
Journal of Homotopy and Related Structures, vol. 5(1), 2010, pp.63–95

THE Γ-STRUCTURE OF AN ADDITIVE TRACK CATEGORY
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Abstract
We prove that an additive track category with strong co-

products is equivalent to the category of pseudomodels for the
algebraic theory of nil2 groups. This generalizes the classical
statement that the category of models for the algebraic the-
ory of abelian groups is equivalent to the category of abelian
groups. Dual statements are also considered.

1. Introduction
We explore in this paper the structure of additive track categories. A track cate-
gory is a 2-category C in which every 2-morphism (called a track) is invertible. One
can define a homotopy relation on the morphisms of a track category: two mor-
phisms are homotopic if there exists a 2-morphism between them. We obtain in this
way the homotopy category ho(C) of the track category C by identifying homotopic
morphisms, and there is a canonical projection functor C −→ ho(C) from the under-
lying category of the track category to its homotopy category. Topology provides
many examples of track categories: any pointed closed model category yields a track
category by considering the full subcategory of fibrant and cofibrant objects, with
tracks (2-morphisms) the homotopy classes of homotopies. Under mild conditions,
the track category we obtain is part of a linear track extension. That is, the set of
self-tracks of a map depends in some functorial way on the homotopy class of the
map [B].

In the present work, we consider additive track categories, which are linear
track extensions whose homotopy category is additive, and whose track structure
is parametrized by a bilinear bifunctor on the homotopy category. Examples of ad-
ditive track categories arise naturally by considering the track extension associated
to a stable model category [Ho], as for example the stable homotopy category con-
sidered as the homotopy category of the Bousfield-Friedlander model category on
spectra [BF]. There is a natural notion of equivalence of linear track extensions, and
one can wonder if for a given additive track category, there is another one with nicer
properties in its equivalence class. This question has been studied in [BJP, BP].
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In particular, it is shown in [BJP] that any additive track category has within its
equivalence class an additive track category that has either strict coproducts or
strict products (this terminology is explained in the appendix). We refer to this
as the strictification theorem, and any model with either strict products or strict
coproducts is called a semi-strictification in the sequel.

In this work, we explore further strictification results. Consider any object X
in the homotopy category of an additive track category. This object is an Abelian
group object. Can we lift this structure to the track category in some reasonable
fashion? We introduce the track category Pseudoq(T,A) of pseudomodels in the
track category A for any algebraic theory T, which may be thought of as a model
for this algebraic theory up to coherent homotopy. We derive from [BJP] (more
specifically [P2]) that for all n > 1, the Abelian structure of X lifts to a pseudomodel
structure over the algebraic theory of niln groups. We also introduce the notion of
a coproduct preserving pseudo natural transformation between two pseudofunctors
and show that one can lift homotopy classes of maps in an essentially unique way
to coproduct preserving natural transformations. There is a notion of homotopy of
pseudo natural transformations of pseudofunctors and our results assemble to show
that an additive track category is equivalent (as a 2-category) to the 2-category
of pseudomodels over the category of niln groups. More precisely, we prove the
following theorem:

Theorem 1.1. Let A be an additive track category with strict coproducts. For
n > 2, there is a weak niln ringoid structure X −→ FX on A, and the assignment:

T :A −→ Pseudoq(niln,A)
X 7−→ FX

extends uniquely to a track functor T , which is an equivalence of track categories,
and the inverse of which is the evaluation of a pseudofunctor G : niln Ã A on the
group Z. Moreover, at the level of homotopy categories, T induces the canonical
equivalence

ho(T ) : ho(A) −→ modq(ab,ho(A)).

In particular, all weak niln ringoid structures are canonically equivalent. Moreover,
for s > t > 2, the functor nils −→ nilt induces isomorphisms of additive track
theories Pseudoq(nilt,A) −→ Pseudoq(nils,A). This statement holds for n, t = 1
under the conditions that the coefficients of A have no 2-torsion.

The words appearing in the main theorem are explained in Section 2 and in
Appendix A. This functor T is called the Γ-structure of the additive track category
< A >. We do not give here any application of the theory of Γ-structures, but
rather defer it to further papers. The Γ-structure of an additive track category is a
fundamental piece of structure and deserves therefore an independent treatment.

The paper is organized as follows. We quickly review the notion of algebraic
theories and their models and then introduce the 2-categorical analogue which we
call pseudomodels over an algebraic theory. This allows us to state our main results
(Section 2) and prove Theorem 1.1, assuming certain results that are proved later.
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In the next section, we show that there exists enough pseudomodel structures for
the algebraic theories niln for n > 2, but in general not for nil1 = ab. This allows us
to restate Theorem 1.1 in terms of the notion of Γ-tracks (Section 4), and the proof
of Theorem 1.1 is completed in Section 5 using this reformulation. We finish with
a brief discussion of the dual setting (Section 6). In the appendix, we recall for the
sake of self-containedness the needed facts on track theory and pseudofunctors.

2. Additive track categories and pseudomodels
2.1. Algebraic theories

The material of this section is classical, and we refer the reader to [Bor] for a more
complete exposition. An algebraic theory T is a small category with a countable set
of objects {T0,T1, . . . ,Tn, . . .} and specified isomorphisms from Tn to the n-fold
categorical product of T1. In particular, T0 is a terminal object. The category with
objects are product preserving functors from T to the category of sets, and with
morphisms are the natural transformations is termed the category of models for
T and denoted by modΠ(T). We will also use the concept of a coalgebraic theory,
simply defined by saying that a small category T is a coalgebraic theory if Top is
an algebraic theory.

Example. Let Gr be the category of groups and group homomorphisms. Let Fn be
the free group on the set n = {1, . . . , n}. By convention, we set F0 to be the trivial
group. We denote by gr the full subcategory of Gr with objects the free groups
{Fn}n∈N. The free group Fn is canonically the n-fold sum of F1 = Z in Gr, and the
category grop is therefore an algebraic theory, which is called the (algebraic) theory
of groups.

Example. Let Ab be the full subcategory of Gr with objects the Abelian groups.
This category has products and coproducts. Let Fab

n be the free Abelian group on
the set n = {1, . . . , n}. In the category Ab, Fab

n is canonically isomorphic to both
the n-fold product of Fab

1 = Z and the n-fold coproduct of Fab
1 . This means that if

we let ab be the full subcategory of Ab whose objects are {Fab
0 ,Fab

1 , . . . ,Fab
n , . . .},

then both ab and abop are algebraic theories. Reflecting the fact that finite products
are isomorphic to finite coproducts of Abelian groups (within the category Ab), the
algebraic theories ab and abop are isomorphic.

Example. A group G is endowed with a natural filtration {ΓnG}n∈N, the lower
central series, defined inductively by

Γ0G = G, Γn+1G = [G, ΓnG]

Here [−,−] stands for commutators in G. A nilpotent group of class n is a group
G such that ΓnG = {0}. For n > 1, let Niln be the full subcategory of Gr whose
objects are groups of nilpotency n. The case of n = 1 corresponds to the category of
Abelian groups, and the category Nil1 is simply denoted by Ab, while the case n = 2
corresponds to the case of so called nil-groups which we denote simply by Nil. The
categories Niln have free objects on arbitrary sets of generators. Indeed, for any set
S, denote the free group on S by <S >. The group <S >n=<S > /Γn <S > is a
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nilpotent group of class n such that the adjunction formula

Sets(S, G) ∼= Niln(<S >n, G)

holds for all sets S and nilpotent group G of class n. In other words, <S >n is the
free object generated by S.

Let niln be the full subcategory of Niln with objects the countable set {Fniln
p }n∈N,

where Fniln
p is the free nilpotent group of class n on the finite set {1, . . . , p} and

Fniln
0 is the trivial group by convention. For n = 1, we recover nil1 = ab. The group

Fniln
p is canonically isomorphic to the n-fold coproduct of Fniln

0 in niln, so that the
category nilop

n is an algebraic theory.

These examples relate in the following way. The lower central series induces an
augmented tower of coproduct preserving functors

Gr −→ {. . . −→ Nil(n + 1) −→ Niln −→ . . . −→ Ab}
where the functor Gr −→ Niln maps a group G to G/Γn+1G. That is to say, we get
an augmented tower of algebraic theories

grop −→ {. . . −→ nilop
n+1 −→ nilop

n −→ . . . −→ abop} . (2.1)

In the sequel, we consider gr as niln with n = +∞.
Let C be a category with finite products and T an algebraic theory. We let

modΠ(T, C) be the category of product preserving functors T −→ C and their
natural transformations, termed the category of models in C for the algebraic theory
T. We will also consider the category modq(Top, C) of coproduct preserving functors
Top −→ C and their natural transformations, termed the category of coproduct
models (or q-models) in C for the coalgebraic theory Top. If C is additive, there are
equivalences of categories

modq(abop, C) ∼= modΠ(abop, C) ∼= modq(ab, C) ∼= modΠ(ab, C)
and we recall that:

Proposition 2.2. A category C is additive if and only if the evaluation functor

modΠ(abop, C) −→ C
is an equivalence of categories.

