $\delta_E(w_i^* + \sigma) = 0$ for some $\sigma \in Der(\Lambda W \otimes \Lambda V, \delta_E)$ with $\sigma(w_j) = 0$ for $j \leq i$ and (ii) $\delta_B(w_i^* + \tau) \neq 0$ for any $\tau \in Der(\Lambda W, \delta_B)$ with $\tau(w_j) = 0$ for $j \leq i$.

Here Q(D) is the linear part of D. For example, $O(f)_{\mathbb{Q}} \cong \mathbb{Q}\{w_1^*\}$ in Example 2.2 since in particular $\delta_E((w_1, 1) - (u, v_1)) = 0$ (see Notation below).

Theorem 1.2 follows from

Proposition 2.4. For any maps $f : Y \to Z$ and $g : X \to Y$ between simply connected spaces, there is an inclusion $O(f_{\mathbb{Q}} \circ g_{\mathbb{Q}}) \subset O(f_{\mathbb{Q}}) \oplus O(g_{\mathbb{Q}})$.

Proof. Put a model of $f \circ g : X \to Y \to Z$ as the commutative diagram

where $D|_{\Lambda W} = d_Z$ and $D'|_{\Lambda W \otimes \Lambda V} = D$. For $W = \mathbb{Q}\{w_i\}_{i \in I}, I' = \{i \in I | [w_i] \neq 0 \text{ in } H^*(W \oplus V, Q(D))\}$ and $I' \supset I'' := \{i \in I | [w_i] \neq 0 \text{ in } H^*(W \oplus V \oplus U, Q(D'))\}$, from Lemma 2.3,

$$O(g_{\mathbb{Q}}) \cap W^* = \mathbb{Q}\{w_i^*, i \in I'' \mid w_i^* \text{ satisfies (i) and (ii) }\}$$

where (i) $\delta_X(w_i^* + \sigma) = 0$ for some $\sigma \in Der(\Lambda W \otimes \Lambda V \otimes \Lambda U)$ with $\sigma(w_j) = 0$ for $j \leq i$ and (ii) $\delta_Y(w_i^* + \tau) \neq 0$ for any $\tau \in Der(\Lambda W \otimes \Lambda V)$ with $\tau(w_j) = 0$ for $j \leq i$,

$$O(f_{\mathbb{Q}}) = \mathbb{Q}\{w_i^*, i \in I' \mid w_i^* \text{ satisfies (iii) and (iv)}\}$$

where (iii) $\delta_Y(w_i^* + \sigma) = 0$ for some $\sigma \in Der(\Lambda W \otimes \Lambda V)$ with $\sigma(w_j) = 0$ for $j \leq i$ and (iv) $\delta_Z(w_i^* + \tau) \neq 0$ for any $\tau \in Der(\Lambda W)$ with $\tau(w_j) = 0$ for $j \leq i$, and

$$O(f_{\mathbb{Q}} \circ g_{\mathbb{Q}}) = \mathbb{Q}\{w_i^*, i \in I'' \mid w_i^* \text{ satisfies (i) and (iv) }\}.$$

Since (ii) and (iii) contradict, we have $O(f_{\mathbb{Q}}) \cap O(g_{\mathbb{Q}}) = 0$ in $W^* \oplus V^*$. Also if $w_i^* \in O(f_{\mathbb{Q}} \circ g_{\mathbb{Q}})$ and $w_i^* \notin O(f_{\mathbb{Q}})$, then w_i^* satisfies (i) but not (iii). Thus $w_i^* \in O(g_{\mathbb{Q}})$.

Proof of Theorem 1.3. Put the KS-extension of $f(\Lambda W, d_B) \to (\Lambda W \otimes \Lambda V, D)$. For a sub-basis $\{w_1, ..., w_k\}$ of W, put $O(f_{\mathbb{Q}}) \supset \mathbb{Q}\{w_1^*, ..., w_k^*\}$ with $|w_i| = n_i$ odd and $H^*(K; \mathbb{Q}) \cong \Lambda(w_1, ..., w_k)$. The assumption induces $D(w_i) = d_B(w_i) = 0$ for i = 1, ..., k. From Lemma 2.3, $\delta_E(w_i^*) = \delta_E(\sigma_i)$ for some $\sigma_i \in Der(\Lambda W \otimes \Lambda V)$. Put $D_1 = D$ and $D_{i+1} = \varphi_i^{-1} \circ D_i \circ \varphi_i$ for $\varphi_i = id - \sigma_i \otimes w_i$ inductively for i = 1, ..., k, which induce the changes of basis:

$$\varphi_i: (\Lambda W_i \otimes \Lambda V, D_{i+1}) \otimes (\Lambda(w_1, ..., w_i), 0) \cong (\Lambda W_{i-1} \otimes \Lambda V, D_i) \otimes (\Lambda(w_1, ..., w_{i-1}), 0)$$

for $W = W_i \oplus \mathbb{Q}\{w_1, ..., w_i\}$ [10, Lemma 1.1] (the proof of [28, Lemma A]). Thus there is a DGA-isomorphism

$$\varphi_1 \circ \cdots \circ \varphi_k : (\Lambda W_k \otimes \Lambda V, D_{k+1}) \otimes (\Lambda(w_1, ..., w_k), 0) \cong (\Lambda W \otimes \Lambda V, D)$$

