REALIZABILITY OF THE GROUP OF RATIONAL SELF-HOMOTOPY EQUIVALENCES

MAHMOUD BENKHALIFA

(communicated by James Stasheff)

Abstract
For a 1-connected CW-complex X, let $E(X)$ denote the group of homotopy classes of self-homotopy equivalences of X. The aim of this paper is to prove that, for every $n \in \mathbb{N}$, there exists a 1-connected rational CW-complex X_n such that $E(X_n) \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$, 2^{n+1} times.

1. Introduction
If X is a 1-connected CW-complex, let $E(X)$ denote the set of homotopy classes of self-homotopy equivalences of X. It is well-known that $E(X)$ is a group with respect to composition of homotopy classes. As pointed out by D. W. Khan [4], a basic problem about self-equivalences is the realizability of $E(X)$, i.e., when for a given group G there exists a CW-complex X such that $E(X) \cong G$.
In this paper we consider a particular problem asked by M. Arkowitz and G Lupton in [1]: let G be a finite group, is there a rational 1-connected CW-complex X such that $E(X) \cong G$.
In this case the group G is said to be rationally realizable.
Our main result says:

Theorem. The groups $\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$, 2^{n+1} times are rationally realizable for every $n \in \mathbb{N}$.

We will obtain this result working on the theory elaborated by Sullivan [3] which asserts that the homotopy of 1-connected rational spaces is equivalent to the homotopy theory of 1-connected minimal cochain commutative algebras over the rationals (mccas, for short). Recall that there exists a reasonable concept of homotopy among cochain morphisms between two mccas, analogous in many respects to the topological notion of homotopy.
Because of this equivalence we deduce that $E(X) \cong E(\Lambda V, \partial)$, where $(\Lambda V, \partial)$ is the mcca associated with X (called the minimal Sullivan model of X) and where $E(\Lambda V, \partial)$ denotes the group of self-homotopy equivalences of $(\Lambda V, \partial)$. Therefore we can translate our problem to the following: let G be a finite group. Is there a mcca $(\Lambda V, \partial)$ such that $E(\Lambda V, \partial) \cong G$?

Received July 18, 2010, revised September 22, 2010; published on December 4, 2010.
2000 Mathematics Subject Classification: Primary 55P62, 55Q05. Secondary 55S35.
Key words and phrases: Groups of self-homotopy equivalences, rational homotopy theory.
© 2010, Mahmoud Benkhalifa. Permission to copy for private use granted.
Note that, in [1], M. Arkowitz and G Lupton have given examples showing that \(\mathbb{Z}_2 \) and \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \) are rationally realizable. Recently and by using a technique radically different from the one used in [1], the author [2] showed that \(\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \) are rationally realizable for all \(n \leq 10 \).

2. The main result

2.1. Notion of homotopy for mccas

Let \((\Lambda(t, dt), d)\) be the free commutative graded algebra on the basis \(\{t, dt\} \) with \(|t| = 0, |dt| = 1 \), and let \(d \) be the differential sending \(t \mapsto dt \). Define augmentations

\[\varepsilon_0, \varepsilon_1 : (\Lambda(t, dt), d) \to \mathbb{Q} \text{ by } \varepsilon_0(t) = 0, \varepsilon_1(t) = 1 \]

Definition 2.1. ([3]) Two cochain morphisms \(\alpha_0, \alpha_1 : (\Lambda V, \partial) \to (\Lambda W, \delta) \) are homotopic if there is a cochain morphism \(\Phi : (\Lambda V, \partial) \to (\Lambda W, \delta) \otimes (\Lambda(t, dt), d) \) such that, \(i = 0, 1 \).

Thereafter we will need the following lemma.

Lemma 2.1. Let \(\alpha_0, \alpha_1 : (\Lambda V \leq n+1, \partial) \to (\Lambda W \leq n+1, \delta) \) be two cochain morphisms such that \(\alpha_0 = \alpha_1 \) on \(V \leq n \). Assume that for every generator \(v \in V \leq n \) we have

\[\alpha_0(v) = \alpha_1(v) + \partial(y_v) \]

where \(y_v \in (\Lambda W \leq n+1)^n \). Then \(\alpha_0 \) and \(\alpha_1 \) are homotopic.

Proof. Define \(\Phi : (\Lambda V, \partial) \to (\Lambda V, \partial) \otimes (\Lambda(t, dt), d) \) by setting

\[\Phi(v) = \alpha_1(v) + \partial(y_v)t - (-1)^{|\partial(y_v)}y_v dt \text{ and } \Phi = \alpha_0 \text{ on } V \leq n \] \hspace{1cm} (2.1)

It is clear that \(\Phi \) is a cochain algebra satisfying \((id_\varepsilon_0) \circ \Phi = \alpha_1, (id_\varepsilon_1) \circ \Phi = \alpha_0\)

2.2. The linear maps \(b^n, n \geq 3 \)

Definition 2.2. Let \((\Lambda V, \partial)\) be a 1-connected mcca. For every \(n \geq 3 \), we define the linear map \(b^n : V^n \to H^{n+1}(\Lambda V \leq n-1) \) by setting

\[b^n(v_n) = [\partial(v_n)]. \] \hspace{1cm} (2.2)

Here \([\partial(v_n)]\) denotes the cohomology class of \(\partial(v_n) \in (\Lambda V \leq n-1)^{n+1} \).