2.3. Pseudomodels for additive track categories
We now consider the case of an additive track category A (see the appendix for

the notations):

D + // // A1
//// A0

p// // ho(A) = C.
The homotopy category of A is additive, therefore every object in A has the struc-
ture of a group and a cogroup up to homotopy. It is a result of [BJP] (see the
appendix) that any additive track category has in its equivalence class an additive
track category having either strict products or strict coproducts. There is neverthe-
less an obstruction to obtain both properties simultaneously, as we shall see. The
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main point here is that from a theoretical viewpoint, there is no loss of generality
in considering track categories having either strict products or strict coproducts.

Convention. In the sequel, we will consider the case of additive track categories
with strict coproducts in order to fix the ideas, except otherwise stated (for instance
in Section 6 where we state the dual results).

2.3.1. Coproduct preserving pseudofunctors and natural transformations
The necessary material on pseudofunctors is recalled in the appendix (see A.9).
Let C and T be additive track categories with strict coproducts. A pseudofunctor
ϕ : C Ã T is coproduct preserving if the following conditions are satisfied:

• ϕ is both reduced at tracks and objects (i.e. completely reduced, see A.12),
• the natural map ιX,Y = ϕ(X −→ X ∨ Y ) ∨ ϕ(Y −→ X ∨ Y )

ιX,Y : ϕ(X) ∨ ϕ(Y ) −→ ϕ(X ∨ Y ) (2.2)

is an isomorphism for all X and Y in C,
• for all objects X, Y, Z, T and maps h : X −→ Z, k : Y −→ Z, g : Z −→ T in C,

the equation

ϕg,(h∨k)ιX,Y = ϕg,h ∨ ϕg,k (2.3)

is satisfied,
• for all objects X in C, the equation

ϕX∨X = (ϕX , ϕX) . (2.4)

Let ϕ,ψ : C Ã T be two coproduct preserving pseudofunctors. We say that a
pseudo natural transformation α : ϕ −→ ψ is coproduct preserving if the following
conditions are satisfied:

• for all X, Y , the following diagram is commutative

ϕ(X) ∨ ϕ(Y )
ιX,Y //

αX∨αY

²²

ϕ(X ∨ Y )

αX∨Y

²²
ψ(X) ∨ ψ(Y )

ιX,Y // ψ(X ∨ Y ) ,

(2.5)

where ιX,Y is as above and moreover,
• for all X, Y, Z and all maps f : X −→ Z, G : X −→ Z, the pasting of tracks

in the diagram (2.6) yields αf ∨ αg.

ϕ(X) ∨ ϕ(Y )
ιX,Y //

(αX ,αY )

²²

ϕ(X ∨ Y )

⇓αf∨gαX∨Y

²²

ϕ(f∨g) // ϕ(Z)

αZ

²²
ψ(X) ∨ ψ(Y )

ιX,Y

// ψ(X ∨ Y )
ϕ(f∨g)

// ψ(Z)

(2.6)



Journal of Homotopy and Related Structures, vol. 5(1), 2010 68

Now given two coproduct preserving maps α, β : ϕ −→ ψ of coproduct preserving
pseudofunctors, a homotopy is called coproduct preserving if the pasting in the
following diagram yields the identity track:

⇒
H

ϕ(X) ∨ ϕ(Y )
ιX,Y //

(αX ,αY )

²²
(βX ,βY )

((

ϕ(X ∨ Y )

αX∨Y

²²
βX∨Y

⇒
HX∨Y

vv
ψ(X) ∨ ψ(Y )

ιX,Y

// ψ(X ∨ Y ) ,

(2.7)

where H is the track (H¯
X ,H¯

Y ). The following proposition is a direct consequence
of the definitions.

Proposition 2.4. Let C and T be two track categories with strict coproducts. As-
sume that C is a small track category. Then coproduct preserving pseudofunctors,
coproduct preserving pseudo natural transformations and coproduct preserving ho-
motopies build a track subcategory Pseudoq(C, T ) of Pseudo(C, T ).

Recall that the superscript ¯ indicates the inverse of a track.

2.4.1. Coproduct pseudomodels
Let us assume that A is a track category with strict coproducts. We consider a
coalgebraic theory T, considered as a discrete track category (that is, with only
identity tracks).

Definition 2.5. The category of q-pseudomodels in A for the algebraic theory T
is the category Pseudoq(T,A).

We first notice that in this setting the notion of coproduct preserving homotopy
of coproduct preserving pseudofunctors is particularly simple:

Proposition 2.6. Let T be a track category with strict coproducts and T be an
algebraic theory. Given two coproduct preserving pseudofunctors F,G : T Ã C. The
set of coproduct preserving homotopies F ⇒ G is the set of tracks F (T1) ⇒ G(T1),
obtained via the evaluation functor.

The proof is staightforward and will therefore be omitted. In the following, we
are interested in the case T = niln, for which we introduce further terminology.

Definition 2.7. If A is a track category with strict coproducts, then for n > 1,
• A weak niln cogroup structure on the object X of A is a q-pseudomodel ϕ in

A for the algebraic theory niln, such that ϕ(Z) = X. A weak niln cogroup in A
is a couple (X, FX) where X lies in C and FX is a weak niln cogroup structure
on X. A map of weak niln cogroups (f, Γf ) : X −→ Y is a map f : X −→ Y
in A together with a coproduct preserving pseudo natural transformation Γf :
FX −→ FY such that the evaluation

Γf (Z) : X = FX(Z) −→ FY (Z) = Y

is equal to f .
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• A semi niln ringoid structure on A consists of a chosen weak niln cogroup
structure for every object X in A.

We first notice:

Proposition 2.8. Let A be a track category with strict coproducts whose homotopy
category ho(A) is additive, let (X, FX) be a weak niln cogroup in A. Then X projects
to the Abelian cogroup structure in the homotopy category of A.

That is, let FX : niln −→ X be a weak niln cogroup structure on X. This
induces a weak niln cogroup structure on X viewed as an object of ho(A). This
means in particular that X is a cogroup object in two different ways, one coming
from the additive structure of ho(A), and one coming from FX . Moreover, FX is a
cogroup structure in the additive category A. A well known trick shows that in such
a situation, both structure have to coincide. That is to say, pFX factors through ab
(where p : A → ho(A) is the projection functor) and this factorization is precisely
the Abelian structure ϕX of X in ho(A). In other words, there is a commutative
diagram

niln
FX //

²²

A

p

²²
ab ϕX

// ho(A) .

Assume now that A is the underlying track category of a semi-strictified linear track
extension < A >. A weak niln cogroup structure on X descends in particular to a
cogroup structure on X in the homotopy category. But we assume that <A> has
an additive homotopy category, hence there is a factorization of FX through ab, and
according to proposition 2.2, the Abelian cogroup structure on X is unique up to
isomorphism, thus any weak niln cogroup structure on X lifts the natural structure in
the homotopy category. It is therefore natural to ask whether an arbitrary object in
an additive track category with strict coproducts, which is automatically a cogroup
and a group in the homotopy category, is a cogroup in A or not. The answer is:

Theorem 2.9. Any object X in an additive track category < A > with strict co-
products admits the structure of a weak niln cogroup FX , for 2 6 n 6 +∞. This
statement holds for n = 1 under the extra assumption that the linear system has no
2-torsion.

We notice that any track category with Abelian 2-automorphism groups (mor-
phisms form Abelian groupoids) is canonically and in an essentially unique way part
of a linear track extension, hence Theorem 2.9 applies as well to such categories pro-
vided that the homotopy category is additive ([BJ], see also Section A.6.0.5 of the
appendix), and the associated natural system is a bilinear bifunctor. Hence for every
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object X there is a weak niln cogroup structure FX on X, for n > 2,

niln
FX //

²²

A

²²
ab ϕX

// ho(A)

where ϕX is the Abelian structure coming from the additive structure of ho(A). We
notice that we have passed from ab = nil1 to niln with n > 2 to get such a lifting
(this is explained in Section 3).

Corollary 2.10. Any additive track category with strict coproducts can be given
the structure of a weak niln ringoid.

