Journal of Homotopy and Related Structures, vol. 5(1), 2010, pp.361–372

REALIZABILITY OF THE GROUP OF RATIONAL SELF-HOMOTOPY EQUIVALENCES

MAHMOUD BENKHALIFA

(communicated by James Stasheff)

Abstract

For a 1-connected CW-complex X, let $\mathcal{E}(X)$ denote the group of homotopy classes of self-homotopy equivalences of X. The aim of this paper is to prove that, for every $n \in \mathbb{N}$, there exists a 1-connected rational CW-complex X_n such that $\mathcal{E}(X_n) \cong \underbrace{\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2}_{2^{n+1}.\text{times}}.$

1. Introduction

If X is a 1-connected CW-complex, let $\mathcal{E}(X)$ denote the set of homotopy classes of self-homotopy equivalences of X. It is well-known that $\mathcal{E}(X)$ is a group with respect to composition of homotopy classes. As pointed out by D. W. Khan [4], a basic problem about self-equivalences is the realizability of $\mathcal{E}(X)$, i.e., when for a given group G there exists a CW-complex X such that $\mathcal{E}(X) \cong G$.

In this paper we consider a particular problem asked by M. Arkowitz and G Lupton in [1]: let G be a finite group, is there a rational 1-connected CW-complex X such that $\mathcal{E}(X) \cong G$.

In this case the group G is said to be *rationally realizable*. Our main result says:

Theorem. The groups $\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$ are rationally realizable for every $n \in \mathbb{N}$.

 2^{n+1} .times

We will obtain this result working on the theory elaborated by Sullivan [3] which asserts that the homotopy of 1-connected rational spaces is equivalent to the homotopy theory of 1-connected minimal cochain commutative algebras over the rationals (mccas, for short). Recall that there exists a reasonable concept of homotopy among cochain morphisms between two mccas, analogous in many respects to the topological notion of homotopy.

Because of this equivalence we deduce that $\mathcal{E}(X) \cong \mathcal{E}(\Lambda V, \partial)$, where $(\Lambda V, \partial)$ is the mcca associated with X (called the minimal Sullivan model of X) and where $\mathcal{E}(\Lambda V,\partial)$ denotes the group of self-homotopy equivalences of $(\Lambda V,\partial)$. Therefore we can translate our problem to the following: let G be a finite group. Is there a mcca $(\Lambda V, \partial)$ such that $\mathcal{E}(\Lambda V, \partial) \cong G$?

Received July 18, 2010, revised September 22, 2010; published on December 4, 2010. 2000 Mathematics Subject Classification: Primary 55P62, 55Q05, Secondary 55S35, Key words and phrases: Groups of self-homotopy equivalences, rational homotopy theory.

⁽c) 2010, Mahmoud Benkhalifa. Permission to copy for private use granted.

Note that, in [1], M. Arkowitz and G Lupton have given examples showing that \mathbb{Z}_2 and $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ are rationally realizable. Recently and by using a technique radically different from the one used in [1], the author [2] showed that $\underbrace{\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2}_{2^{n+1}.\text{times}}$ are

rationally realizable for all $n \leq 10$.

2. The main result

2.1. Notion of homotopy for mccas

Let $(\Lambda(t, dt), d)$ be the free commutative graded algebra on the basis $\{t, dt\}$ with |t| = 0, |dt| = 1, and let d be the differential sending $t \mapsto dt$. Define augmentations

$$\varepsilon_0, \varepsilon_1 : (\Lambda(t, dt), d) \to \mathbb{Q}$$
 by $\varepsilon_0(t) = 0, \varepsilon_1(t) = 1$

Definition 2.1. ([3]) Two cochain morphisms $\alpha_0, \alpha_1 : (\Lambda V, \partial) \to (\Lambda W, \delta)$ are homotopic if there is a cochain morphism $\Phi : (\Lambda V, \partial) \to (\Lambda W, \delta) \otimes (\Lambda(t, dt), d)$ such that , i = 0, 1. Here Φ is called a homotopy from α_0 to α_1 .

Thereafter we will need the following lemma.

Lemma 2.1. Let $\alpha_0, \alpha_1 : (\Lambda V^{\leq n+1}, \partial) \to (\Lambda W^{\leq n+1}, \delta)$ be two cochain morphisms such that $\alpha_0 = \alpha_1$ on $V^{\leq n}$. Assume that for every generator $v \in V^{n+1}$ we have

$$\alpha_0(v) = \alpha_1(v) + \partial(y_v)$$

where $y_v \in (\Lambda W^{\leq n+1})^n$. Then α_0 and α_1 are homotopic.