For every 1-connected mcca \((\Lambda V, \partial)\), the linear map \(b_n \) are natural. Namely if \(\alpha : (\Lambda V, \partial) \to (\Lambda W, \delta) \) is a cochain morphism between two 1-connected mccas, then the following diagram commutes for all \(n \geq 2 \)

\[
\begin{array}{ccc}
V^{n+1} & \xrightarrow{\alpha^{n+1}} & W^{n+1} \\
\downarrow{b^{n+1}} & & \downarrow{b^{n+1}} \\
H^{n+2}(\Lambda V \leq n) & \xrightarrow{H^{n+2}(\alpha(n))} & H^{n+2}(\Lambda W \leq n)
\end{array}
\] \hspace{1cm} (1)
where $\tilde{\alpha} : V^* \to W^*$ is the graded homomorphism induced by α on the indecomposables and where $\alpha_{(n)} : (\Lambda V^\leq n, \partial) \to (\Lambda W^\leq n, \delta)$ is the restriction of α.

2.3. The groups C_n^{n+1}, where $n \geq 2$

Definition 2.3. Given a 1-connected mcca $(\Lambda V^\leq n+1, \partial)$. Let C_n^{n+1} be the subset of $Aut(V^{n+1}) \times \mathcal{E}(\Lambda V^\leq n, \partial)$ consisting of the couples $(\xi^{n+1}, [\alpha_{(n)}])$ making the following diagram commutes

\[
\begin{array}{ccc}
V^{n+1} & \xrightarrow{\xi^{n+1}} & V^{n+1} \\
\downarrow{\delta^{n+1}} & & \downarrow{\delta^{n+1}} \\
H^{n+2}(\Lambda V^\leq n) & \xrightarrow{H^{n+2}(\alpha_{(n)})} & H^{n+2}(\Lambda V^\leq n)
\end{array}
\]

where $Aut(V^{n+1})$ is the group of automorphisms of the vector space V^{n+1}.

Equipped with the composition laws, the set C_n^{n+1} becomes a subgroup of $Aut(V^{n+1}) \times \mathcal{E}(\Lambda V^\leq n, \partial)$.

Proposition 2.1. There exists a surjective homomorphism $\Phi^{n+1} : \mathcal{E}(\Lambda V^\leq n+1, \partial) \to C_n^{n+1}$ given by the relation

$$\Phi^{n+1}([\alpha]) = (\tilde{\alpha}^{n+1}, [\alpha_{(n)}])$$

Remark 2.1. It is well-known ([3] proposition 12.8) that if two cochain morphisms $\alpha, \alpha' : (\Lambda V^\leq n+1, \partial) \to (\Lambda W^\leq n+1, \partial)$ are homotopic, then they induce the same graded linear maps on the indecomposables, i.e., $\tilde{\alpha} = \tilde{\alpha}'$, moreover $\alpha_{(n)}, \alpha'_{(n)}$ are homotopic and by using the diagram (1) we deduce that the map Φ^{n+1} is well-defined.

Proof. Let $(\xi^{n+1}, [\alpha_{(n)}]) \in C_n^{n+1}$. Choose $(v_\sigma)_{\sigma \in \Sigma}$ as a basis of V^{n+1}. Recall that, in the diagram (2), we have

\[
\begin{align*}
H^{n+2}(\alpha_{(n)}) & \circ \delta^{n+1}(v_\sigma) = \alpha_{(n)} \circ \partial(v_\sigma) + \text{Im} \partial_{\leq n} \\
\delta^{n+1} \circ \xi^{n+1}(v_\sigma) & = \partial \circ \xi^{n+1}(v_\sigma) + \text{Im} \partial_{\leq n}
\end{align*}
\]

(2.3)

where $\partial_{\leq n} : (\Lambda V^\leq n)^{n+1} \to (\Lambda V^\leq n)^{n+2}$. Note that here we have used the relation (2.2).

Since by definition 2.3 this diagram commutes, the element $(\alpha_{(n)} \circ \partial - \partial \circ \xi^{n+1})(v_\sigma) \in \text{Im} \partial_{\leq n}$. As a consequence there exists $u_\sigma \in (\Lambda V^\leq n)^{n+1}$ such that

\[
(\alpha_{(n)} \circ \partial - \partial \circ \xi^{n+1})(v_\sigma) = \partial_{\leq n}(u_\sigma).
\]

(2.4)

Thus we define $\alpha : (\Lambda V^\leq n+1, \partial) \to (\Lambda V^\leq n+1, \partial)$ by setting

\[
\alpha(v_\sigma) = \xi^{n+1}(v_\sigma) + u_\sigma, \quad v_\sigma \in V^{n+1} \quad \text{and} \quad \alpha = \alpha_{(n)} \text{ on } V^\leq n.
\]

(2.5)

As $\partial(v_\sigma) \in (\Lambda V^\leq n)^{n+2}$ then, by (2.4), we get

\[
\partial \circ \alpha(v_\sigma) = \partial(\xi^{n+1}(v_\sigma)) + \partial_{\leq n}(u_\sigma) = \alpha_{(n)} \circ \partial(v_\sigma) = \alpha \circ \partial(v_\sigma)
\]
Assume that \(\alpha \in (\Lambda V \leq n)^{n+1} \), the linear map \(\widetilde{\alpha}^{n+1} : V^{n+1} \rightarrow V^{n+1} \) coincides with \(\xi^{n+1} \).