We provide a proof of this fact in Section 3. We then prove (Section 5):

Theorem 2.11. Let X,Y be two objects in a weak niln ringoid < A >, having
the weak niln cogroup structures FX and FY . Then any map f : X −→ Y extends
uniquely to a map

Γf : FX −→ FY

in the category Pseudoq(gr,A).

These results assemble together to produce a proof of Theorem 1.1

Proof of Theorem 1.1. We will prove Theorem 1.1 assuming Theorem 2.9 and
2.11. We first notice that G is clearly a track functor. Theorem 2.9 and 2.11 say
that T extends uniquely to a track functor

T : A −→ Pseudoq(niln,A) .

Any track s : f ⇒ g in A can be extended to a coproduct preserving homotopy
Γs : Γf ⇒ Γg, and this in a unique way (by proposition 2.6). We therefore get a
track functor

T : A −→ Pseudoq(niln,A) ,

such that the composition GT : A −→ A is the identity functor. On the other
hand, given an object F in Pseudoq(niln,A), the object a = G(F ) in A comes
with a weak niln cogroup structure defined by F , which might or might not coincide
with the chosen one Fa (that of Theorem 4.9). Nevertheless, by Theorem 4.9, the
identity a −→ a extends uniquely to a pseudo natural transformation F Ã Fa, and
this transformation is an isomorphism. This finishes the proof of the theorem. ¤

3. Existence of pseudomodels
The aim of this section is to construct a weak niln cogroup structure for every

object in an additive track category with strict coproducts, that is to prove Theorem
2.9. In other words, we show that any additive track category with strict coproducts
is a weak niln ringoid. The proof is based on cohomological arguments. We mention
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that there is an alternative direct constructive proof of Theorem 2.9, which is in the
spirit of the proofs in Section 5 (see [G]). This approach has only been amenable
to the author for n = +∞, and will therefore be omitted here. Let us recall some
facts on the cohomology of categories ([BD, BW], see also the appendix).

3.1. Cocycles for linear track extensions
Recall that all the necessary notations and definitions are given in the appendix.
Let < E > be a linear track extension of the small category C by the natural

system D (see Section A.1), and let E be the underlying track category, E0 and E1

as in A.2.0.2

D + // // E1
//// E0

p// // ho(E) = C
We choose functions:

t : Mor(C) −→ Mor(E0), H : N2(C) −→
⋃

f,g∈Mor(E0)

Jf, gK

such that
• t sends identities to identities,
• pt(f) = f for any morphism f of C, and
• H(f, g) ∈ D(tf ◦ tg, t(f ◦ g)).
We define a function cT (t, H) : N3(C) −→

⋃
(f,g,h)∈N3(C) D(fgh) by

cT (t,H)(f, g, h) = σ−1
t(fgh)(∆T (f, g, h))

where σ is the structure isomorphism of the linear track extension, see (A.1). We
also define:

∆T (f, g, h) = −H(f, gh)− (tf)∗H(g, h) + (th)∗H(f, g) + H(fg, h).

Lemma 3.2 (B-D lemma A.1). Let cT be defined as above. We have:
1. cT (t,H) is a cocycle in C3(C, D),
2. if c is a 2-cochain in C2(C, D), then

δc + cT (t,H) = cT (t,H − c),

where (H − c)(f, g) = H(f, g)− σt(fg)c(f, g),
3. The class of cT (t,H) in H3(C, D) does not depend on t and H,
4. The class of cT (t,H) in H3(C, D) depends only on the component of T in

Track(C, D).

Assume C is a small category, D a natural system on C, and consider a linear
track extension <T> of C by D such that the corresponding class in H3(C, D) is
trivial. By Lemma 3.2, as t and H vary, cT (t,H) describes exactly all the possible
cocycles representing the class of <T> in H3(C, D). Hence we have, for some t and
H:

cT(t,H)(f, g, h) = σ−1
t(fgh)(∆T(f, g, h))
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and

0 = ∆T(f, g, h) = −H(f, gh)− (tf)∗H(g, h) + (th)∗H(f, g) + H(fg, h).

This equality means that (t,H) : C −→ D is a pseudofunctor. That is:

Corollary 3.3. Let <E> be a linear track extension

D + // // E1
//// E0

p// // ho(E) = C.
Then the associated class in H3(C, D) is trivial if and only if there is a pseudofunctor
(t, H) : C −→ E such that pt = id. Moreover, if <E> is semi-strictified, then t is a
coproduct preserving pseudofunctor. Such a pseudofunctor is called a pseudosection
in the sequel.

3.4. Construction of pseudomodels
Let < E > be a semi-strictified track extension of the small category C by the

natural system D (see Section A.1), and let E be the underlying track category, E0

and E1 as in Section A.2.0.2

D + // // E1
//// E0

p// // ho(E) = C.
Let c be an object in C and ϕc be the Abelian cogroup structure on c, and niln be
any of the algebraic theories described in Section 2.1, and λn be the abelianization
functor. We have a commutative diagram

λ∗nϕ∗cX //

²²

ϕ∗cX //

²²

E

²²
niln

(i)

VV

(ii)

::

λn

// ab ϕc

// ho(E) = C .

(3.1)

Because this diagram is a pullback diagram of categories, the existence of a pseu-
dosection (i) or the existence of the lifting (ii) are equivalent, and moreover, (i) is
coproduct preserving if and only if (ii) is. Hence, according to corollary 3.3, such
a pseudosection exists if and only if the characteristic class < E >∈ H3(C, D) is
mapped to zero under the composition of natural maps

H3(X,D) −→ H3(ab, ϕ∗cD) −→ H3(niln, p∗ϕ∗cD) .

But according to [P2, Theorem A.1] (special case L = 1 of this theorem actually):

Theorem 3.5. H3(nil2, D) is trivial for any biadditive bifunctorial natural system.
If D has no 2-torsion, then H3(nil1, D) = H3(ab, D) is already trivial.

Hence Theorem 2.9 is proved, as a direct consequence of Theorem 3.5.

4. Γ-tracks
In this section <A> is an additive track category with strict coproducts, together

with a weak nils ringoid structure for some s > 1 (see Section 3 for the existence
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of such a structure). After having introduced some terminology, we state in this
section three theorems (4.9, 4.10 and 4.11) that altogether complete the proof of
Theorem 1.1. Theorem 4.10 and 4.11 are consequences of Theorem 4.9, the proof of
which is postponed to Section 5.

4.1. Some notations
We single out certain maps in niln which play an important role in the following.

Let n ⊂ m be an injection (an inclusion by abuse of notation). The functorially
associated map of free nils groups Fnils

n −→ Fnils
m is called an inclusion. An inclusion

n ⊂ m defines also a map in the reverse direction Fnils
m −→ Fnils

n by taking a gener-
ator f ∈ m to itself if f ∈ n and to 1 otherwise. Such maps are called projections.
Let αn : Z −→ Fn be the map that sends the generator of Z to the product of
the generators of Fnils

n in the increasing order. For all e ∈ n, let re : Fnils
n −→ Z

be the retraction on the eth summand. Dually, let βn : Fn −→ Z be the map that
sends all generators of Fnils

n to 1 ∈ Z. For all e ∈ n, let ie : Z −→ Fnils
n be the

inclusion of the eth summand in Fnils
n . a weak niln cogroups (X, F ), then the object

F (Fn) is isomorphic to ∨nX. This isomorphism is made implicit in the following
as it plays no significant role. For α : Fnils

n −→ Fnils
m , the associated map F (α) is

simply denoted by α.
In the following, given objects X, Y and a map f : X −→ Y , the notation

(f)n : ∨n
i=1X −→ ∨n

i=1X means ∨n
i=1f .

4.2. Γ-structures
Let < A > be an additive track category with strict coproducts. We introduce

the convenient concept of Γ-tracks, which is the local counterpart of a coproduct
preserving natural transformation. We construct such Γ-tracks on A in a natural
fashion. This leads (finally) to the proof of Theorem 2.11. We first need to introduce
interchange tracks.

Definition 4.3. Let <A> be an additive track category with strict coproducts, and
f : X −→ Y be a map between two weak nils cogroups. For α : n −→ m in nils and
f : X −→ Y an interchange track is a track α(∨nf) ⇒ (∨mf)α as in diagram (4.1).
An interchange structure for f : X −→ Y is a correspondence

α 7−→ Γf
α

such that Γf
α is the trivial track as soon as α is either an inclusion or a projection,

∨nX
α //

(f)n

²²
⇓Γf

α

∨mX

(f)m

²²
∨nY α

// ∨mY .