Proof. Define $\Phi : (\Lambda V, \partial) \to (\Lambda V, \partial) \otimes (\Lambda(t, dt), d)$ by setting

$$\Phi(v) = \alpha_1(v) + \partial(y_v)t - (-1)^{|\partial(y_v)|}y_v dt \quad \text{and} \ \Phi = \alpha_0 \ \text{on} \ V^{\leqslant n}$$
(2.1)

It is clear that Φ is a cochain algebra satisfying $(id.\varepsilon_0) \circ \Phi = \alpha_1, (id.\varepsilon_1) \circ \Phi = \alpha_0$ \Box

2.2. The linear maps b^n , $n \ge 3$

Definition 2.2. Let $(\Lambda V, \partial)$ be a 1-connected mcca. For every $n \ge 3$, we define the linear map $b^n : V^n \to H^{n+1}(\Lambda V^{\le n-1})$ by setting

$$b^n(v_n) = [\partial(v_n)]. \tag{2.2}$$

Here $[\partial(v_n)]$ denotes the cohomology class of $\partial(v_n) \in (\Lambda V^{\leq n-1})^{n+1}$.

For every 1-connected mcca $(\Lambda V, \partial)$, the linear map b_n are natural. Namely if $\alpha : (\Lambda V, \partial) \to (\Lambda W, \delta)$ is a cochain morphism between two 1-connected mccas, then the following diagram commutes for all $n \ge 2$

$$V^{n+1} \xrightarrow{\widetilde{\alpha}^{n+1}} W^{n+1}$$

$$\downarrow^{b^{n+1}} \qquad \downarrow^{b'^{n+1}} (1)$$

$$H^{n+2}(\Lambda V^{\leq n}) \xrightarrow{H^{n+2}(\alpha_{(n)})} H^{n+2}(\Lambda W^{\leq n})$$

where $\widetilde{\alpha} : V^* \to W^*$ is the graded homomorphism induced by α on the indecomposables and where $\alpha_{(n)} : (\Lambda V^{\leq n}, \partial) \to (\Lambda W^{\leq n}, \delta)$ is the restriction of α .

2.3. The groups C^{n+1} , where $n \ge 2$

Definition 2.3. Given a 1-connected mcca $(\Lambda V^{\leq n+1}, \partial)$. Let \mathcal{C}^{n+1} be the subset of $Aut(V^{n+1}) \times \mathcal{E}(\Lambda V^{\leq n}, \partial)$ consisting of the couples $(\xi^{n+1}, [\alpha_{(n)}])$ making the following diagram commutes

$$V^{n+1} \xrightarrow{\xi^{n+1}} V^{n+1}$$

$$\downarrow^{b^{n+1}} \qquad \downarrow^{b^{n+1}} \qquad (2)$$

$$H^{n+2}(\Lambda V^{\leq n}) \xrightarrow{H^{n+2}(\alpha_{(n)})} H^{n+2}(\Lambda V^{\leq n})$$

where $Aut(V^{n+1})$ is the group of automorphisms of the vector space V^{n+1} .

Equipped with the composition laws, the set \mathcal{C}^{n+1} becomes a subgroup of $Aut(V^{n+1}) \times \mathcal{E}(\Lambda V^{\leq n}, \partial)$.

Proposition 2.1. There exists a surjective homomorphism $\Phi^{n+1} : \mathcal{E}(\Lambda V^{\leq n+1}, \partial) \to \mathcal{C}^{n+1}$ given by the relation

$$\Phi^{n+1}([\alpha]) = (\widetilde{\alpha}^{n+1}, [\alpha_{(n)}])$$

Remark 2.1. It is well-known ([3] proposition 12.8) that if two cochain morphisms $\alpha, \alpha' : (\Lambda V^{\leq n+1}, \partial) \to (\Lambda V^{\leq n+1}, \partial)$ are homotopic, then they induce the same graded linear maps on the indecomposables, i.e., $\tilde{\alpha} = \tilde{\alpha'}$, moreover $\alpha_{(n)}, \alpha'_{(n)}$ are homotopic and by using the diagram (1) we deduce that the map Φ^{n+1} is well-defined.