The model of the pull-back

is given by the push-out

$$(\Lambda W_k, \overline{d_B}) \longrightarrow (\Lambda W_k \otimes \Lambda V, \overline{D})$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad (\Lambda W, d_B) \longrightarrow (\Lambda W \otimes \Lambda V, D)$$

with $\overline{D}|_{\Lambda W_k} = \overline{d_B}$. Notice that $M(F) = (\Lambda W_k \otimes \Lambda V, \overline{D}) \cong (\Lambda W_k \otimes \Lambda V, D_{k+1})$ and then the model of $g: X_{\mathbb{Q}} \to F$ is given by the projection $p: (\Lambda W_k \otimes \Lambda V, D_{k+1}) \to (\Lambda V, \overline{D_{k+1}}) = (\Lambda V, d)$. We have the DGA-commutative diagrams

$$\begin{array}{c} (\Lambda(w_1, .., w_k), 0) \otimes (\Lambda W_k \otimes \Lambda V, D_{k+1}) \longrightarrow (\Lambda W_k \otimes \Lambda V, D_{k+1}) \\ & \varphi_1 \circ \cdots \circ \varphi_k \bigg| \cong & & & & \downarrow^p \\ & (\Lambda W \otimes \Lambda V, D) \longrightarrow (\Lambda V, d) \end{array}$$

and

$$(\Lambda(w_1,..,w_k),0) \longleftarrow (\Lambda(w_1,..,w_k),0) \otimes (\Lambda W_k \otimes \Lambda V, D_{k+1})$$

$$\stackrel{M(a)}{\uparrow} \cong \uparrow^{(\varphi_1 \circ \cdots \circ \varphi_k)^{-1}} (\Lambda W, d_B) \longrightarrow (\Lambda W \otimes \Lambda V, D).$$

They are the models of the diagrams in Theorem 1.3.

The converse is given as follows. The odd-spherical generators $a_i: S_{\mathbb{Q}}^{n_i} \hookrightarrow K \xrightarrow{a} B_{\mathbb{Q}}$ are not in $G(B_{\mathbb{Q}})$ from the assumption [10, Lemma 1.1]. On the other hand, $\psi_{f,a}^{-1}|_{S_{\mathbb{Q}}^{n_i}} \in G(E_{\mathbb{Q}})$ from $\psi_{f,a}: E_{\mathbb{Q}} \simeq F \times S_{\mathbb{Q}}^{n_1} \times \cdots \times S_{\mathbb{Q}}^{n_k}$. Since $f_{\mathbb{Q}} \circ \psi_{f,a}^{-1}|_{S_{\mathbb{Q}}^{n_i}} \simeq a_i$,

we have $a_i \in O(f_{\mathbb{Q}})$ from Definition B.

From Theorems 1.2, 1.3 and Proposition 2.4, we have

Corollary 2.5. For maps $f: Y \to Z$ and $g: X \to Y$, if there is a splitting $\psi_{f \circ g, a}$: $X_{\mathbb{Q}} \simeq F \times K$ as in Theorem 1.3, where a map $a: K = (S^{n_1} \times \cdots \times S^{n_k})_{\mathbb{Q}} \to Z_{\mathbb{Q}}$ makes odd-spherical generators of $Z_{\mathbb{Q}}$, then $k \leq o(f) + o(g)$. Also,

(i) Suppose $O(f_{\mathbb{Q}} \circ g_{\mathbb{Q}}) = O(f_{\mathbb{Q}}) \oplus O(g_{\mathbb{Q}})$. If elements $a : K \to Y_{\mathbb{Q}}$ of $O(g_{\mathbb{Q}})$ and $b : K' \to Z_{\mathbb{Q}}$ of $O(f_{\mathbb{Q}})$ make both odd-spherical generators, then there is a decomposition $X_{\mathbb{Q}} \simeq F \times K \times K'$ for some rational space F.

(ii) Suppose that g is an r.G-map. If there is a splitting $\psi_{f \circ g,a} : X_{\mathbb{Q}} \simeq F \times K$ as in Theorem 1.3, then it deduces a splitting $\psi_{f,a} : Y_{\mathbb{Q}} \simeq F' \times K$ for some rational space F'.

Remark 2.6. (1) Put *B* the homogeneous space $SU(6)/SU(3) \times SU(3)$ (SU(n) is a special unitary group), whose model is given by $(\Lambda(x, y, v_1, v_2, v_3), d_B)$ with $|x| = 4, |y| = 6, |v_1| = 7, |v_2| = 9, |v_3| = 11, d_Bx = d_By = 0, d_Bv_1 = x^2, d_Bv_2 = xy$ and $d_Bv_3 = y^2$ [8, p.486]. For a map $f : E \to B$ of the KS-extension $(\Lambda(x, y, v_1, v_2, v_3), d_B) \to (\Lambda(x, y, v_1, v_2, v_3, v), D)$ with |v| = 3 and Dv = x, we have o(f) = 0 but there is a splitting $\psi_{f,a} : E_{\mathbb{Q}} \simeq F \times (S^7 \times S^9)_{\mathbb{Q}}$ for a map of (non-spherical) Gottlieb elements $a : (S^7 \times S^9)_{\mathbb{Q}} \to B_{\mathbb{Q}}$ and $F = S_{\mathbb{Q}}^6$. We note $(S^7 \times S^9)_{\mathbb{Q}} = K_4$ in Theorem 2.7 below.

(2) For a map $f: E \to B$, if an element $a: K = (S^{n_1} \times \cdots \times S^{n_k})_{\mathbb{Q}} \to B_{\mathbb{Q}}$ of $O(f_{\mathbb{Q}})$ makes odd-spherical generators of $B_{\mathbb{Q}}$, then we see from the second diagram in the proof of Theorem 1.3 that the pull-back fibration $X_{\mathbb{Q}} \to E' \to K$ of the homotopy fibration $X_{\mathbb{Q}} \to E_{\mathbb{Q}} \to B_{\mathbb{Q}}$ by $a: K \to B_{\mathbb{Q}}$ is fibre-homotopically trivial. Indeed, the model is given by the push-out

$$\begin{array}{c} (\Lambda(w_1,..,w_k),0) \longrightarrow (\Lambda(w_1,..,w_k) \otimes \Lambda V, \overline{D_{k+1}}) == (\Lambda(w_1,..,w_k),0) \otimes (\Lambda V,d) \\ & \bigwedge^{M(a)} & \bigwedge^{\overline{(\varphi_1 \circ \cdots \circ \varphi_k)^{-1}}} \\ (\Lambda W,d_B) \xrightarrow{} (\Lambda W \otimes \Lambda V,D). \end{array}$$

(3) For a map $f: E \to B$, suppose that $f_a: F \to B_a$ is the pull-back fibration associated to a map $a: K = (S^{n_1} \times \cdots \times S^{n_k})_{\mathbb{Q}} \to B_{\mathbb{Q}}$ of odd-spherical generators of $O(f_{\mathbb{Q}})$. Then $o(f_a) \leq o(f) - k$.