(4.1)

To make sense of this definition, one notices that this diagram is commutative in
the homotopy category, and therefore there is at least one such a track. Suppose we
are given some interchange structure Γf for a map f between weak niln cogroups.
We can introduce a new operation � on A by pasting interchange tracks along the
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weak niln cogroup structures. Let α : Fnils
n −→ Fnils

m , β : Fnils
m −→ Fnils

q be group
homomorphisms and f : X −→ Y be a map in A. We define Γf

β � Γf
α to be the

pasting of tracks in the following diagram:

∨nX

βα

##
α //

(f)n

²²

⇓ϕ¯
β,α

⇓Γf
α

∨mX
β //

(f)m

²²
⇓Γf

β

∨pX

(f)p

²²
∨nY

⇓ϕβ,α

βα

;;
α // ∨mY

β // ∨pY .

(4.2)

Recall that s¯ denotes the inverse of the track s. The following proposition is
an elementary consequence of the pseudofunctor property that defines a weak nils
cogroup.

Proposition 4.4. Let <A> be track category and let f be a map between two weak
niln cogroups in <A>. For any associated interchange structure, the operation �
on interchange tracks for f is associative.

Definition 4.5. Let <A> be an additive track category with strict coproducts. We
say that an interchange structure (associated to some map f : X −→ Y of weak
niln cogroups in A) satisfies property (Γ) if for all maps in gr α : Fnils

n −→ Fnils
m

and β : Fnils
m −→ Fnils

q maps in nils in the additive track category <A> with strict
coproducts, the pasting in the diagram

∨nX

βα

##
α //

(f)n

²²

⇓ϕ¯
β,α

⇓Γf
α

∨mX
β //

(f)m

²²
⇓Γf

β

∨pX

(f)p

²²
∨nY

⇓ϕβ,α

βα

;;
α // ∨mY

β // ∨pY

(4.3)

yields Γf
βα. That is, if

Γf
β � Γf

α = Γf
βα

for all α, β. An interchange structure satisfying property (Γ) is termed a Γ-structure
associated to f and the interchange tracks are termed Γ-tracks associated to f .

A direct consequence of the definitions is
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Proposition 4.6. Let < A > be an additive track category with strict coproducts
and let f be a map between weak niln cogroups. The following formula holds for any
interchange structure α 7−→ Γf

α which is a Γ-structure:

Γf
∨iαi

= ∨iΓf
αi

. (4.4)

The following remark shows the interest of the notion of a Γ-structure associated
with a map of weak nils cogroups:

Remark 4.7. Let f be X −→ Y be a map between the underlying spaces of the
weak nils cogroups (X,FX) and (Y, FY ). Then a Γ-structure Γf associated with f
is nothing but a coproduct preserving pseudo natural transformation Γf : FX −→
FY between the coproduct preserving pseudofunctors FX , FY : gr −→ A such that
Γf (Z) = f : X = FX(Z) −→ FY (Z) = Y .

4.8. Existence of Γ-structures
We have the following local existence theorems.

Theorem 4.9. Let <A> be an additive track category with strict coproducts. Any
map f between two weak nils cogroups in A has a unique associated Γ-structure.

The uniqueness statement in Theorem 4.9 yields also the following two theorems
4.10 and 4.11. Indeed, one simply checks that pasting yields exactly an interchange
structure satisfying property (Γ), and the equality follows from the uniqueness.

Theorem 4.10 (Naturality with respect to maps in A). Let α : Fn −→ Fm be a
map in gr, and f : X −→ Y , g : Y −→ Z be maps of weak nils cogroups in A. The
unique Γ-structures associated to f and g satisfy naturality with respect to maps in
A: the pasting in the diagram

∨nX
α //

(f)n

²²
⇓Γf

α

∨mX

(f)m

²²
∨nY

(g)n

²²

α //

⇓Γg
α

∨mY

(g)m

²²
∨nZ

α // ∨mZ

(4.5)

yields Γgf
α .

Theorem 4.11 (Naturality with respect to tracks in A). Let f be a map between
two weak nils cogroups in the additive track category <A>. The unique Γ-structure
associated to f satisfies naturality with respect to tracks in A: let α : Fnils

n −→ Fnils
m ,
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f : X −→ Y , g : Y −→ Z in A, and ψ : f ⇒ g. Then the pasting in the diagram

∨nX

⇒̄
∨nψ

(g)n

&&

α //

(f)n

²²

α //

⇓Γf
α

∨mX

(f)m

²²

⇒
∨mψ (g)m

yy
∨nY

α // ∨mY

(4.6)

yields Γg
α.

Assume now that all objects are weak nils cogroups in the additive track category
A, i.e. we assume that <A> is a weak niln ringoid. Every map has by the preceding
theorem a unique Γ-structure satisfying the property (Γ). These Γ-structures have
a good behavior with respect to composition in A, as we shall see. Let A be a weak
nils ringoid. Theorem 4.9 builds (according to remark 4.7) a correspondence

Γ : A −→ Pseudoq(nils,A)

which to objects associates the chosen weak nils cogroup structure and to each map
f in A a coproduct preserving natural transformation Γf . Theorem 4.10 says that
Γ is a functor. Theorem 4.11 says that Γ is actually a 2-functor. The uniqueness
and existence statements show that Γ is in fact an equivalence of 2-categories (see
Theorem 1.1 and its proof).

5. Existence and uniqueness of Γ-structures
The main point of this section is the proof of Theorem 4.9. We proceed in three

steps. We first construct an interchange structure, which is a candidate for the Γ-
structure of the theorem. We then show that the constructed interchange tracks
are actually Γ-tracks. The uniqueness is easy, and is derived in the last part of this
section.

In this section, we work with some fixed map f : X −→ Y between two weak
niln cogroups X and Y in the additive track category <A>.

5.1. Construction of the canonical Γ-structure of a weak niln ringoid
We assume that A has strict coproducts. We will construct an interchange struc-

ture associated with f called the canonical interchange structure associated with f
and denoted by Γ. We set the interchange tracks Γf

α associated with projections,
inclusions, and fold maps to be identity tracks.

5.1.1. Additivity Γ-tracks
The diagram

X
αn //

f

²²

∨nX

(f)n

²²
Y αn

// ∨nY

(5.1)
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is not commutative in A but is commutative in the homotopy category ho(A). The
map αn is described at the beginning of Section 4. The track set Track((f)nαn, αnf)
is therefore non empty. Let H be an element of Track((f)nαn, αnf). The Abelian
group D(X,∨nY ) acts freely and transitively on the set Track((f)nαn, αnf), and
the choice of H fixes an isomorphism

σH : D(X,∨nY ) −→ Track((f)nαn, αnf). (5.2)

We obtain a diagram

X

IdX

⇓ϕ¯
ÃÃ

⇓H

αn //

f

²²

∨nX
re //

(f)n

²²

X

f

²²
Y

IdY

⇓ϕ

>>αn

// ∨nY re

// Y .

(5.3)

Here the left square commutes because we assume the existence of strict coproducts.
We claim that one can alter H in a unique way by the action of D(X,∨nY ) on the
set Track((f)nαn, αnf), so that pasting in the diagram (5.3) yields the trivial track
f ⇒ f , for all 1 6 e 6 n. The track thus obtained is denoted by Γf

n

Definition 5.2. The additivity Γ-track Γf
n is the unique track (f)nαn ⇒ αnf that

restricts to the trivial track along re : ∨nX −→ X, for all e ∈ n.

To see that this definition makes sense, we notice that we have a commutative
diagram

D(X,∨nY )
σH //

Πn(re)∗
²²

Track((f)nαn, αnf)

Πn(re)∗
²²

⊕nD(X, Y ) ∼= ΠnD(X, Y ) ∏
n σ(re)∗H

// ΠnTrack(f, f) .

In this diagram, the top and bottom maps are bijections coming from the structure
of a linear track extension. The left vertical map is also an isomorphism, because
< A > is an additive track extension (thus D is a biadditive bifunctor). It follows
that the right vertical map is also an isomorphism. This shows that additivity Γ-
tracks are well defined.
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5.2.1. The negative Γ-track
Let f : X −→ Y be a map in A. We consider the diagram

X
α2 //

⇓Γf
2f

²²

∨2X

(f)2

²²

1∨(−1) // X

f

²²
Y α2

// ∨2Y
1∨(−1)

// Y .

(5.4)

The commutativity of this diagram in the homotopy category forces the existence
of some track K in the following diagram (5.5):

X
α2 //

⇓ϕ¯
0

ÃÃ

⇓Γf
2f

²²

∨2X

(f)2

²²

1∨(−1) //

⇓K

X

f

²²
Y

⇓ϕ

0

>>α2
// ∨2Y

1∨(−1)
// Y .