Proof. Let $(\xi^{n+1}, [\alpha_{(n)}]) \in \mathcal{C}^{n+1}$. Choose $(v_{\sigma})_{\sigma \in \Sigma}$ as a basis of V^{n+1} . Recall that, in the diagram (2), we have

$$H^{n+2}(\alpha_{(n)}) \circ b^{n+1}(v_{\sigma}) = \alpha_{(n)} \circ \partial(v_{\sigma}) + \operatorname{Im} \partial_{\leq n}$$

$$b^{n+1} \circ \xi^{n+1}(v_{\sigma}) = \partial \circ \xi^{n+1}(v_{\sigma}) + \operatorname{Im} \partial_{\leq n}$$
(2.3)

where $\partial_{\leq n} : (\Lambda V^{\leq n})^{n+1} \to (\Lambda V^{\leq n})^{n+2}$. Note that here we have used the relation (2.2).

Since by definition 2.3 this diagram commutes, the element $(\alpha_{(n)} \circ \partial - \partial \circ \xi^{n+1})(v_{\sigma}) \in$ Im $\partial_{\leq n}$. As a consequence there exists $u_{\sigma} \in (\Lambda V^{\leq n})^{n+1}$ such that

$$(\alpha_{(n)} \circ \partial - \partial \circ \xi^{n+1})(v_{\sigma}) = \partial_{\leqslant n}(u_{\sigma}).$$
(2.4)

Thus we define $\alpha: (\Lambda V^{\leqslant n+1}, \partial) \to (\Lambda V^{\leqslant n+1}, \partial)$ by setting

$$\alpha(v_{\sigma}) = \xi^{n+1}(v_{\sigma}) + u_{\sigma} , v_{\sigma} \in V^{n+1} \text{ and } \alpha = \alpha_{(n)} \text{ on } V^{\leq n}.$$
(2.5)

As $\partial(v_{\sigma}) \in (\Lambda V^{\leq n})^{n+2}$ then, by (2.4), we get

 $\partial \circ \alpha(v_{\sigma}) = \partial(\xi^{n+1}(v_{\sigma})) + \partial_{\leqslant n}(u_{\sigma}) = \alpha_{(n)} \circ \partial(v_{\sigma}) = \alpha \circ \partial(v_{\sigma})$

So α is a cochain morphism. Now due to the fact that $u_{\sigma} \in (\Lambda V^{\leq n})^{n+1}$, the linear map $\tilde{\alpha}^{n+1}: V^{n+1} \to V^{n+1}$ coincides with ξ^{n+1} .

Finally it is well-known (see [3]) that any cochain morphism between two 1-connected mccas inducing a graded linear isomorphism on the indecomposables is a homotopy equivalence. Consequently $\alpha \in \mathcal{E}(\Lambda V^{\leq n+1}, \partial)$. Therefore Φ^{n+1} is surjective. Finally the following relations

$$\Phi^{n+1}([\alpha], [\alpha']) = (\widetilde{\alpha \circ \alpha'}^{n+1}, [\alpha_{(n)} \circ \alpha'_{(n)}]) = (\widetilde{\alpha}^{n+1}, [\alpha_{(n)}]) \circ (\widetilde{\alpha'}^{n+1}, [\alpha'_{(n)}])$$
$$= \Phi^{n+1}([\alpha]) \circ \Phi^{n+1}([\alpha'])$$

assure that Φ^{n+1} is a homomorphism of groups.

Remark 2.2. Assume that $(\alpha_{(n)} \circ \partial - \partial \circ \xi^{n+1})(V^{n+1}) \cap \partial_{\leq n}((\Lambda V^{\leq n})^{n+1}) = \{0\}$, then the element $u_{\sigma} \in (\Lambda V^{\leq n})^{n+1}$, given in the formula (2.4), must be a cocycle. Therefore if there are no trivial coycles belong to $(\Lambda V^{\leq n})^{n+1}$, then the cochain isomorphism α defined in (2.5) will satisfy $\alpha(v_{\sigma}) = \xi^{n+1}(v_{\sigma})$, so it is unique. Hence, in this case, the map Φ^{n+1} is an isomorphism.