For a fibration $\xi : X \xrightarrow{j} E \xrightarrow{f} B$ of rational spaces, there is a decomposition $G_n(E) = S_n \oplus T_n \oplus U_n \subset G_n(X) \oplus GH_n(\xi) \oplus G_n(B, E; f)$ where $U_n := \pi_n(f)(G_n(E)) \subset G_n(B, E; f)$ [28, Theorem A] and then $O_n(f) = U_n/(G_n(B) \cap U_n)$. Here $GH_n(\xi) := Ker(\pi_n(f) : G_n(E, X; j) \to \pi_n(B)) / Im(\pi_n(j) : G_n(X) \to G_n(E, X; j))$ is called as the *n*th Gottlieb homology group of ξ [15], [18]. From the manner of [28, Theorem A], we have

Theorem 2.7. For a fibration $\xi : X \xrightarrow{j} E \xrightarrow{f} B$ of rational spaces, suppose that there is a decomposition $E \simeq F \times S$ where a map $a : S = (S^{n_1} \times \cdots \times S^{n_k})_{\mathbb{Q}} \to E$ makes odd-spherical generators. Then S is uniquely decomposed as $S = K_1 \times K_2 \times$ $K_3 \times K_4$ where $a|_{K_1}$ makes generators of $\pi_*(j)G(X)$, $a|_{K_2}$ makes generators of $GH(\xi)$, $f \circ a|_{K_3}$ makes generators of O(f) and $f \circ a|_{K_4}$ makes generators of G(B). In particular, $K_3 = *$ if f is a G-map and $K_2 = K_3 = *$ if ξ is a trivial fibration.

Remark 2.8. Recall Oprea's rational fibre decomposition theorem([19],[20],[21]): For a fibration $\xi : X \xrightarrow{j} E \xrightarrow{f} B$ of rational spaces with finite betti numbers, there is a subproduct $\mathcal{K} \subset \Omega B$ and a space \mathcal{F} such that $X \simeq \mathcal{F} \times \mathcal{K}$ and $H^*(\mathcal{K}) \cong Im(\partial^* :$ $H^*(X) \to H^*(\Omega B)$). The space \mathcal{K} is called the Samelson space of ξ . If we apply this theorem to the rationalized Hopf fibration $S^3_{\mathbb{Q}} \xrightarrow{j} S^7_{\mathbb{Q}} \to S^4_{\mathbb{Q}}$, the Samelson space is the fibre $S^3_{\mathbb{Q}}$ itself. But it can not be K in Theorem 1.3 since o(j) = 0 for the induced fibration $\Omega S^4_{\mathbb{Q}} \to S^3_{\mathbb{Q}} \xrightarrow{j} S^7_{\mathbb{Q}}$. In general, in Theorem 2.7 for the induced fibration $\Omega B \xrightarrow{\partial} X \xrightarrow{j} E$, we have $K_1 \subset \mathcal{K}$ as a subproduct, $K_2 = *$ and $K_i \cap \mathcal{K} = *$ for i = 3, 4.

Notation ([**22**, Definition 16],[**25**, p.314]). For a DGA-map $\phi : (\Lambda V, d) \to (\Lambda Z, d')$, the symbol $(v, h) \in Der(\Lambda V, \Lambda Z; \phi)$ means the ϕ -derivation sending an element $v \in V$ to $h \in \Lambda Z$ and the other to zero. Especially $(v, 1) = v^*$. The differential is given as

$$\delta_{\phi}(v,h) = d' \circ (v,h) - (-1)^{|v| - |h|}(v,h) \circ d = (v,d'h) - \sum_{i} \pm_{i} (u_{i},\phi(\partial du_{i}/\partial v) \cdot h)$$

for a basis $\{u_i\}$ of V. If $\phi = M(f)$ or a KS-extension of M(f), we denote δ_{ϕ} simply as δ_f . We often use the symbol (*, *) in the following section.

3. Examples

Fix the KS-model of a based map $f : E \to B$ as a DGA-map $i : (\Lambda W, d_B) \to (\Lambda W \otimes \Lambda V, D)$, where $D|_W = d_B$ and $(\Lambda V, \overline{D}) = (\Lambda V, d) = M(X)$ for the homotopy fiber X of f.

Example 3.1. Suppose dim $H^*(E; \mathbb{Q}) < \infty$. If B is pure; i.e., dim $W < \infty$, $d_B W^{odd} \subset \Lambda W^{even}$ and $d_B W^{even} = 0$, then any map $f : E \to B$ is an r.G-map. In fact, since $G(E_{\mathbb{Q}})$ has generators of odd degrees [1, Theorem III], we have $\pi(f)_{\mathbb{Q}} : G(E_{\mathbb{Q}}) = G_{odd}(E_{\mathbb{Q}}) \to \pi_{odd}(B_{\mathbb{Q}}) = G(B_{\mathbb{Q}})$. In particular, a map whose target is a homogeneous space is an r.G-map.

Example 3.2. We note some rational splittings obtained from non-r.G-maps.