(5.5)

Proposition 5.3. There is a unique track K of the form 0¤ ∨ Γf
−1 such that the

pasting in diagram (5.5) leads to the trivial track 0 ⇒ 0. This defines and charac-
terizes Γf

−1. In other words

K � Γf
2 = (0¤, Γf

−1)� Γf
2 = 0¤ .

Proof. Consider diagram (5.5). The category A has strict coproducts and there-
fore K = (K1,K2) with K1 : f ⇒ f and K2 : f(−1) ⇒ (−1)f . If K = (K1, K2)
fits in the diagram (5.5), then K = (0¤, K2) does also. We can thus assume that
K1 = 0¤. The condition that the pasting K�Γf

2 in diagram (5.5) yields 0¤ : 0 ⇒ 0
determines Γf

2¤K uniquely. As Γf
2 is already fixed, this determines (α2)∗K. We

consider the commutative diagram

D(X, Y )×D(X, Y )
(α2)

∗
//

σK1×σK2

²²

D(X, Y )

σ(α2)∗K

²²
Track(f, f)× Track(f(−1), (−1)f)

(α2)
∗
// Track(f(1, (−1))α2, (1, (−1))fα2)

(5.6)

The horizontal top map is the sum in the Abelian group D(X,Y ). The vertical maps
being isomorphisms, we note that if ψ0 is a fixed element in D(X,Y ) and if we let ψ
vary in D(X, Y ), then (α2)∗(ψ0, ψ) takes all values in D(X, Y ) exactly once. Hence
(α2)∗(σK1 × σK2(ψ0, ψ)) takes all values in Track(f(1 ∨ (−1))α2, (1 ∨ (−1))fα2))
exactly once. Thus we have proved the existence and uniqueness of Γf

−1 : f(−1) ⇒
(−1)f with the prescribed properties. ¤
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5.3.1. Γ-tracks associated to multiplication by a non negative number

We define a track µf
n as the result of pasting tracks in the following diagram

X
αn //

⇓ Γf
n

ξn

⇓ϕ¯
ÃÃ

f

²²

∨nX
βn //

∨(f)n

²²

X

f

²²
Y

ξn

⇓ϕ

>>αn

// ∨nY
βn

// Y .

(5.7)

Definition 5.4. We define the track Γf
ξn
, more simply denoted by µf

n, by the equa-
tion

Γf
ξn

= µf
n = Γf

βn
� Γf

n (5.8)

5.4.1. Γ-tracks associated to multiplication by a negative number

The negative multiplication Γ-track µf
−n is defined as the pasting of tracks in the

following diagram:

X
ξn //

⇓ϕ¯

ξ−n

ÁÁ

f

²²
⇓µf

n

X
ξ−1 //

f

²²
⇓Γf
−1

X

f

²²
Y

ξn

//

⇓ϕ

ξ−n

@@Y
ξ−1

// Y .

(5.9)

Definition 5.5. We define the track Γf
ξ−n

, simply denoted by µf
−n, by the equation:

Γf
ξ−n

= µf
−n = Γf

−1 � µf
n (5.10)

5.5.1. General Γ-tracks

We are now ready to define general Γ-tracks. Let α : Fn −→ Fm, t : X −→ Y be a
map in A. For each pair (e, f), the composition rfαie : Z −→ Z is the multiplication
by a number α(e, f). The Γ-track Γf

α is the unique track (∨mt)α ⇒ α(∨nt) such that
for all (e, f) ∈ n×m the pasting of tracks in the following diagram yields the track
µt

α(e,f):
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X
ie //

⇓ϕ¯
""

⇓ϕ¯

ξαe,f

ÃÃ

t

²²

∨nX

⇓K∨nt

²²

α // ∨mX
rf //

∨mt

²²

X

t

²²
Y

⇓ϕ

ξαe,f

>>
⇓ϕ

<<ie

// ∨nY α
// ∨mY rf

// Y

(5.11)

The uniqueness of such a track follows from two facts. The first one is the assumption
that A has strict coproducts, which shows that Γt

α is determined by its various
restrictions i∗e Γt

α, 1 6 e 6 n. The second point is that similarly as in the definition
of the additivity Γ-tracks, one shows that i∗e Γt

α is in turn determined by its various
corestrictions (rf )∗i∗e Γt

α along the projections rf , for 1 6 f 6 m (see also A.7).
By simply checking the definitions:

Proposition 5.6. The assignment α 7−→ Γf
α is an interchange structure for f .

5.7. Existence
We show in this section that the interchange structure defined in Section 5.1

satisfies property (Γ). This proves the existence part of Theorem 4.9.

Proposition 5.8. Let A be an additive track category with strict coproducts. Let
f : X −→ Y be a map of weak niln cogroups. The canonical interchange structure
associated to f satisfies the property (Γ), and is called the canonical Γ-structure
associated to f .

The proof will be settled through a series of propositions. The first one is:

Proposition 5.9. For all pair of positive numbers m,n ∈ N,
µf

n � µf
m = µf

nm = µf
mn = µf

m � µf
n.

Proof . We denote by Ψf
n,m the fold map ∨mFnils

n −→ Fnils
n . We have

µf
n � µf

m = Γf
βn
� Γf

n � Γf
βm

� Γf
m

= Γf
βn
� Γf

Ψn,m
� (Γf

n)m
i=0 � Γf

m

= Γf
βmn

� Γf
mn

= µf
mn.

Here we have used the following two lemmas.

Lemma 5.10. For all pair of positive numbers m,n ∈ N, we have

Γf
n � Γf

βm
= Γf

Ψn,m
� (Γf

n)m
i=0. (5.12)
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Lemma 5.11. For all pair of positive numbers m,n ∈ N, we have

Γf
mn = (Γf

n)m
i=0 � Γf

m. (5.13)

Proof of lemma 5.10 . First, one notices that Γβm
is the identity track and therefore:

Γf
n � Γβm = (βm)∗Γf

n

= (Ψm,n)∗(Γf
n, . . . , Γf

n).

Using that Γf
Ψn,m

= 0¤, we get

Γf
n � Γβm = (Ψm,n)∗(Γf

n, . . . , Γf
n)

= Γf
Ψn,m

� ∨mΓf
n.

Proof of lemma 5.11 . One only needs to notice that (Γf
n)m

i=0 � Γf
m satisfies the

defining property of Γf
mn (see Section 5.1.1).

¤

Proposition 5.12. For any non negative number n ∈ N, we have

µf
−1 � µf

m = µf
m � µf

−1. (5.14)

The proof consists of giving a characterization of µf
−1�µf

m which is also satisfied
by µf

m � µf
−1. We set γf

−n = Γf
βn
� ∨i6nΓf

−1. We define Kn = (µf
n, γf

−n).

Proposition 5.13. The track γf
−n is the unique track such that the pasting in

diagram (5.15) yields the trivial track 0 ⇒ 0.

X
α2 //

⇓ϕ¯
0

ÃÃ

⇓Γf
2f

²²

∨2X

(f)2

²²

(n∨−n) //

⇓Kn

X

f

²²
Y

⇓ϕ

0

>>α2
// ∨2Y

(n∨−n)
// Y

(5.15)

Proof. The proof of this assertion is essentially the same as the proof of Proposition
5.3. ¤

Lemma 5.14. We have equalities

γf
−n = µf

−1 � µf
m = µf

m � µf
−1.

Proof. The proof consists of showing that both Γf
−1 � µf

m and µf
m � µf

−1 satisfy
the characterization of γf

−n in proposition 5.13. We first consider the track K ′
n =

(µf
n,Γf

−1 � µf
n). We claim that the pasting K ′

n � Γf
2 in diagram (5.16) yields the
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trivial track 0 ⇒ 0,

X
α2 //

⇓ϕ¯
0

ÃÃ

⇓Γf
2f

²²

∨2X

(f)2

²²

(n∨−n) //

⇓K′
n

X

f

²²
Y

⇓ϕ

0

>>α2
// ∨2Y

(n∨−n)
// Y

(5.16)

Indeed, we have

K ′
n � Γf

2 = (µf
n ∨ (Γf

−1 � µf
n))� Γf

2

= (Γf
βn
� Γf

n) ∨ (Γf
−1 � (Γf

βn
� Γf

n))� Γf
2

= (Γf
βn
∨ (∨i6nΓf

−1))� (Γf
n,Γf

n)� Γf
2

= (Γf
βn
∨ (∨i6nΓf

−1))� Γf
2n

which is the trivial track 0 ⇒ 0. We next consider the track K
′′
n = (µf

n, µf
n � Γf

−1).
We claim now that the pasting K

′′
n � Γf

2 in diagram 5.17 yields the trivial track
0 ⇒ 0,

X
α2 //

⇓ϕ¯
0

ÃÃ

⇓Γf
2f

²²

∨2X

(f)2

²²

(n∨−n) //

⇓K
′′
n

X

f

²²
Y

⇓ϕ

0

>>α2
// ∨2Y

(n∨−n)
// Y .