2.4. Main theorem

For every natural $n \in \mathbb{N}$, let us consider the following 1-connected mcca:

 $\Lambda V = \Lambda(x_1, \dots, x_{n+2}, y_1, y_2, y_3, w, z) \text{ with } |x_{n+2}| = 2^{n+2} - 2, |x_k| = 2^k \text{ for every } 1 \leq k \leq n+1.$ The differential is as follows:

$$\begin{aligned} \partial(x_1) &= \dots = \partial(x_{n+2}) = 0, \quad \partial(y_1) = x_{n+1}^3 x_{n+2}, \quad \partial(y_2) = x_{n+1}^2 x_{n+2}^2 \\ \partial(y_3) &= x_{n+1} x_{n+2}^3, \quad \partial(w) = x_1^{28} x_2^{18} x_3^{18} \dots x_n^{18} \\ \partial(z) &= x_1^{2^n+7} (y_1 y_2 x_{n+2}^3 - y_1 y_3 x_{n+1} x_{n+2}^2 + y_2 y_3 x_{n+1}^2 x_{n+2}) + \sum_{k=1}^{n+1} x_k^{9 \cdot 2^{n+2-k}} + x_1^9 x_{n+2}^9 \end{aligned}$$

So that

$$|y_1| = 5 \cdot 2^{n+1} - 3, |y_2| = 6 \cdot 2^{n+1} - 5, |y_3| = 7 \cdot 2^{n+1} - 7,$$

 $|w| = 9 \cdot 2^{n+2} - 17, |z| = 9 \cdot 2^{n+2} - 1.$

Theorem 2.1. $\mathcal{E}(\Lambda V, \partial) \cong \bigoplus_{2n+1} \mathbb{Z}_2.$

Thereafter we will need the following facts.

Lemma 2.2. There are no cocycles (except 0) in $(\Lambda V^{\leq i-1})^i$ for $i = 5 \cdot 2^{n+1} - 3$, $6 \cdot 2^{n+1} - 5$, $7 \cdot 2^{n+1} - 7$.

Proof. First since the generators $x_k, 1 \le k \le n+2$, have even degrees we deduce that $(\Lambda V^{\le 5 \cdot 2^{n+1}-4})^{5 \cdot 2^{n+1}-3} = 0$. Next the vector space $(\Lambda V^{\le 6 \cdot 2^{n+1}-6})^{6 \cdot 2^{n+1}-5}$ has only two generators namely $y_1 x_1^{2^n-1}, y_1 x_1 x_2 \dots x_n$ and because of

$$\partial(y_1 x_1^{2^n - 1}) = x_{n+1}^3 x_{n+2} x_1^{2^{n+1} - 1}, \ \partial(y_1 x_1 x_2 \dots x_n) = x_{n+1}^3 x_{n+2} x_1 x_2 \dots x_n$$

we deduce that there are no cocycles (except 0) in $(\Lambda V^{\leq 6.2^{n+1}-6})^{6.2^{n+1}-5}$.

Finally $(\Lambda V^{\leqslant 7.2^{n+1}-8})^{7.2^{n+1}-7}$ is spanned by

$$y_1 x_1^{2^{n+1}-2}, y_1 x_2^{2^n-1}, y_1 x_1^{2} x_2^{2} \dots x_n^{2}, y_2 x_1^{2^n-1}, y_2 x_1 x_2 \dots x_n$$

and since we have

$$\begin{aligned} \partial(y_1 x_1^{2^{n+1}-2}) &= x_{n+1}^3 x_{n+2} x_1^{2^{n+1}-2}, \ \partial(y_1 x_2^{2^n-1}) = x_{n+1}^3 x_{n+2} x_2^{2^n-1}, \\ \partial(y_2 x_1^{2^n-1}) &= x_{n+1}^2 x_{n+2}^2 x_1^{2^n-1}, \ \partial(y_1 x_1^2 x_2^2 \dots x_n^2) = x_{n+1}^3 x_{n+2} x_1^2 x_2^2 \dots x_n^2, \\ \partial(y_2 x_1 x_2 \dots x_n) &= x_{n+1}^2 x_{n+2}^2 x_1 x_2 \dots x_n, \end{aligned}$$

we conclude that there are no cocycles (except 0) belonging to $(\Lambda V^{\leq 7.2^{n+1}-8})^{7.2^{n+1}-7}$.

Lemma 2.3. Every cocycles in $(\Lambda V^{\leq 9.2^{n+2}-2})^{9.2^{n+2}-1}$ is a coboundary.