Finally it is well-known (see [3]) that any cochain morphism between two 1-connected mcca inducing a graded linear isomorphism on the indecomposables is a homotopy equivalence. Consequently \(\alpha \in \mathcal{E}(\Lambda V \leq n, \partial) \), Therefore \(\Phi^{n+1} \) is surjective. Finally the following relations

\[
\Phi^{n+1}((\alpha, \alpha')) = (\alpha \circ \alpha'^{n+1} + \langle \alpha(n) \circ \alpha'(n) \rangle) = (\alpha^{n+1}, \langle \alpha(n) \rangle) \circ (\alpha'^{n+1}, \langle \alpha(n) \rangle)
\]

assure that \(\Phi^{n+1} \) is a homomorphism of groups.

Remark 2.2. Assume that \(\langle \alpha(n) \rangle \circ \partial - \partial \circ \xi^{n+1}(V^{n+1}) \cap \partial(V^{n+1}) = \{0\} \), then the element \(u \in (\Lambda V \leq n)^{n+1} \), given in the formula (2.4), must be a cocycle. Therefore if there are no trivial cocycles belong to \((\Lambda V \leq n)^{n+1} \), then the cochain isomorphism \(\alpha \) defined in (2.5) will satisfy \(\alpha(v_i) = \xi^{n+1}(v_i) \), so it is unique. Hence, in this case, the map \(\Phi^{n+1} \) is an isomorphism.

2.4. Main theorem

For every natural \(n \in \mathbb{N} \), let us consider the following 1-connected mcca:

\[
\Lambda V = \Lambda(x_1, \ldots, x_{n+2}, y_1, y_2, y_3, w, z) \text{ with } |x_{n+2}| = 2^{n+2} - 2, |x_k| = 2^k \text{ for every } 1 \leq k \leq n + 1.
\]

The differential is as follows:

\[
\begin{align*}
\partial(x_1) &= \ldots = \partial(x_{n+2}) = 0, \\
\partial(y_1) &= x_3^{n+1}x_{n+2}, \\
\partial(y_2) &= x_2^{n+1}x_{n+2}, \\
\partial(y_3) &= x_{n+1}x_{n+2}^2, \\
\partial(w) &= x_1^{28}x_2^{18}x_3 \ldots x_n^{18} \\
\partial(z) &= x_1^{2n+7}(y_1y_2x_{n+2}^3 - y_1y_3x_{n+1}x_{n+2}^2 + y_2y_3x_{n+1}^2x_{n+2}) + \sum_{k=1}^{n+1} x_k^{2^{n+2-k}}x_1^3 x_{n+2}^9.
\end{align*}
\]

So that

\[
\begin{align*}
|y_1| &= 5.2^{n+1} - 3, \\
|y_2| &= 6.2^{n+1} - 5, \\
|y_3| &= 7.2^{n+1} - 7, \\
|w| &= 9.2^{n+2} - 17, \\
|z| &= 9.2^{n+2} - 1.
\end{align*}
\]

Theorem 2.1. \(\mathcal{E}(\Lambda V, \partial) \cong \mathbb{Z}_2^{n+1} \).

Thereafter we will need the following facts.

Lemma 2.2. There are no cocycles (except 0) in \((\Lambda V \leq i-1)^i \) for \(i = 5.2^{n+1} - 3, 6.2^{n+1} - 5, 7.2^{n+1} - 7 \).

Proof. First since the generators \(x_k, 1 \leq k \leq n + 2 \), have even degrees we deduce that \((\Lambda V \leq 5.2^{n+1} - 3) \cap \mathbb{Z}^{x_i^3} = 0 \).

Next the vector space \((\Lambda V \leq 6.2^{n+1} - 6) \mathbb{Z}_{6.2^{n+1}} \) has only two generators namely \(y_1x_1^{n+1}, y_1x_1x_2 \ldots x_n \) and because of

\[
\begin{align*}
\partial(y_1x_1^{n+1}) &= x_2^3x_{n+1}x_{n+2}x_1^{2n+1-1}, \\
\partial(y_1x_1x_2 \ldots x_n) &= x_{n+1}^3x_{n+2}x_1x_2 \ldots x_n
\end{align*}
\]