(1) Put an odd spherical fibration $S^m \to E \xrightarrow{f} B$ where $M(S^m) = (\Lambda(v), 0)$ and $M(B) = (\Lambda(w_1, w_2, \cdots, w_{2n}, u), d_B)$ (n > 1) with $m = |v| = |w_1| + |w_2| - 1$, $|w_1|, \cdots, |w_{2n}|, |u|$ odd. When $d_B u = w_1 w_2 \cdots w_{2n}$ and $Dv = w_1 w_2$, we have $\delta(w_i, 1)(u) = D(w_i, 1)(u) + (w_i, 1)D(u) = (w_i, 1)Du = (w_i, 1)(w_1 \cdots w_{2n}) = (-1)^{i-1}w_1w_2 \cdots \overset{\vee}{w_i} \cdots w_{2n}$. Then $\delta_E((w_i, 1) + (-1)^i(u, vw_3 \cdots \overset{\vee}{w_i} \cdots w_{2n})) = 0$ for $i = 3, \cdots, 2n$. Thus $O(f_{\mathbb{Q}}) \cong \mathbb{Q}\{w_3^*, \cdots, w_{2n}^*\}$ from Lemma 2.3; i.e., f is not an r.G-map. There is a decomposition

$$E_{\mathbb{Q}} \simeq F \times K = F \times S_{\mathbb{Q}}^{|w_3|} \times \cdots \times S_{\mathbb{Q}}^{|w_{2n}|}$$

Journal of Homotopy and Related Structures, vol. 5(1), 2010

where $F = F' \times S_{\mathbb{Q}}^{|u|}$ with $M(F') \cong (\Lambda(w_1, w_2, v), d')$ with $d'w_i = 0$ and $d'v = w_1w_2$. (2) Put $M(X) = (\Lambda(v, v'), 0)$ and $M(B) = (\Lambda(w_1, w_2, w_3, w_4, u), d_B)$ with $d_Bw_i = 0$ and $d_Bu = w_1w_2 + w_3w_4$ where $|w_i|$ are odd (|v| and |v'| are even). Suppose that the differential of the model of a map $f : E \to B$ with homotopy fibre X is given by $D(v) = 0, D(v') = w_2 + w_3v$. Then we have $\delta_E((w_1, 1) - (u, v') - (w_4, v)) = 0$. Thus $O(f_{\mathbb{Q}}) \cong \mathbb{Q}\{w_1^*\}$ from Lemma 2.3; i.e., f is not an r.G-map. There is a decomposition

$$E_{\mathbb{Q}} \simeq F \times K = F \times S_{\mathbb{Q}}^{|w_1|}$$

where $F = F' \times K(\mathbb{Q}, |v|)$ with $M(F') \cong (\Lambda(w_3, w_4, u), d')$ with $d'w_i = 0$ and $d'u = w_3w_4$.

(3) Put $E = S^3$ and $M(B) = (\Lambda(w_1, w_2, u), d_B)$ with the map of Example 2.2. Then $M(X) \cong (\Lambda(v_1, v_2), 0)$ for the homotopy fibre X and we have

$$E_{\mathbb{Q}} \simeq K = S_{\mathbb{Q}}^{|w_1|} \quad \text{and} \quad F = *$$

in Theorem 1.3. Here $M(F) = (\Lambda W_1 \otimes V, D_2) = (\Lambda(w_2, u, v_1, v_2), D_2)$ with $D_2w_2 = D_2u = 0$, $D_2v_1 = w_2$ and $D_2v_2 = u$ (see the proof of Theorem 1.3).

(4) Put $E = SU(6)/SU(3) \times SU(3)$, where $M(E) = (\Lambda(x, y, v_1, v_2, v_3), d_E)$ with |x| = 4, |y| = 6, $d_Ex = d_Ey = 0$, $d_Ev_1 = x^2$, $d_Ev_2 = xy$ and $d_Ev_3 = y^2$. Put $M(B) = (\Lambda(w, x, y, v_1, v_2, v_3), d_B)$ with |w| = 3, $d_Bw = d_Bx = 0$, $d_By = wx$, $d_Bv_1 = x^2$, $d_Bv_2 = xy + wv_1$, $d_Bv_3 = y^2 + 2wv_2$ and the KS-extension of $f : E \to B$ is given by $(\Lambda(w, x, y, v_1, v_2, v_3), d_B) \to (\Lambda(w, x, y, v_1, v_2, v_3, v), D)$ with |v| = 2, Dv = w and $D = d_B$ for the other elements. Then $O(f_{\mathbb{Q}}) = \mathbb{Q}\{v_1^*, v_2^*\}$. But $E_{\mathbb{Q}}$ can not non-trivially decompose; i.e., $K \simeq *$ if $E_{\mathbb{Q}} \simeq F \times K$, from the DGA-structure of M(E). Thus the splitting of Theorem 1.3 does not fold for non-spherical generators of B in general.

Example 3.3. A map $f : E \to B$ may be an r.G-map even if $G(B_{\mathbb{Q}}) \neq G(B_{\mathbb{Q}}, E_{\mathbb{Q}}; f_{\mathbb{Q}})$ (see Lemma 1.1).

(1) The Hopf map $f: S^3 \to S^2$ is a G-map and $G_n(S^2, S^3; f) = \pi_n(S^2)$ for all n[18, Example 2.7] but $\pi_2(S^2) = \mathbb{Z} \neq 0 = G_2(S^2)$.

(2) Consider the pull-back fibration of the Hopf fibration $S^3 \to S^7 \to S^4$, $S^3 \to E \xrightarrow{g} B = \mathbb{C}P^2$, induced by the map $\mathbb{C}P^2 \to S^4$ obtained by pinching out the 2-cell. Put $M(S^3) = (\Lambda v, 0)$ and $M(\mathbb{C}P^2) = (\Lambda(w, u), d_B)$ with |w| = 2, |u| = 5, $d_Bw = 0$ and $d_Bu = w^3$. Then the KS-extension is given by $(\Lambda(w, u), d_B) \to (\Lambda(w, u, v), D) \to (\Lambda v, 0)$ with $Dv = w^2$. Then $(\Lambda(w, u, v), D) \cong (\Lambda(w, v), D) \otimes (\Lambda u, 0)$; i.e., $E_{\mathbb{Q}} \simeq (S^2 \times S^5)_{\mathbb{Q}}$. Then $g_{\mathbb{Q}}$ is a G-map. In fact, for $G(E)_{\mathbb{Q}} = G_3(E)_{\mathbb{Q}} \oplus G_5(E)_{\mathbb{Q}}$, $\pi_3(g)_{\mathbb{Q}} = 0$ and $\pi_5(g)_{\mathbb{Q}} : G_5(E)_{\mathbb{Q}} = \mathbb{Q}\{u^*\} \cong G_5(B)_{\mathbb{Q}}$. In this case, $G(B)_{\mathbb{Q}} = \mathbb{Q}\{u^*\} \subset \mathbb{Q}\{w^*, u^*\} = G(B, E; g)_{\mathbb{Q}}$ from $\delta_g((w, 1) - (u, v)) = 0$.