Proof. First an easy computation shows that $(\Lambda V^{\leq 9.2^{n+2}-2})^{9.2^{n+2}-1}$ is generated by the elements on the form:

$$y_{1}x_{1}^{a_{1}}x_{2}^{a_{2}}\dots x_{n+1}^{a_{n+1}}x_{n+2}^{a_{n+2}} \quad \text{where} \quad \sum_{i=1}^{n+2}a_{i}2^{i} - 2a_{n+2} = 13.2^{n+1} + 2,$$

$$y_{2}x_{1}^{b_{1}}x_{2}^{b_{2}}\dots x_{n+1}^{b_{n+1}}x_{n+2}^{b_{n+2}} \quad \text{where} \quad \sum_{i=1}^{n+2}b_{i}2^{i} - 2b_{n+2} = 12.2^{n+1} + 4,$$

$$y_{3}x_{1}^{c_{1}}x_{2}^{c_{2}}\dots x_{n+1}^{c_{n+1}}x_{n+2}^{c_{n+2}} \quad \text{where} \quad \sum_{i=1}^{n+1}c_{i}2^{i} - 2c_{n+2} = 11.2^{n+1} + 6,$$

$$x_{1}^{e_{1}}x_{2}^{e_{2}}x_{3}^{e_{3}}y_{1}y_{2}y_{3} \quad \text{where} \quad e_{1} + 2e_{2} + 4e_{3} = 7,$$

$$wx_{1}^{d_{1}}x_{2}^{d_{2}}x_{3}^{d_{3}}x_{4}^{d_{4}} \quad \text{where} \quad d_{1} + 2d_{2} + 4d_{3} + 8d_{4} = 8.$$

Since

$$\begin{aligned} \partial(x_1^{e_1} x_2^{e_2} x_3^{e_3} y_1 y_2 y_3) &= x_1^{e_1} x_2^{e_2} x_3^{e_3} (x_{n+1}^3 x_{n+2} y_2 y_3 - x_{n+1}^2 x_{n+2}^2 y_1 y_3 + x_{n+1} x_{n+2}^3 y_1 y_2), \\ \partial(w x_1^{d_1} x_2^{d_2} x_3^{d_3} x_4^{d_4}) &= w x_1^{28+d_1} x_2^{18+d_2} x_3^{18+d_3} x_4^{18+d_4} x_5^{18} \dots x_n^{18} \end{aligned}$$

we deduce that the elements which could be cocycles in $(\Lambda V^{\leqslant 9.2^{n+2}-2})^{9.2^{n+2}-1}$ are of the form

$$\alpha y_1 x_1^{a_1} x_2^{a_2} \dots x_{n+1}^{a_{n+1}} x_{n+2}^{a_{n+2}} + \beta y_2 x_1^{b_1} x_2^{b_2} \dots x_{n+1}^{b_{n+1}} x_{n+2}^{b_{n+2}} + \lambda y_3 x_1^{c_1} x_2^{c_2} \dots x_{n+1}^{c_{n+1}} x_{n+2}^{c_{n+2}} + \lambda y_3 x_1^{c_1} x_2^{c_2} \dots x_{n+1}^{c_{n+1}} x_{n+2}^{c_{n+2}} + \lambda y_3 x_1^{c_1} x_2^{c_2} \dots x_{n+1}^{c_{n+1}} x_{n+2}^{c_{n+2}} + \lambda y_3 x_1^{c_1} x_2^{c_2} \dots x_{n+1}^{c_{n+2}} + \lambda y_3 x_1^{c_1} x_2^{c_2} \dots$$

with the following relations:

$$\begin{split} a_i &= b_i = c_i \,, \quad 1 \leqslant i \leqslant n \,, \quad \alpha + \beta + \lambda = 0, \\ c_{n+1} &= a_{n+1} + 2 \,, \quad c_{n+2} = a_{n+2} - 2 \,, \quad b_{n+1} = a_{n+1} + 1 \,, \quad b_{n+2} = a_{n+2} - 1. \end{split}$$

Accordingly the elements

$$\begin{array}{l}y_{1}x_{1}^{a_{1}}x_{2}^{a_{2}}...x_{n+1}^{a_{n+1}}x_{n+2}^{a_{n+2}}-y_{3}x_{1}^{a_{1}}x_{2}^{a_{2}}...x_{n+1}^{a_{n+1}+2}x_{n+2}^{a_{n+2}-2},\\y_{2}x_{1}^{a_{1}}x_{2}^{a_{2}}...x_{n+1}^{a_{n+1}+1}x_{n+2}^{a_{n+2}-1}-y_{3}x_{1}^{a_{1}}x_{2}^{a_{2}}...x_{n+1}^{a_{n+1}+2}x_{n+2}^{a_{n+2}-2}\end{array}$$

with $\sum_{i=1}^{n+1} a_i 2^i + a_{n+2}(2^{n+2} - 2) = 13.2^{n+1} + 2$, span the space of cocycles in $(\Lambda V^{\leq 9.2^{n+2}-2})^{9.2^{n+2}-1}$.