we deduce that there are no cocycles (except 0) in \((\Lambda V \leq 6.2^{n+1} - 6) \mathbb{Z}_{6.2^{n+1} - 5} \).
Finally \((\Lambda V^{7,2n+1-8})^{7,2n+1-7}\) is spanned by
\[y_1 x_1^{2n-1}, \quad y_1 x_2^{2n-1}, \quad y_1 x_1^2 x_2^{2n-2}, \quad \ldots \quad x_n^2, \quad y_2 x_1 x_2 \ldots x_n \]
and since we have
\[\partial(y_1 x_1^{2n+1-2}) = x_{n+1} x_{n+2} x_1^{2n+1-2}, \quad \partial(y_1 x_2^{2n-1}) = x_{n+1} x_{n+2} x_2^{2n-1}, \]
\[\partial(y_2 x_1^2 x_2^{2n-1}) = x_{n+1} x_{n+2} x_1^2 x_2^{2n-1}, \quad \partial(y_1 x_1^2 x_2^{2n-2}) = x_{n+1} x_{n+2} x_1^2 x_2^{2n-2}, \]
we conclude that there are no cocycles (except 0) belonging to \((\Lambda V^{7,2n+1-8})^{7,2n+1-7}\).

\[\square \]

Lemma 2.3. Every cocycles in \((\Lambda V^{9,2n+2-2})^{9,2n+2-1}\) is a coboundary.

Proof. First an easy computation shows that \((\Lambda V^{9,2n+2-2})^{9,2n+2-1}\) is generated by the elements on the form:
\[y_1 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} \ldots x_n^{a_n+2} \quad \text{where} \quad \sum_{i=1}^{n+2} a_i 2^i - 2a_{n+2} = 13.2^{n+1} + 2, \]
\[y_2 x_1^{b_1} x_2^{b_2} \ldots x_n^{b_n+1} \ldots x_n^{b_n+2} \quad \text{where} \quad \sum_{i=1}^{n+2} b_i 2^i - 2b_{n+2} = 12.2^{n+1} + 4, \]
\[y_3 x_1^{c_1} x_2^{c_2} \ldots x_n^{c_n+1} \ldots x_n^{c_n+2} \quad \text{where} \quad \sum_{i=1}^{n+2} c_i 2^i - 2c_{n+2} = 11.2^{n+1} + 6, \]
\[x_1^{e_1} x_2^{e_2} x_3^{e_3} y_1 y_2 y_3 \quad \text{where} \quad e_1 + 2e_2 + 4e_3 = 7, \]
\[\alpha \in 1 \quad x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n} \ldots x_n^{a_n+1} \ldots x_n^{a_n+2} \ldots \lambda_{n+1} a_{n+1} + 1, \quad b_{n+2} = a_{n+2} - 1. \]

Accordingly the elements
\[y_1 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} \ldots x_n^{a_n+2} - y_3 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} \ldots x_n^{a_n+2} \]
\[y_2 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} \ldots x_n^{a_n+2} - y_3 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} \ldots x_n^{a_n+2} \]
with \(\sum_{i=1}^{n+1} a_i 2^i + a_{n+2} (2^{n+2} - 2) = 13.2^{n+1} + 2\), span the space of cocycles in \((\Lambda V^{9,2n+2-2})^{9,2n+2-1}\).
Finally due to
\[
\partial(y_1 y_3 x_1^{a_1} x_2^{a_2} \ldots x_{n+1}^{a_{n+1}} x_{n+2}^{a_{n+2}-3}) = -y_1 x_1^{a_1} x_2^{a_2} \ldots x_{n+1}^{a_{n+1}} x_{n+2}^{a_{n+2}} + y_3 x_1^{a_1} x_2^{a_2} \ldots x_{n+1}^{a_{n+1}+2} x_{n+2}^{a_{n+2}-2},
\]
we deduce that \((\Lambda V^{\leq 9.2^{n+2}-2})^{2^{n+2}-1}\) is generated by coboundaries and the lemma is proved.

By the same manner we have

Lemma 2.4. The sub-vector space of cocycles in \((\Lambda V^{\leq 9.2^{n+2}-18})^{2^{n+2}-17}\) is generated by the elements on the form
\[
y_1 x_1^{a_1} x_2^{a_2} \ldots x_{n+1}^{a_{n+1}} x_{n+2}^{a_{n+2}} - y_1 x_1^{a_1'} x_2^{a_2'} \ldots x_{n+1}^{a_{n+1}+2} x_{n+2}^{a_{n+2}-2},
\]
\[
y_2 x_1^{a_1} x_2^{a_2} \ldots x_{n+1}^{a_{n+1}} x_{n+2}^{a_{n+2}-1} - y_1 x_1^{a_1'} x_2^{a_2'} \ldots x_{n+1}^{a_{n+1}+2} x_{n+2}^{a_{n+2}-2},
\]
where
\[
\sum_{i=1}^{n+2} a_i' 2^i = 2a_i + 13.2^{n+1} - 14. Moreover each generator of
\((\Lambda V^{\leq 9.2^{n+2}-18})^{2^{n+2}-17}\) is a coboundary.