(5.17)

This claim follows from the sequence of equalities

K
′′
n � Γf

2 = (µf
n ∨ (µf

n � Γf
−1))� Γf

2

= (Γf
βn
� Γf

n) ∨ (Γf
βn
� Γf

n � Γf
−1)� Γf

2

= (Γf
βn
∨ Γf

βn
)� (Γf

n, Γf
n)� (0¤,Γf

−1)� Γf
2

but
Γf

nΓf
−1 = (Γf

−1)
n
i=1Γ

f
n,

hence

K
′′
n � Γf

2 = (Γf
βn
∨ Γf

βn
)� ((0¤)n, (Γf

−1)n)� (Γf
n,Γf

n)� Γf
2

= Γf
βn
� (Γf

β2
)n � (0¤, Γf

−1)n � (Γf
2 )n � Γf

n

= Γf
βn
� [(Γf

β2
)� (0¤,Γf

−1)� (Γf
2 )]n � Γf

n,
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which is the trivial track 0 ⇒ 0. ¤
Proposition 5.9 and 5.12 together imply:

Proposition 5.15. For all pair of integers n,m ∈ Z, we have

µf
n � µf

m = µf
m � µf

n

Proof of proposition 5.8. We consider general maps α, β in nils, with α : Fnils
n −→

Fnils
m and β : Fnils

m −→ Fnils
q . We assume that α = ∨nie where αe(e) =

∏
i fni

i ,
with fi ∈ {1 . . . ,m}. In the same way, β = ∨mβf where βf (f) =

∏
j g

nj

j , with
gj ∈ {1, . . . q}. Then βα : Fn −→ Fq is such that βα = ∨n(βα)e and (βα)e = βαe,
so that (βα)e maps e to

∏
i(β(fi))ni . We have to show that

Γf
β � Γf

αe
= Γf

βαe
.

We begin with the lemma (see A.7):

Lemma 5.16. The tracks Γf
β � Γf

αe
and Γf

βαe
coincide if and only if the tracks

Γf
rg
� Γf

β � Γf
αe

and Γf
rg
� Γf

βαe
= µ(βα)(e,g) coincide for all g ∈ {1, . . . q} (see 5.5.1

for the definition of (βα)(e, g).

Next, we notice that

Lemma 5.17. We have:
Γf

rg
� Γf

β = ∨mµf
ng

where ng =
∑

gj=g nj.

We are thus reduced to show that for all g ∈ G,

∨mµf
ng
� Γie = µ(βα)(e,g)

But now

∨mµf
ng
� Γie = Γf

βn
� (µf

ng
)m � Γie

= Γf
βn
� (µf

β(f,g) � µαef
)m � Γf

m

= µαe,f

and this finishes the proof of Proposition 5.8. ¤

5.18. Uniqueness
In this section, we prove:

Theorem 5.19. Assume A is an additive track category with strict coproducts.
Let t be a map between weak niln cogroups. Two interchange structures associated
with t and satisfying property (Γ) coincide; there is therefore a unique Γ-structure
associated with t.

The proof consists of a series of lemmas. In fact we will see that under the
assumptions, any interchange structure Γ̃t satisfying property (Γ) coincides with Γt,
the canonical one that we have constructed in Section 5.1. Let Γ̃t be an interchange
structure satisfying property (Γ). We begin with the following easy lemma.
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Lemma 5.20. The Γ̃ interchange tracks associated to identities in nils are identi-
ties. The Γ̃ interchange tracks associated with the trivial map in nils are the trivial
tracks.

Proof. Let 1 be the identity of Fn. Considering the pasting of Γ̃ with itself, we see
that

Γ̃t
1 � Γ̃t

1 = Γ̃t
1¤Γ̃t

1 = Γ̃t
1

in the group Track(t, t); therefore Γ̃t
1 = 0¤ ¤

Lemma 5.21. The additivity Γ-tracks are unique, that is Γ̃t
n = Γt

n for all n > 0.

Proof. Let n > 0 and t : X −→ Y any map in A. The additivity Γ-track is defined
to be the unique one that restricts to the trivial track t ⇒ t along the retractions
re : ∨nX −→ X for all e ∈ n. Let us see that it coincides with the Γ̃-track. The
restriction of the Γ̃-track along the maps re : ∨nX −→ X has to be the Γ-track
associated with the identity, which we have seen (5.20) to be the trivial track. But
this property characterizes the additivity Γ-track, and therefore for all n, Γt

n = Γ̃t
n.

¤

Lemma 5.22. The multiplication Γ-tracks associated to the multiplication with a
positive number is unique.

Proof. For the multiplication by a positive number, the uniqueness is clear from
the diagram (5.7) under the hypotheses. ¤

Lemma 5.23. The basic negative Γ-track is unique.

It follows immediately that:

Corollary 5.24. The Γ-tracks associated with multiplication maps are unique.

Proof of lemma 5.23. We consider once again the diagram (5.5)

X
α2 //

⇓ϕ¯
ÃÃ

⇓Γt
2t

²²

∨2X

∨2t

²²

(1,(−1)) //

⇓K

X

t

² ²
Y

⇓ϕ

>>α2
// ∨2Y

(1,(−1))
// Y .

(5.18)

The track K is of the form (K1,K2) because A has strict coproducts. By assump-
tion, the property (Γ) is satisfied and this leads to

K � Γ2 = Γt
∗ = 0¤. (5.19)

Because of the definition of a weak niln cogroup, we have

(K1,K2) = (Γt
1,Γ

t
−1). (5.20)

This fact being granted, we see that that Γ̃−1 has to coincide with Γ−1, as these
properties determine Γ−1 (see proposition 5.3). ¤
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Proposition 5.25. General Γ-tracks are unique.

Proof. According to the remarks following the definition of the general Γ-tracks
(see Section 5.5.1), the uniqueness is settled as soon as the multiplication Γ-tracks
are determined, but this precisely the content of corollary 5.24. ¤

6. Dual results

As we have noticed in A.6.0.5, any additive track category has also a model with
strict products. Let C be an additive track category with strict products. One can
define in C the dual notions of product preserving pseudofunctor nilop

n Ã C over the
algebraic theory of nils groups, product preserving pseudo natural transformations
between those, and homotopies of product preserving pseudo natural transforma-
tions. These altogether build a 2-category denoted by PseudoΠ(niln, C) and termed
the category of Π-pseudomodels over the algebraic theory nilopn . An object X in C,
together with a Π-pseudomodel F : nilopn Ã C such that F (Z) = X, is termed a weak
niln group. A is a track category with strict coproducts if and only if its opposite
category is a track category with strict products. In this way, we can dualize all our
results, and in particular:

Theorem 6.1. Any object X in an additive track category <A> with strict prod-
ucts admits canonically the structure of a weak niln group.

Moreover:

Theorem 6.2. Let X, Y be two objects in an additive track category A with strict
products, having the weak niln group structures FX and FY . Then each map f :
X −→ Y extends uniquely to a map

Γf : FX −→ FY

in the category PseudoΠ(niln,A).

Finally:

Theorem 6.3. The assignment:

T :A −→ PseudoΠ(niln,A)
X 7−→ FX

extends uniquely to a track functor T which is an equivalence of 2-categories, the
inverse of which is the evaluation of a pseudofunctor G : nilop

n Ã A on the group Z
for all n > 2.
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A. Track categories

A.1. Linear track extensions
A.1.0.1. Factorizations Let C be a category. The category of factorizations of
C is the category FC defined by

• Ob(FC) = Mor(C)
• For f, g ∈ Ob(FC) = Mor(C), a morphism f −→ g is a pair (α, β) fitting in a

commutative diagram:

A α
// A′

B

f

OO

B′βoo

g

OO

A functor from D : FC −→ Ab is called a natural system on C.

Example A.2. Let C be any category. Any bifunctor F : Cop × C −→ Ab defines a
natural system by

D(X,Y ) = F (X, Y ), D(α, β) = F (α, β)

Let ab be the algebraic theory of Abelian groups (as in Section 2.1). Any biadditive
bifunctor F : abop × ab is of the form homab(−,−⊗M), with M = D(Z,Z).