(3) Put $M(X) = (\Lambda(v), 0)$ and $M(B) = (\Lambda(w_1, w_2, w_3, w_4, u), d_B)$ with $d_Bw_i = 0$ and $d_Bu = w_1w_2w_3w_4$ where the degrees are odd. If $D(v) = w_1w_2 + w_3w_4$ in a KS-extension, it is an r.G-map by direct calculation. For example, $\delta_E(w_1, 1) = (u, w_2w_3w_4) + (v, w_2)$ and $\delta_E((w_1, 1) + \sigma) \neq 0$ for any derivation $\sigma \neq -(w_1, 1)$. Thus $O(f_{\mathbb{Q}}) = 0$ from Lemma 2.3. In this case, $G(B_{\mathbb{Q}}) = \mathbb{Q}\{u^*\}$ but $G(B_{\mathbb{Q}}, E_{\mathbb{Q}}; f_{\mathbb{Q}}) = \mathbb{Q}\{w_1^*, w_2^*, w_3^*, w_4^*, u^*\} = \pi_*(B)_{\mathbb{Q}}$. In fact, for example, we have $w_1^* \in G(B_{\mathbb{Q}}, E_{\mathbb{Q}}; f_{\mathbb{Q}})$ from $\delta_f((w_1, 1) - (u, vw_2)) = 0$. (4) Put $M(X) = (\Lambda(v, v'), 0)$ and $M(B) = (\Lambda(w_1, w_2, w_3, w_4, u), d_B)$ with $d_B w_i = 0$ and $d_B u = w_1 w_2 w_3 w_4$ where the degrees are odd. If $D(v) = w_1 w_2 + w_3 v'$ and $D(v') = w_3 w_4$ in a KS-extension, by direct calculation, we see $O(f_{\mathbb{Q}}) = 0$ from Lemma 2.3. In this case, $G(B_{\mathbb{Q}}) = \mathbb{Q}\{u^*\}$ but $G(B_{\mathbb{Q}}, E_{\mathbb{Q}}; f_{\mathbb{Q}}) = \pi_*(B)_{\mathbb{Q}}$.

Remark 3.4. Put $h: B \to Baut_1X$ the classifying map of a fibration of finite complexes $\xi: X \xrightarrow{j} E \xrightarrow{f} B$. If the rationalized Gottlieb sequence $[\mathbf{15}], [\mathbf{18}]$ deduces the short exact sequence $0 \to G_n(X)_{\mathbb{Q}} \xrightarrow{\pi_n(j)_{\mathbb{Q}}} G_n(E, X; j)_{\mathbb{Q}} \xrightarrow{\pi_n(f)_{\mathbb{Q}}} \pi_n(B)_{\mathbb{Q}} \to 0$ for all n > 1, the fibration ξ is said to be rationally Gottlieb-trivial $[\mathbf{18}]$. It is a notion of the relative triviality of fibration, too. Recall that $f: E \to B$ is rationally Gottliebtrivial if and only if $\pi_*(h)_{\mathbb{Q}} = 0$ [**18**, Theorem 4.2]. On the other hand, $\pi_*(h)_{\mathbb{Q}}$ cannot determine whether f is an r.G-map or not. For example, the Hopf bundle $S^1 \to S^3 \xrightarrow{f} S^2$ (1) and the fibration (4) of Example 3.3 are not rationally Gottliebtrivial since $\pi_*(h)_{\mathbb{Q}} \neq 0$ from [**18**, Theorem 3.2], but they are r.G-maps. Also for the fibrations of Example 3.2 (1) and of Example 3.3 (2), (3), we see $\pi_*(h)_{\mathbb{Q}} = 0$ from [**18**, Theorem 3.2]. From the definition of $GH(\xi)$, we see $K_2 = *$ in Theorem 2.7 if ξ is rationally Gottlieb-trivial.

Example 3.5. (1) Consider the homotopy pull-back diagram of rational spaces:

where $M(f) : (\Lambda W, d_B) \to (\Lambda(W \oplus v), D), M(g) : (\Lambda W, d_B) \to (\Lambda(W \oplus v'), D')$ and the homotopy groups are oddly graded. Suppose $M(B) = (\Lambda(w_1, \dots, w_{2n}, u), d_B)$ with $d_B w_i = 0$ and $d_B u = w_1 \dots w_{2n}$ $(n \ge 3)$.

Put $Dv = w_1 \cdots w_4$ and $D'v' = w_1w_2$. Then $o(g) = o(f \circ g') = 2n - 2$, o(f) = 2n - 4 and o(g') = 2. Then $o(f \circ g') = o(f) + o(g')$, especially $O(f \circ g') = O(f) \oplus O(g')$. Thus there is a decomposition

$$E' \simeq F \times K \times K' = F \times S_{\mathbb{Q}}^{|w_3|} \times \dots \times S_{\mathbb{Q}}^{|w_{2n}|}$$

as in Corollary 2.5 (i). Here $M(F) = (\Lambda(w_1, w_2, v'), D') \otimes (\Lambda(v, u), 0), K = S_{\mathbb{Q}}^{|w_3|} \times S_{\mathbb{Q}}^{|w_4|}$ for g' and $K' = S_{\mathbb{Q}}^{|w_5|} \times \cdots \times S_{\mathbb{Q}}^{|w_{2n}|}$ for f. Also from o(f') = 0, the above decomposition deduces

$$B' \simeq F' \times S_{\mathbb{Q}}^{|w_3|} \times \cdots \times S_{\mathbb{Q}}^{|w_{2n}|}$$

as in Corollary 2.5 (ii). Here $M(F') = (\Lambda(w_1, w_2, v'), D') \otimes (\Lambda u, 0).$