Remark 2.3. We have the following elementary facts:

1) Any isomorphism \(\xi^i : V^i \to V^i\), where \(i = 2, \ldots, 2^{n+1}, 2^{n+2} - 2, 5.2^{n+1} - 3, 6.2^{n+1} - 5, 7.2^{n+1} - 7, 9.2^{n+2} - 17\) and \(9.2^{n+2} - 1\), is a multiplication with a nonzero rational number, so we write
\[
\xi^2 = p_1, \ \xi^4 = p_2, \ldots, \ \xi^{2^{n+2}} = p_{n+2},
\]
\[
\xi^{5.2^{n+1} - 3} = p_{y_1}, \ \xi^{6.2^{n+1} - 5} = p_{y_2}, \ \xi^{7.2^{n+1} - 7} = p_{y_3}, \ \xi^{9.2^{n+2} - 17} = p_w, \ \xi^{9.2^{n+2} - 1} = p_z.
\]

2) As the generators
\[
x_1^{3x+n+2}, \ x_2^{2x+1} x_{n+2}^{x-n+2}, \ x_{n+1}^{x} x_{n+2}^{x-n}, \ x_{n+2}^{28x-18} x_{n+3}^{x-n} x_{n+4}^{x-n},
\]
\[
x_1^{x+1} x_2^{2x+1} \ldots x_{n+1}^{x} x_{n+2}^{x}, \ x_1^{x+1} x_2^{2x+1} \ldots x_{n+1}^{x} x_{n+2}^{x},
\]
\[
x_1^{2x+7}(y_1 y_2 x_1^{x+3} - y_1 y_3 x_1^{x+3} + y_2 y_3 x_1^{x+3}),
\]
are not reached by the differential and by the definition of the linear maps \(b^n\) we deduce that
\[
b^{5.2^{n+1}-3}(y_1) = x_{n+1} x_{n+2}, \ b^{9.2^{n+2}-17}(w) = x_{n+1} x_{n+2},
\]
\[
b^{7.2^{n+1}-7}(y_3) = x_{n+1} x_{n+2}, \ b^{6.2^{n+1}-5}(y_2) = x_{n+1} x_{n+2},
\]
\[
b^{9.2^{n+2}-1}(z) = x_{n+1} x_{n+2}, \ b^{9.2^{n+2}-1}(z) = x_{n+1} x_{n+2} + \sum_{k=1}^{n+1} x_{n+2}^{2k+2-k} + x_{n+2}^{9} x_{n+2}^{9}.\]
Let us begin by computing the group \(E_{2.9} \), the homomorphism \(\Phi \) and \(n \), the cochain morphism \(p \). Hence we deduce that \(H = 5 \).

Indeed, since \(2.2 \), the proof.

3) Since the differential is nil on the generators \(x_k \), for every \(1 \leq k \leq n + 2 \), any cochain isomorphism \(\alpha_{(k)} : (AV)^{\leq k} \rightarrow (AV)^{\leq k} \) can be written as follows:

\[
\alpha_{(k)}(x_k) = p_k x_k + \sum_{i=1}^{k-1} q_{m_1,m_2,\ldots,m_{k-1}} x_1^{m_1} x_2^{m_2} \cdots x_{k-1}^{m_{k-1}}
\]

(2.6)

where

\[
\sum_{i=1}^{k-1} m_i 2^i = 2^k, \quad p_k, q_{m_1,m_2,\ldots,m_{k-1}} \in \mathbb{Q}, \quad p_k \neq 0.
\]

Now the last pages are devoted to the proof of theorem 2.1.

Proof. Let us begin by computing the group \(\mathcal{E}(AV)^{\leq 5,2n+1-3}, \partial \). Indeed, by remark 2.2 and lemma 2.2 the homomorphism \(\Phi^{5,2n+1-3} : \mathcal{E}(AV)^{\leq 5,2n+1-3}, \partial \rightarrow C^{5,2n+1-3} \), given by proposition 2.1, is an isomorphism. So, by definition 2.3, we have to determine all the couples \((\xi^{5,2n+1-3}, [\alpha_{(5,2n+1-4)}]) \) in \(Aut(V^{5,2n+1-3}) \times \mathcal{E}(AV)^{\leq 5,2n+1-4}, \partial \) such that

\[
H^{5,2n+1-3}(\xi^{5,2n+1-3}) = H^{5,2n+1-2}(\alpha_{(5,2n+1-4)}) \circ b^{5,2n+1-3}.
\]

(2.7)

Indeed, since \(V^{\leq 5,2n+1-3} = V^{\leq 2n+2-2} \) we deduce that, on the generators \(x_k \), \(1 \leq k \leq n + 2 \), the cochain morphism \(\alpha_{(5,2n+1-4)} \) is given by the relations (2.6). Therefore

\[
H^{5,2n+1-2}(\alpha_{(5,2n+1-4)}) \circ b^{5,2n+1-3}(y_1)
\]

\[
= \left(p_{n+1} x_{n+1} + \sum q_{m_1,m_2,\ldots,m_n} x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n} \right)^3
\]

\[
\times \left(p_{n+2} x_{n+2} + \sum q_{m_1',m_2',\ldots,m_n'} x_1^{m_1'} x_2^{m_2'} \cdots x_{n+1}^{m_{n+1}'} \right).
\]

(2.8)