A.2.0.2. Track categories A track category A is a category enriched in
groupoids. Given two morphisms objects X, Y ∈ A, we have an hom-groupoid
JX,Y K, its objects are morphisms f : X −→ Y of A and its morphisms ϕ : f ⇒ g
are called tracks from f to g. The set of 2-morphisms from f to g is denoted by
Track(f, g).

The composition of tracks η : f ⇒ g and ϕ : g ⇒ h is termed vertical composition
and denoted by ϕ¤η. The endomorphism-groupoid Jf, fK of a f is a group for the
vertical composition, termed self tracks of f , whose neutral element is denoted by
0¤. In this group, the inverse of the track α : f ⇒ f is denoted by α¯.

Example A.3. There are numerous examples of track categories, arising in dif-
ferent contexts. Topology provides examples by considering the full subcategories
of fibrant-cofibrant objects in stable model categories, with tracks being homotopy
classes of homotopies. Complete details are presented in [B].

By definition, the composition

JA,BK× JB, CK −→ JA,CK
is a bifunctor. This means that for all f : A −→ B and g : B −→ C, functors

g∗ : JA,BK −→ JA,CK
and

f∗ : JB, CK −→ JA,CK
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are defined and commute which each other. In particular, for α : f0 ⇒ f1 ∈ JA,BK
and β : g0 ⇒ g1 ∈ JB, CK the equation

g1∗α¤f0
∗β = f∗1 β¤g0∗α

holds. This defines the horizontal composition of tracks.
From a track category A one can construct two ordinary categories A0 and A1.

The category A0 is the underlying category of A, obtained by forgetting tracks,
while A1 has for objects the morphisms of A and has for morphisms X −→ Y
the tracks f ⇒ g with f, g : X −→ Y . The composition in A1 is defined by the
horizontal composition of tracks. The functors source and target induce two functors

A1 // // A0 ,

hence we can form an equalizer diagram of categories

A1
//// A0

// ho(A).

That is, ho(A) has the same objects as A but its morphisms are obtained from
those of A by identifying morphisms related by a 2-morphisms in A. The category
ho(A) is called the homotopy category of the track category A.

A zero object in a category is an object which is both initial and final. All
such objects are equivalent. A category with a fixed zero object is called a pointed
category. A strict zero object in a track category A is an object ∗ such that for
all object X of A, the hom-groupoids JX, ∗K and J∗, XK are trivial groupoids, with
one object and one morphism. The object ∗ is in particular a zero object of the
underlying category. A track category with chosen strict zero object is a pointed
track category. For all objects X,Y in a pointed category, we have a unique map
∗X,Y : X −→ ∗ −→ Y with the property that for g : Y −→ Z and h : W −→ X

g∗X,Y = ∗X,Z and ∗X,Y h = ∗W,Y .

A.3.0.3. Linear track extensions A linear track extension <E> consists of
the following data:
• a track category E,
• a natural system D on ho(E)
• for all maps f : X −→ Y in E, an isomorphism of groups

σf : Dp(f) −→ Track(f, f) (A.1)

• moreover the system of isomorphisms {σf} is required to satisfy:

∀a ∈ Dp(f) = Dp(g), ∀H ∈ Track{f, g}, σf (a)¤H = H¤σg(a),

∀α ∈ Dp(f), g
∗σf (α) = σfg(g∗α),

∀β ∈ Dp(f), f∗σg(β) = σfg(f∗β).

The linear track extension <E> is usually depicted by a diagram

D + // // E1
//// E0

p // // ho(E).
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Example A.4. The example A.3 above provides linear track extension with
D(X, Y ) = homho(A)(X, ΩY ). Complete details are devised in [B2].

A.4.0.4. Additive track category

Definition A.5. A linear track extension <E>

D + // // E1
//// E0

p// // ho(E) = C
is called additive if
• the underlying track category E is pointed,
• the homotopy category is ho(E) is additive,
• D is a biadditive bifunctor.

Note that the zero object of E will automatically be mapped to a zero object of
ho(E).

Remark A.6. According to [BJ], an additive track category is essentially deter-
mined by its underlying track category. We therefore use the term additive track
category instead of ‘additive track extension’.

A.6.0.5. Strict products We consider an additive track category (A, D), and
we assume strict coproducts exist, that is for each pair of objects (X,Y ), there is
an object X ∨ Y and maps X −→ X ∨ Y, Y −→ X ∨ Y , so that the induced map

Ψ : JX ∨ Y, ZK −→ JX, ZK× JY, ZK
is an isomorphism of categories for all Z. The image of a couple of tracks (ϕ,ψ) ∈
JX,ZK1×JY,ZK1 in JX∨Y,ZK1 by the inverse equivalence Ψ−1 is denoted by ϕ∨ψ.
The fact that we have an equivalence of categories implies the following:

(ϕ ∨ ψ)¤(ϕ′ ∨ ψ′) = Ψ−1(ϕ, ψ)¤Ψ−1(ϕ′, ψ′)
= Ψ−1((ϕ,ψ)¤(ϕ′, ψ′))
= Ψ−1(ϕ¤ϕ′, ψ¤ψ′)
= (ϕ¤ϕ′) ∨ (ψ¤ψ′).

We add for further reference the following easy lemma.

Lemma A.7. Let E be a finite ordered set. A sum of tracks H = (he)e∈E :
∨e∈Efe ⇒ ∨e∈Ege is characterized as the unique track that:
• restricts to he along (re)∗(ie)∗,
• restricts to the trivial track ∗ ⇒ ∗ along (re)∗(ie′)∗ for e 6= e′ in E.

A.7.0.6. Cohomology of categories Given a small category C, we let Nn(C)
denote the nth stage of the nerve of C. It consists of all n-tuple that form a chain of
composable morphisms. Given such a chain λ = (f1, f2, . . . , fn) ∈ Nn(C), we define
λ̄ to be the composition

λ̄ = f1f2 . . . fn .
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Let C be a small category and let D be a coefficient system on C. The set of
n-cochains of C with coefficient in D is the set

Cn(C, D) =



σ : Nn(C) −→

⋃

λ∈Nn(C)
D(λ̄), σ(λ) ∈ D(λ̄)





where Nn(C) denotes the nerve of C. The object C•(C, D) is actually a graded
Abelian group. With the face maps

di : Cn(C, D) −→ Cn+1(C, D) (A.2)

defined by




d0(σ)(f1, . . . , fn+1) = (f1)∗σ(f2, . . . , fn+1),
dn(σ)(f1, . . . , fn+1) = (fn+1)∗σ(f1, . . . , fn),
di(σ)(f1, . . . , fn+1) = σ(f1, . . . , fifi+1, . . . , fn+1) if 1 < i < n + 1,

and the degeneracies given by

si(σ)(f1, . . . , fn) = σ(f1, . . . , fi, id, fi+1, . . . fn), (A.3)

C•(C, D) becomes a cosimplicial Abelian group. The associated normalized cochain
complex is denoted by NC•(C, D) and its homology is by definition the cohomology
of C with coefficients in D:

H∗(C, D) = H∗(NC•(C, D)) . (A.4)

A.7.0.7. Classification of linear track categories Letting C be a small
category and D be a natural system over C, we can define a notion of maps of linear
track extensions of C by D. In this way, the linear track extensions of C by D build
a category whose connected components is a set Track(C, D) (see [BD]). Moreover,
Track(C, D) is in canonical bijection with H3(C, D). From [BJP, th. 6.2.1] we have
the strictification theorem,

Theorem A.8. Any linear track extension whose homotopy category has arbitrary
(resp. finite) coproducts has in its equivalence class a category with strict (resp.
finite) coproducts. A similar statement holds mutatis mutandis by replacing coprod-
ucts by products.

A.9. Track categories of pseudofunctors
A.9.1. Pseudofunctors
The material of this section is adapted from [BM]. The proofs there can easily
be translated to our setting. Let C be and T be track categories. A pseudofunctor
C Ã T is an assignment of objects, maps, and tracks together with additional tracks

ϕf,g : ϕ(f)ϕ(g) ⇒ ϕ(fg) and ϕX : ϕ(1X) ⇒ 1ϕX

for all objects X and composable maps • g−→ • f−→ •. These tracks must satisfy
the following conditions. For all composable • g−→ • f−→ • h−→ •
• the pasting in the diagrams (A.5) and (A.7) is the identity track,



Journal of Homotopy and Related Structures, vol. 5(1), 2010 90

• for any composable tracks α, β in C, the composition in the diagram (A.6) is
the track ϕ(αβ),

• ϕ preserves vertical composition of tracks,
• ϕ preserves identity tracks.

We leave it to the reader to write the formal equations corresponding to these
conditions.