Put $Dv = w_1 \cdots w_4$ and $D'v' = w_5w_6$. Then o(g) = 2n - 2, o(f) = 2n - 4, $o(g \circ f') = o(f \circ g') = 2n - 6$ and o(f') = o(g') = 0. Then there is a decomposition

$$E' \simeq F \times S_{\mathbb{Q}}^{|w_7|} \times \cdots \times S_{\mathbb{Q}}^{|w_{2n}|}$$

and it deduces

$$B' \simeq F' \times S_{\mathbb{Q}}^{|w_7|} \times \cdots \times S_{\mathbb{Q}}^{|w_{2n}|}$$
 and $E \simeq F'' \times S_{\mathbb{Q}}^{|w_7|} \times \cdots \times S_{\mathbb{Q}}^{|w_{2n}|}$

as in Corollary 2.5 (ii). Here $M(F) = (\Lambda(w_1, \dots, w_6, v, v'), D'') \otimes (\Lambda u, 0)$ with D''v = Dv and D''v' = D'v', $M(F') = (\Lambda(w_1, \dots, w_6, v'), D') \otimes (\Lambda u, 0)$ and $M(F'') = (\Lambda(w_1, \dots, w_6, v), D) \otimes (\Lambda u, 0)$.

(2) Consider maps $f: Y \to Z$ and $g: X \to Y$ of rational spaces whose homotopy groups are oddly graded. For even-integers l, m, n with $2 \leq l \leq m \leq n$, put $M(Z) = (\Lambda(w_1, \cdots, w_n, w), d_Z)$ with $d_Z w_i = 0$ and $d_Z w = w_1 \cdots w_n$, $M(Y) = (\Lambda(w_1, \cdots, w_n, w, v), D)$ with $Dv = w_1 \cdots w_l$ and $M(X) = (\Lambda(w_1, \cdots, w_n, w, v, u, w), D')$ with $D'v = w_1 \cdots w_l$, $D'u = w_1 w_2$ and $D'u' = w_l \cdots w_m$. Then $O(f) = \mathbb{Q}\{w_{l+1}, \cdots, w_n\}$, $O(g) = \mathbb{Q}\{w_3, \cdots, w_l\}$ and $O(f \circ g) = \mathbb{Q}\{w_3, \cdots, w_l, w_{m+1}, \cdots, w_n\}$. Thus o(f) = n - l, o(g) = l - 2, $o(f \circ g) = l - m + n - 2$ and in particular $o(f) + o(g) - o(f \circ g) = m - l$ can be arbitrarily large.

Example 3.6. For the homotopy set [E, B] of based maps from E to B, define the subset $\mathbf{G}'(E, B) := \{[f] \in [E, B] \mid f \text{ is a G-map}\}$. A map f from E to B is said to be a cyclic map if $(f|1) : E \lor B \to B$ admits an extension $F : E \times B \to B$ [26]. The set of homotopy classes of cyclic maps $f : E \to B$ is denoted as $\mathbf{G}(E, B)$. Since a cyclic map is a G-map from $Im \pi_*(f) \subset G(B)$ [24, Lemma 2.1]([16, Corollary 2.2]), there is an inclusion $\mathbf{G}(E, B) \subset \mathbf{G}'(E, B)$. The quotient map $f : G \to G/K$ for a Lie group G and any closed subgroup K is a cyclic map [24]. Also the Hopf map $\eta : S^3 \to S^2$ is a cyclic map. From [14, Theorem 2.1], the map η induces $\pi_n(S^3) \cong G_n(S^2)$ for all n. Therefore, if a space E is 2-connected, then any map $f : E \to S^2$ is a G-map. A Gottlieb map is not a cyclic map in general. For example, the identity map $S^{2n} \stackrel{=}{\to} S^{2n}$ is not a cyclic map [16, Theorem 3.2] but of course a G-map. In general, a self-equivalence map $f : B \stackrel{\simeq}{\to} B$ is a G-map. We note that a cyclic map [16]. But, for our G-map, it seems difficult to search such a useful property.

(1) When $H^*(B; \mathbb{Q}) \cong \mathbb{Q}[w]/(w^{k+1})$ with |w| = 2n, recall that $\mathbf{G}(E_{\mathbb{Q}}, B_{\mathbb{Q}}) \cong H^{2n(k+1)-1}(E; \mathbb{Q})$ [16, Example 4.4]. On the other hand, $\mathbf{G}'(E_{\mathbb{Q}}, B_{\mathbb{Q}}) \cong [E_{\mathbb{Q}}, B_{\mathbb{Q}}] \cong A \times H^{2n(k+1)-1}(E; \mathbb{Q})$ where $A = \{a \in H^{2n}(E; \mathbb{Q}) | a^{k+1} = 0\}.$

(2) When $H^*(B;\mathbb{Q}) \cong \mathbb{Q}[w] \otimes \Lambda(x,y)/(wxy + w^5)$ with |w| = 2, |x| = 3, |y| = 5. Then *B* is a cohomological symplectic space with formal dimension 16 where $M(B) \cong (\Lambda W, d_B) \cong (\Lambda(w, x, y, u), d_B)$ with $|u| = 9, d_Bw = d_Bx = d_By = 0$ and $d_Bu = wxy + w^5$. Put $E = S^3 \times S^5 \times S^9$; i.e., $M(E) \cong (\Lambda(v_1, v_2, v_3), 0)$ with $|v_1| = 3, |v_2| = 5, |v_3| = 9$. From degree arguments we can put $M(f)(w) = 0, M(f)(x) = av_1, M(f)(y) = bv_2, M(f)(u) = cv_3$ for some $a, b, c \in \mathbb{Q}$. Note that, if $a \neq 0, b \neq 0$ and $c \neq 0$, it is rational homotopy equivalent to the S^1 -fibration $S^1 \to E \to B \simeq ES^1 \times_{S^1} E$, where the model is $(\Lambda W, d_B) \to (\Lambda W \otimes \Lambda v, D) \to (\Lambda v, 0)$ with |v| = 1 and Dv = w [9]. We see that f is an r.G-map if and only if a = b = 0 since $G(E)_{\mathbb{Q}} = \mathbb{Q}\{v_1^*, v_2^*, v_3^*\}$ and $G(B)_{\mathbb{Q}} = \mathbb{Q}\{u^*\}$. Thus $[E_{\mathbb{Q}}, B_{\mathbb{Q}}] \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ by $f_{\mathbb{Q}} \equiv (a, b, c)$ and $\mathbf{G}'(E_{\mathbb{Q}}, B_{\mathbb{Q}}) = \mathbf{G}(E_{\mathbb{Q}}, B_{\mathbb{Q}}) \cong \mathbb{Q}$ by $f_{\mathbb{Q}} \equiv (0, 0, c)$.