Hence we deduce that \(p_{y_1} = p_{y_2} = p_1 + p_{n+2} \) and that all the numbers \(q_{m_1,m_2,\ldots,m_n} \) and \(a_{m',\ldots,m_{n+1}} \), given in (2.6), should be nil. Thus we can say that the group \(\mathcal{E}(AV)^{\leq 5,2n+1-3}, \partial \) is consisting of the classes \([\alpha_{(5,2n+1-3)}] \) such that the cochain isomorphisms \(\alpha_{(5,2n+1-3)} \) satisfy:

\[
\alpha_{(5,2n+1-4)}(x_{n+1}) = p_{n+1} x_{n+1}, \quad \alpha_{(5,2n+1-4)}(x_{n+2}) = p_{n+2} x_{n+2},
\]

\[
\alpha_{(5,2n+1-4)}(y_1) = p_{y_1} y_1,
\]

\[
\alpha_{(5,2n+1-3)}(x_k) = p_k x_k + \sum q_{m_1,m_2,\ldots,m_{k-1}} x_1^{m_1} x_2^{m_2} \cdots x_{k-1}^{m_{k-1}}, \quad 1 \leq k \leq n.
\]

(2.9)

with \(p_{y_1} = p_{n+1} + p_{n+2} \).

Computation of the group \(\mathcal{E}(AV)^{\leq 6,2n+1-5}, \partial \).

This group can be computed from \(\mathcal{E}(AV)^{\leq 5,2n+1-3}, \partial \) by using proposition 2.1. Indeed; by remark 2.2 the homomorphism \(\Phi^{6,2n+1-5} : \mathcal{E}(AV)^{\leq 6,2n+1-5}, \partial \rightarrow C^{6,2n+1-5} \) is also an isomorphism. Recalling again that the group \(C^{6,2n+1-5} \) contains all the
couples \((\zeta^{5,2n+1-5}, [\alpha_{(6,2n+1-6)}])\) such that
\[
H^62n+1-4(\alpha_{(6,2n+1-6)}) \circ b^{6,2n+1-5} = b^{6,2n+1-5} \circ \zeta^{5,2n+1-5}.
\] (2.10)
Since \(\alpha_{(6,2n+1-6)} = \alpha_{(5,2n+1-3)}\) on \(V^{\leq 6,2n+1-6} = V^{\leq 5,2n+1-3}\), then by using (2.9) and the formula giving \(b^{6,2n+1-5}\) in remark 2.3 we get
\[
H^62n+1-4(\alpha_{(6,2n+1-6)}) \circ b^{6,2n+1-4}(y_2) = p^2_{n+1}P_{n+1}^2x_{n+1}^3n_{n+2},
\]
\[
b^{6,2n+1-3} \circ \zeta^{5,2n+1-3}(y_2) = p_2x_{n+1}^2x_{n+2}.
\] (2.11)
From the relation (2.10) we deduce that \(p_{y_2} = p^2_{n+1}P_{n+2}^2\). Thus the group \(\mathcal{E}(AV^{\leq 6,2n+1-5}, \partial)\) is consisting of all the classes \([\alpha_{(6,2n+1-5)}]\) such that the cochain isomorphisms \(\alpha_{(6,2n+1-5)}\) satisfy:
\[
\alpha_{(6,2n+1-5)}(y_2) = p_{y_2}y_2, \quad \alpha_{(6,2n+1-5)} = \alpha_{(5,2n+1-3)}
\] (2.12)
on \(V^{\leq 5,2n+1-3}\) with \(p_{y_2} = p^2_{n+1}P_{n+2}\).

Computation of the group \(\mathcal{E}(AV^{\leq 7,2n+1-7}, \partial)\).
First the same arguments show that \(\mathcal{E}(AV^{\leq 7,2n+1-7}, \partial)\) is isomorphic to the group \(C_7^{2n+1-7}\) of all the couples \((\zeta^{7,2n+1-7}, [\alpha_{(7,2n+1-8)}])\) such that
\[
H^72n+1-6(\alpha_{(7,2n+1-8)}) \circ b^{7,2n+1-7} = b^{7,2n+1-7} \circ \zeta^{7,2n+1-7}.
\] (2.13)
Next since \(\alpha_{(7,2n+1-8)} = \alpha_{(6,2n+1-5)}\) on \(V^{\leq 7,2n+1-8} = V^{\leq 6,2n+1-5}\), we get
\[
H^72n+1-6(\alpha_{(7,2n+1-8)}) \circ b^{7,2n+1-7}(y_3) = p_{n+1}P_{n+2}P_{n+3}^3n_{n+2},
\]
\[
b^{7,2n+1-7} \circ \zeta^{7,2n+1-7} = p_3x_{n+1}x_{n+2}^3
\] (2.14)
and from (2.13) we get the equation \(p_{y_3} = p_{n+1}P_{n+2}\). This implies that \(\mathcal{E}(AV^{\leq 7,2n+1-7}, \partial)\) is consisting of all the classes \([\alpha_{(7,2n+1-7)}]\) such that the cochain isomorphisms \(\alpha_{(7,2n+1-7)}\) satisfy:
\[
\alpha_{(7,2n+1-7)}(y_3) = p_{y_3}y_3, \quad \alpha_{(7,2n+1-7)} = \alpha_{(6,2n+1-5)}
\] (2.15)
on \(V^{\leq 6,2n+1-5}\) with \(p_{y_3} = p_{n+1}P_{n+2}^3\).