ϕ(X)

1ϕ(X)

⇓ϕ¯
X ÂÂ

ϕ(1X)
//

ϕ(f)

⇓ϕf,1X

77
ϕ(X)

ϕ(f) // ϕ(Y ) ϕ(X)
ϕ(f) //

ϕ(f)

⇓ϕ1Y ,f
77

ϕ(Y )

1ϕ(Y )

ϕ⇓¯
Y

ÂÂ
// ϕ(Y )

(A.5)

•
⇒
β ϕ(g′)

~~
ϕ(fg)

⇒
ϕ¯

f,g

))

ϕ(f ′g′)⇒
ϕ

f′,g′

uu

ϕ(g)

ÃÃ •
⇒
α ϕ(f ′)

~~
ϕ(f)

ÃÃ •

(A.6)

•
ϕ(h)

²²
ϕ(gh) ϕ¯

g,h
⇒

""

ED

BC

ϕ(fgh)⇒
ϕfgh

oo

GF

@A

ϕ(fgh) ϕ¯
f,gh
⇒

//

•

ϕ(fg)ϕf,g
⇒

||

ϕ(g)

²²•
ϕ(f)

²²•

(A.7)

A.9.2. Pseudo-natural transformations
Given two pseudofunctors

ϕ,ψ : C Ã T ,

a pseudo natural transformation α : ϕ −→ ψ is a collection of maps

αX : ϕ(X) −→ ψ(X)

for all X in C and for all maps f : X −→ Y in C, a collection of tracks

αf : αY ϕ(f) ⇒ ψ(f)αX ,

such that
• for all f, g : X −→ Y in C and all tracks γ : f ⇒ g, pasting in diagram (A.9)

yields αg,
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• for any composable maps

X
f−→ Y

g−→ Z

in C, pasting in the diagram (A.10) yields αfg,

• for all X in C, pasting in the diagram (A.11) yields the identity track 0¤
αX

.

Let α : ϕ −→ ψ and β : ψ −→ ξ be two pseudo natural transformations. We define
the composite pseudo natural transformation

βα : ϕ −→ ξ

as the assignment

(βα)X = βXαX : ϕ(X) −→ ξ(X)

for all X in C, and for all maps f : X −→ Y in C the tracks

(βα)f : βY αY ϕ(f) ⇒ ψ(f)βXαX

are given by pasting in diagram (A.8).

The fact that βα is again a pseudo natural transformation is straightforward, as
well as the fact that this composition is associative. Moreover, for all pseudofunctor
ϕ : C Ã T , there is an identity pseudo natural transformation 1ϕ : ϕ −→ ϕ for
the composition of pseudo natural transformations, for which all maps (1ϕ)X :
ϕ(X) −→ ϕ(X) are identities, and all tracks (1ϕ)f : ϕ(f) ⇒ ϕ(f) are identity
tracks.

ϕ(X)
ϕ(f) //

αX

²²
⇓αf

ϕ(Y )

αY

²²
ψ(X)

βX

²²

ψ(f) //

⇓βf

ξ(X)

βY

²²
ξ(x)

ξ(f) // ξ(Y )

(A.8)

Proposition A.10. Let C be a small track category and T be any track category.
Then the pseudofunctors C Ã T and their pseudo natural transformations build a
category denoted by Pseudo(C, T ).
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⇓ϕ(γ)¯

ϕ(X)

ϕ(g)

ÃÃ
ϕ(f) //

αX

²²
⇓αf

ϕ(Y )

αY

²²
ψ(X)

ψ(g)

>>
ψ(f) // ψ(Y )

⇓ϕ(γ)

(A.9)

ϕ(X)

ϕ(gf)

##ϕ(f) //

αX

²²

⇓ϕ¯
g,f

⇓αf

ϕ(X)
ϕ(g) //

αY

²²
⇓αg

ϕ(Z)

αZ

²²
ψ(X)

⇓ψg,f

ψ(gf)

;;
ψ(f) // ψ(Y )

ψ(g) // ψ(Z)

(A.10)

⇓ϕX
¯

ϕ(X)

1ϕ(X)

ÃÃ
ϕ(1X) //

αX

²²
⇓α1X

ϕ(X)

αX

²²
ψ(X)

1ψ(X)

>>
ψ(1X) // ψ(X)

⇓ψX

(A.11)

A.10.1. The track category of pseudofunctors
Let C be a small track category and T be any track category. Let α, β : ϕ −→ ψ be
a morphism in Pseudo(C, T ). A track H : α ⇒ β is a collection of tracks

HX : αX ⇒ βX

for all X ∈ C, such that

• for all f : X −→ Y in C, pasting in diagram (A.12) yields βf ,

• for all X in C, pasting in diagram (A.13) yields β1X ,
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ϕ(X)
⇒

H¯
X

βX

$$

ϕ(f) //

αX

²²

ϕ(f) //

⇓αf

ϕ(Y )

αY

²²
⇒

HY
βY

zz
ψ(X)

ψ(f) // ψ(Y ) .

(A.12)

ϕ(X)
⇒

H¯
X

βX

$$

ϕ(1X) //

αX

²²
⇓α1X

ϕ(X)

αX

²²
⇒

HY
βY

zz
ψ(X)

ψ(1X)
// ψ(X)

(A.13)

The tracks of pseudo natural transformations Pseudo(C, T ) are actually the 2-
morphisms of a track structure on Pseudo(C, T ).

Proposition A.11. Let C be a small track category and T be any track category.
Then the pseudofunctors C Ã T , their pseudo natural transformations, and tracks of
pseudo natural transformations give Pseudo(C, T ) the structure of a track category.

A.12. Basic results on pseudofunctors (after [BM])
Let C and T be two track categories and ϕ : C Ã T a pseudofunctor.
The pseudofunctor ϕ is reduced if

ϕ(idX) = idϕ(X) and ϕ(0¤
X) = 0¤

ϕ(X)

for all objects X in C.
We now assume that C and T have a strict zero object. The pseudofunctor ϕ is

normalized at zero maps if
• ϕ(∗) = ∗,
• ϕ(∗X,Y ) = ∗ϕ(X),ϕ(Y ),
• ϕf,∗ = ϕ∗,f is the trivial track of the zero map.
Pseudofunctor reduced and normalized at zero objects are called completely re-

duced.

Proposition A.13. Let ϕ : C Ã T be a pseudofunctor. We consider a collection
of tracks ξ = {ξf : ϕ(f) ⇒ ϕf}f∈Mor C. The correspondence ϕξ that associates to
objects X in C

X 7−→ ϕξ(X) = ϕ(X) ,

to maps f : X −→ Y in C
f 7−→ ϕξ(f) = ϕf ,

to tracks α : f ⇒ g

ϕξ(α) = ξgϕ(α)(ξf )¯
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together with the tracks
ϕξ

f,g = ξfg¤ϕf,g¤(ξ¯
f , ξ¯

g ),

and
ϕξ

X = ϕXξ¯
1X

define
• a pseudofunctor ϕξ, and
• a pseudo natural transformation tξ : ϕ −→ ϕξ that is the identity of objects.

Moreover,
• given a second collection ξ′ = {ξ′f : ϕf ⇒ (ϕ′)f}f∈Mor C, we may consider the

collection ξ′ ∗ ξ = {(ξ ∗ ξ′)f : ϕf ⇒ (ϕ)f ⇒ (ϕ′)f}f∈Mor C. W)e have

tξ′tξ = tξ′∗ξ.

• if C and T have strict coproducts (resp. products), and ϕ : C −→ T is co-
product (resp. product) preserving, then ϕξ is again coproduct (resp. prod-
uct) preserving and tξ is a coproduct (resp. product) preserving pseudo natural
transformation.

The proof of this proposition is straightforward, and yields easily the following
corollaries.

Corollary A.14. Any pseudofunctor ϕ : C −→ T is naturally homotopic to a
reduced pseudofunctor. If C and T have strict coproducts (resp. products), and ϕ :
C −→ T is coproduct (resp. product) preserving, then ϕξ is naturally homotopic to
a reduced coproduct (resp. product) preserving pseudofunctor through a coproduct
(resp. product) preserving pseudo natural transformation.

Corollary A.15. Any pseudofunctor such that ψ(∗) = ∗ is naturally isomorphic a
completely reduced pseudofunctor. If C and T have strict coproducts (resp. products),
and ϕ : C −→ T is coproduct (resp. product) preserving, then ϕξ is naturally ho-
motopic to a completely reduced coproduct (resp. product) preserving pseudofunctor
through a coproduct (resp. product) preserving pseudo natural transformation.
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