Example 3.7. Put $P_n(Y)$ the *n*th center of the homotopy Lie algebra $\pi_*(\Omega Y)$; i.e., the subgroup of elements *a* in $\pi_n(Y)$ with [a, b] = 0 (Whitehead product) for all $b \in \pi_*(Y)$. A space *Y* is called a W-space if $P_n(Y) = \pi_n(Y)$ for all *n* [24, Definition 1.8(b)].

Definition C. We will call a map $f: E \to B$ a *W*-map if $\pi_n(f)P_n(E) \subset P_n(B)$ for all n.

For example, if $\pi_*(f)$ is surjective, f is a W-map. In spaces, there are the implications: 'H-space \Rightarrow G-space \Rightarrow W-space' [24]. But 'G-map \Rightarrow W-map' is false in general. For example, put $M(B) = (\Lambda(w_1, w_2, u), d_B)$ with $|w_i|$ odd, $d_Bw_i = 0$ and $d_Bu = w_1w_2$. If the KS-extension $M(B) \rightarrow (\Lambda(w_1, w_2, u, v_1, v_2, v_3, v_4), D)$ of a map $f : E \rightarrow B$ is given by $Dv_1 = Dv_2 = 0$, $Dv_3 = w_1$ and $Dv_4 = w_2uv_1v_2$, then $f_{\mathbb{Q}}$ is a G-map but not a W-map since $w_2^* \notin G_*(E_{\mathbb{Q}})$ but $w_2^* \in P_*(E_{\mathbb{Q}})$ and $P_*(B_{\mathbb{Q}}) = \mathbb{Q}\{u^*\}$.

Example 3.8. For a fibration, D.Gottlieb proposed a question: Which homotopy equivalences of the fiber into itself can be extended to fiber homotopy equivalences of the total space into itself ? [6, §5]. We consider a question: Which map $f: E \to B$ can be extended to a map between fibrations over a sphere, that is, for a fibrations $\xi: E \to E' \to S^{n+1}$, does there exist a fibration $\eta: B \to B' \to S^{n+1}$ and a map $f': E' \to B'$ such that the diagram

homotopically commutes ? If $f : E \to B$ is extended to a map between ξ and η , from the result [6] of Gottlieb, we have a commutative diagram for all n

where ∂_{n+1} is the n + 1th connecting homomorphisms in the long exact homotopy sequence of fibration. Therefore we have

Claim: If $f : E \to B$ is not a G-map, then there is an E-fibration over a sphere where f can not be extended to the map f' satisfying (i).

In fact, suppose that $0 \neq \pi_n(f)(x) \notin G_n(B)$ for some $x \in G_n(E)$. Then there is a non-trivial fibration $\xi_x : E \to E' \to S^{n+1}$ with $\partial_{n+1}^{\xi_x}(y) = x$ for the generator yof $\pi_{n+1}(S^{n+1})$ [12, Thorem I.2]. Here ξ_x is constructed as follows ([21, page 11]). Choose a preimage \hat{x} of x under the evaluation map $\pi_n(aut_1E) \to G_n(E)$. From $\pi_{n+1}(Baut_1E) \cong \pi_n(aut_1E)$, we may consider $\hat{x} \in \pi_{n+1}(Baut_1E)$ with representative $S^{n+1} \to Baut_1E$. Pull back the universal fibration over this map to get ξ_x . On the other hand, for any B-fibration η over S^{n+1} , $G_n(B) \ni \partial_{n+1}^{\eta}(y) \neq \pi_n(f)(x)$ from the assumption. Therefore (ii) does not commute.

But to be a G-map is not sufficient for the above extension problem. Let $f : E = S^3 \times S^5 \to S^5 = B$ be the projection given by f(a, b) = b. Evidently this is a G-map. Suppose that a fibration $\xi : E \to E' \to S^3$ is given by a classifying map h with $\pi(h)_{\mathbb{Q}} : \pi_3(S^3)_{\mathbb{Q}} \cong \pi_3(Baut_1S^3 \times S^5)_{\mathbb{Q}}$. Then the KS-extension of ξ is given

by $(\Lambda(w), 0) \to (\Lambda(w, v, v'), D) \to (\Lambda(v, v'), 0)$ with D(v) = 0, D(v') = wv, |w| = 3, |v| = 3 and |v'| = 5 [18, Theorem 3.2]. Then for any fibration $\eta : B = S^5 \to B' \to S^3$, there is not a map f' that satisfies (i) since η is rationally trivial from degree arguments.