The group \(\mathcal{E}(AV^{\leq 9,2n+2-17}, \partial)\).
Let us determine the group \(C_9^{2n+2-17}\) of all the couples \((\zeta^{9,2n+2-17}, [\alpha_{(9,2n+2-16)}])\) such that
\[
H^92n+2-16(\alpha_{(9,2n+2-18)}) \circ b^{9,2n+2-17} = b^{9,2n+2-17} \circ \zeta^{9,2n+2-17}.
\] (2.16)
we have asserted that any numbers \(q \) satisfy cocycle in \(\Lambda C \) we represent by the cochain isomorphism denoted \(\alpha \). Thus summarizing our above analysis we infer that the cochain isomorphisms \(\alpha \) satisfy

\[
\alpha(w) = p_n w + a \quad (2.18)
\]

where \(a \in (\Lambda V \leq 9.2^{n+2} - 18)_9.2^{n+2} - 17 \). A simple computation shows that

\[
(\sigma \circ \partial \circ \xi_{9.2^{n+2} - 17})(V \leq 9.2^{n+2} - 17) \cap \partial(\Lambda V \leq 9.2^{n+2} - 18) = \{0\}.
\]

Therefore by remark 2.2 the element \(a \) is a cocycle. But lemma 2.4 asserts that any cocycle in \((\Lambda V \leq 9.2^{n+2} - 18)_9.2^{n+2} - 17 \) is a coboundary. Thus summarizing our above analysis we infer that the cochain isomorphisms \(\alpha \) satisfy

\[
\alpha(w) = p_n w + \partial(a'), \quad \text{where } \partial(a') = a
\]

Finally by lemma 2.1 all these cochain isomorphisms form one homotopy class which we represent by the cochain isomorphism denoted \(\alpha_{(9.2^{n+2} - 17)} \) and satisfying:

\[
\alpha_{(9.2^{n+2} - 17)}(w) = p_n w, \quad \alpha_{(9.2^{n+2} - 17)}(x_k) = p_k x_k, \quad 1 \leq k \leq n \quad (2.20)
\]

\[
\alpha_{(9.2^{n+2} - 17)}(y_1) = p_{y_1} y_1, \quad \alpha_{(9.2^{n+2} - 17)}(y_2) = p_{y_2} y_2, \quad \alpha_{(9.2^{n+2} - 17)}(y_3) = p_{y_3} y_3
\]

with

\[
p_{y_1} = p_{n+1} p_{n+2}, \quad p_{y_2} = p_{n+1}^2 p_{n+2}, \quad p_{y_3} = p_{n+1} p_{n+1}^3, \quad p_n = p_n 28 p_{n+2} \cdots p_{n}^1. \quad (2.21)
\]

Computation of the group \(E(\Lambda V \leq 9.2^{n+2} - 1, \partial) \),

\(C_{9.2^{n+2} - 1} \) is the group of all the couples \((\xi_{9.2^{n+2} - 1}, [\alpha_{(9.2^{n+2} - 2)\}]) \) such that

\[
H_{9.2^{n+2}}(\alpha_{(9.2^{n+2} - 2)}) \circ b_{9.2^{n+2} - 1} = b_{9.2^{n+2} - 1} \circ \xi_{9.2^{n+2} - 1}. \quad (2.22)
\]
Due to the fact that $\alpha_{(9.2^{n+2}-2)} = \alpha_{(9.2^{n+2}-1)}$ on $V^{9.2^{n+1}-2} = V^{9.2^{n+1}-1}$, we deduce that $\alpha_{(9.2^{n+2}-1)}$ satisfies the relations (2.20). Consequently

$$
\beta_{9.2^{n+2}} \circ \xi_{9.2^{n+2}-1}(z) = p_z x_{1}^{2^{n+1}+7} (y_1 y_2 x_{n+2}^3 - y_1 y_3 x_{n+1} x_{n+2} + y_2 y_3 x_{n+1} x_{n+2}) +
\sum_{k=1}^{n+1} p_z x_{k} x_{n+2}^{2^{n+2-k}} + p_z x_{n+2}^{9.9},
$$

$$
H_{9.2^{n+2}}(\alpha_{(9.2^{n+2}-2)}) \circ \beta_{9.2^{n+2}-1}(z) = p_1 x_{n+1}^{2^{n+7}+5} (y_1 y_2 x_{n+1}^{3} - y_1 y_3 x_{n+1} x_{n+2}^2 + y_2 y_3 x_{n+1} x_{n+2}) +
\sum_{k=1}^{n+1} p_1 x_{k} x_{n+2}^{2^{n+2-k}} + p_1 x_{n+2}^{9.9}. \tag{2.23}
$$

Therefore from the formulas (2.22) and (2.23) we deduce the following equations

$$
p_z = p_1 x_{n+1}^{2^{n+7}} p_1 x_{n+2}^{6} = p_1 x_{n+1}^{2^{n+1}} = \ldots = p_1 x_{n}^{9.2} = p_1 x_{n+1}^{9.9}.
$$

Again by proposition 2.1 we have

$$
(\Phi_{9.2^{n+2}-1})^{-1}(\alpha_{9.2^{n+2}-1}) = \mathcal{E}(AV^{9.2^{n+2}-1}, \delta)
$$

so, by going back to the relation (2.5), if $[\beta] \in \mathcal{E}(AV^{9.2^{n+2}-1}, \delta)$, then $\beta(z) = p_z z + c$ where, by using remark 2.2, the element c is a cocycle in $(AV^{9.2^{n+2}-2})^{9.2^{n+2}-1}$. By lemma 2.4 any cocycle is a coboundary. Thus the cochain morphism β satisfies

$$
\beta(z) = p_z z + \partial(c'), \quad \text{where } \partial(c') = c \tag{2.24}
$$

$$
\beta = \alpha_{9.2^{n+2}-1}, \quad \text{on } V^{9.2^{n+2}-2}.
$$

Due to lemma 2.1 all these cochain isomorphisms form one homotopy class which we represent by $\alpha_{(9.2^{n+2} -1)}$ and satisfying

$$
\alpha_{(9.2^{n+2}-1)}(z) = p_z z, \quad \alpha_{(9.2^{n+2}-1)}(w) = p_w w, \quad \alpha_{(9.2^{n+2}-1)}(x_k) = p_k x_k, \quad 1 \leq k \leq n + 2,
$$

$$
\alpha_{(9.2^{n+2}-1)}(y_1) = p_{y_1} y_1, \quad \alpha_{(9.2^{n+2}-1)}(y_2) = p_{y_2} y_2, \quad \alpha_{(9.2^{n+2}-1)}(y_3) = p_{y_3} y_3
$$

with the following equations:

$$
p_{y_1} = p_{n+1} x_{n+2}, \quad p_{y_2} = p_{n+1} x_{n+2}, \quad p_{y_3} = p_{n+1} x_{n+2}, \quad p_w = p_1 x_{n+1}^{28} p_{18} \cdots p_{2}^{18},
$$

$$
p_z = p_1 x_{n+1}^{2^{n+7}} p_1 x_{n+2}^{6} = p_1 x_{n+1}^{2^{n+1}} = \ldots = p_1 x_{n}^{9.2} = p_1 x_{n+1}^{9.9}
$$

which have the following solutions:

$$
p_{n+2} = p_{y_2} = p_w = 1, \quad p_z = p_{y_1} = p_{y_3} = p_1 = p_2 = \ldots = p_n = p_{n+1} = \pm 1.
$$

So we distinguish two cases:

First case: when $p_{n+1} = 1$, then

$$
p_{n+2} = p_{y_2} = p_w = 1, \quad p_z = p_{y_1} = p_{y_3} = p_{n+1} = 1, \quad p_1 = p_2 = \cdots = p_n = \pm 1.
$$

So we find 2^n homotopy classes.
Second case: when $p_{n+1} = -1$, then

$$p_{n+2} = p_y = p_w = 1, \quad p_z = p_{y_1} = p_{y_2} = p_{n+1} = -1, \quad p_1 = p_2 = \cdots = p_n = \pm 1$$

and we also find 2^n homotopy classes. Hence, in total, we get 2^{n-1} homotopy classes which are of order 2 (excepted the class of the identity) in the group $\mathcal{E}(\Lambda V^{2^{n+2}-1}, \partial)$.

In conclusion we conclude that

$$\mathcal{E}(\Lambda V^{2^{n+2}-1}, \partial) \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \underbrace{\oplus \cdots \oplus \mathbb{Z}_2}_{2^{n+1 \text{ times}}}$$

Now by the fundamental theorems of rational homotopy theory due to Sullivan [3] we can find a 1-connected rational CW-complex X_n such that

$$\mathcal{E}(X_n) \cong \mathcal{E}(\Lambda V^{2^{n+2}-1}, \partial) \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \underbrace{\oplus \cdots \oplus \mathbb{Z}_2}_{2^{n+1 \text{ times}}}$$

Remark 2.4. The spaces X_n are infinite-dimensional CW-complexes: rational homology is non-zero in infinitely many degrees and, as rational spaces, with infinitely many cells in each degree in which they have non-zero homology.

We close this work by conjecturing that for a 1-connected rational CW-complex X, if the group is not trivial, then $\mathcal{E}(X)$ is either infinite or $\mathcal{E}(X) \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \underbrace{\oplus \cdots \oplus \mathbb{Z}_2}_{2^n \text{ times}}$ for a certain natural number n.

References

http://www.emis.de/ZMATH/
http://www.ams.org/mathscinet

This article may be accessed via WWW at http://tcms.org.ge/Journals/JHRS/

Mahmoud Benkhalifa
makhalifa@uqu.edu.sa

Department of Mathematics
Faculty of Applied Sciences
Umm Al-Qura University
Mekka, Saudi Arabia