Example 3.9. In Example 3.2(1), we see an example of "non-Gottlieb" map whose homotopy fibre X has the rational homotopy type of an odd sphere S^{2n+1} . But if the homotopy fibre X has the rational homotopy type of an even sphere S^{2n} , then a map f is an r.G-map. Indeed, put $M(S^{2n}) = (\Lambda(x, y), d)$ with |x| = 2n, |y| = 4n - 1, dx = 0 and $dy = x^2$. We know that Dx = 0 and $Dy = x^2 + ax + b$ for some $a, b \in \Lambda W$ in a KS-extension. Suppose $w \in W$ and $w^* \notin G(B_{\mathbb{Q}})$. Then we have, for any $\alpha_i \in \Lambda W$ and $\beta_i \in \Lambda W \otimes \Lambda^+(x, y)$ with $W = \mathbb{Q}\{w_i\}_{i \in I}$,

$$\delta_f((w,1) + (\sum_{i \in I} w_i, \alpha_i)) \neq \delta_f((\sum_{i \in I} w_i, \beta_i))$$

in $Der_{|w|}(\Lambda W, \Lambda V \otimes \Lambda W)$. It deduces $G(B_{\mathbb{Q}}, E_{\mathbb{Q}}; f_{\mathbb{Q}}) \subset G(B_{\mathbb{Q}})$ from Theorem 2.1 and then f is an r.G-map from Lemma 1.1.

Recall that an elliptic space is one whose rational homology and rational homotopy are both finite dimensional and that an elliptic space X is said to be an F_0 -space if the Euler characteristic is positive [2]. When X is an F_0 -space, for some even degree elements $x_1, ..., x_l$, there is an isomorphism $H^*(X; \mathbb{Q}) \cong$ $\mathbb{Q}[x_1, \cdots, x_l]/(f_1, \cdots, f_l)$ with a regular sequence (f_1, \cdots, f_l) in $\mathbb{Q}[x_1, \cdots, x_l]$; i.e., $gf_i \in (f_1, \cdots, f_{i-1})$ implies $g \in (f_1, \cdots, f_{i-1})$ for any $g \in \mathbb{Q}[x_1, \cdots, x_l]$ and all *i*. For example, S^{2n} is an F_0 -space with $H^*(S^{2n}; \mathbb{Q}) \cong \mathbb{Q}[x]/(x^2)$. For an F_0 -space X, S.Halperin conjectures that $Dx_i = 0$ for i = 1, ..., l, which deduces a fibration with fibre X is totally non-cohomologous to zero [2]. For example, it holds when X is a homogeneous space [23]. If the homotopy fibre X of a map f is an F_0 -space, then is f an r.G-map ?

References

- Y.Félix and S.Halperin, Rational LS category and its applications, Trans. A.M.S. 273 (1982), 1-38.
- [2] Y.Félix, S.Halperin and J.-C.Thomas, *Rational homotopy theory*, Springer-Verlag G.T.M. 205 (20010.
- Y.Félix and G.Lupton, Evaluation maps in rational homotopy, Topology 46 (2007), 493-506.
- [4] M.Golasiński and J.Mukai, Gottlieb groups of spheres, Topology 47 (2008), 399-430.
- [5] M.Golasiński and J.Mukai, Gottlieb and Whitehead center groups of projective spaces, arXiv:1001.4663v1
- [6] D.H.Gottlieb, On fibre spaces and the evaluation maps, Ann. of Math. 87 (1968), 42-55.
- [7] D.H.Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.

- [8] W.Greub, S.Halperin and R.Vanstone, Connection, curvature and cohomology III, Academic Press 1976.
- [9] S.Halperin, Rational homotopy and torus actions, London Math. Soc. Lecture Note Series 93, 293-306, Cambridge Univ. Press, 1985.
- [10] S.Halperin, Torison gaps in the homotopy of finite complexes, Toplogy 27 (1988), 367-375.
- [11] P.Hilton, G.Mislin and J.Roitberg, Localization of nilpotent groups and spaces, North-Holland Math. Studies 15, 1975.
- [12] G.E.Lang, Jr., Evaluation subgroups of factor spaces, Pacific J.Math. 42 (1972), 701-709.
- [13] G.E.Lang, Localizations and evaluation subgroups, Proc.A.M.S. 50 (1975), 489-494.
- [14] K.-Y.Lee, M.Mimura and M.H.Woo, Gottlieb groups of homogeneous spaces, Topology and its Applications 145 (2004), 147-155.
- [15] K.-Y.Lee and M.H.Woo, The G-sequence and ω -homology of a CW-pair, Topology and its Applications 52 (3) (1993), 221-236.
- [16] G.Lupton and S.B.Smith, Cyclic maps in rational homotopy theory, Math.Z. 249 (2005), 113-124.
- [17] G.Lupton and S.B.Smith, Rationalized evaluation subgroups of a map I: Sullivan models, derivations and G-sequences, J.Pure Appl.Alg. 209 (2007), 159-171.
- [18] G.Lupton and S.B.Smith, The evaluation subgroup of a fibre inclusion, Topology and its Applications 154 (2007), 1107-1118.
- [19] J.Oprea, Decomposition theorems in rational homotopy theory, Proc.A.M.S.96 (1986), 505-512.
- [20] J.Oprea, The Samelson space of a fibration, Michigan Math. J. 34 (1987), 127-141.
- [21] J.Oprea, Gottlieb groups, group actions, fixed points and rational homotopy, Lecture note of Seoul National University 29 (1995).
- [22] P.Salvatore, Rational nilpotency of self-equivalences, Topology and its Applications 77 (1997), 37-50.
- [23] H.Shiga and M.Tezuka, Rational fibrations, homogeneous spaces with positive Euler characteristic and Jacobians, Ann. Inst. Fourier 37 (1987), 81-106.
- [24] J.Siegel, G-spaces, H-spaces and W-spaces, Pacific J. of Math. 31 (1969), 209-214.
- [25] D.Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1978), 269-331.
- [26] K.Varadarajan, Generalised Gottlieb groups, J.Indian Math.Soc. 33 (1969), 141-164.

- [27] M.H.Woo and J.R.Kim, Certain subgroups of homotopy groups, J.Korean Math. Soc. 21 (1984), 109-120.
- [28] T.Yamaguchi, An estimate in Gottlieb ranks of fibration, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 663-675.

This article may be accessed via WWW at http://www.rmi.acnet.ge/jhrs/

Toshihiro Yamaguchi tyamag@kochi-u.ac.jp

Faculty of Education, Kochi University, 2-5-1, Kochi,780-8520, JAPAN