365

Finally due to

$$\begin{aligned} \partial(y_1y_3x_1^{a_1}x_2^{a_2}\dots x_{n+1}^{a_{n+1}-1}x_{n+2}^{a_{n+2}-3}) \\ &= -y_1x_1^{a_1}x_2^{a_2}\dots x_{n+1}^{a_{n+1}}x_{n+2}^{a_{n+2}} + y_3x_1^{a_1}x_2^{a_2}\dots x_{n+1}^{a_{n+1}+2}x_{n+2}^{a_{n+2}-2}, \\ \partial(y_2y_3x_1^{a_1}x_2^{a_2}\dots x_{n+1}^{a_{n+1}}x_{n+2}^{a_{n+2}-4}) \\ &= -y_2x_1^{a_1}x_2^{a_2}\dots x_{n+1}^{a_{n+1}+1}x_{n+2}^{a_{n+2}-1} + y_3x_1^{a_1}x_2^{a_2}\dots x_{n+1}^{a_{n+1}+2}x_{n+2}^{a_{n+2}-2} \end{aligned}$$

we deduce that $(\Lambda V^{\leqslant 9.2^{n+2}-2})^{9.2^{n+2}-1}$ is generated by coboundaries and the lemma is proved.

By the same manner we have

Lemma 2.4. The sub-vector space of cocycles in $(\Lambda V^{\leq 9.2^{n+2}-18})^{9.2^{n+2}-17}$ is generated by the elements on the form

$$\begin{array}{l} y_1 x_1^{a'_1} x_2^{a'_2} \dots x_{n+1}^{a'_{n+1}} x_{n+2}^{a'_{n+2}} - y_3 x_1^{a'_1} x_2^{a'_2} \dots x_{n+1}^{a'_{n+1}+2} x_{n+2}^{a'_{n+2}-2}, \\ y_2 x_1^{a'_1} x_2^{a'_2} \dots x_{n+1}^{a'_{n+1}+1} x_{n+2}^{a'_{n+2}-1} - y_3 x_1^{a'_1} x_2^{a'_2} \dots x_{n+1}^{a'_{n+1}+2} x_{n+2}^{a'_{n+2}-2}, \end{array}$$

where $\sum_{i=1}^{n+2} a'_i 2^i - 2a'_{n+2} = 13.2^{n+1} - 14$. Moreover each generator of $(\Lambda V^{\leq 9.2^{n+2}-18})^{9.2^{n+2}-17}$ is a coboundary.

Remark 2.3. We have the following elementary facts: 1) Any isomorphism $\xi^i : V^i \to V^i$, where $i = 2, \ldots, 2^{n+1}, 2^{n+2} - 2, 5 \cdot 2^{n+1} - 3, 6 \cdot 2^{n+1} - 5, 7 \cdot 2^{n+1} - 7, 9 \cdot 2^{n+2} - 17$ and $9 \cdot 2^{n+2} - 1$, is a multiplication with a nonzero rational number, so we write

$$\xi^{2} = p_{1}, \quad \xi^{4} = p_{2}, \dots, \quad \xi^{2^{n+2}} = p_{n+2}$$

$$\xi^{5 \cdot 2^{n+1} - 3} = p_{y_{1}}, \quad \xi^{6 \cdot 2^{n+1} - 5} = p_{y_{2}}, \quad \xi^{7 \cdot 2^{n+1} - 7} = p_{y_{3}}, \quad \xi^{9 \cdot 2^{n+2} - 17} = p_{w}, \quad \xi^{9 \cdot 2^{n+2} - 1} = p_{z}$$

2) As the generators

$$x_{n+1}^{3}x_{n+2}, x_{n+1}^{2}x_{n+2}^{2}, x_{n+1}x_{n+2}^{3}, x_{1}^{28}x_{1}^{18}x_{3}^{18}\dots x_{n}^{18}, x_{1}^{9.2^{n+1}}, x_{2}^{9.2^{n}}, \dots, x_{n+1}^{9}, x_{n+1}^{9.2}, x_{1}^{9}x_{n+2}^{9}, x_{1}^{2^{n+7}}(y_{1}y_{2}x_{n+2}^{3} - y_{1}y_{3}x_{n+1}x_{n+2}^{2} + y_{2}y_{3}x_{n+1}^{2}x_{n+2})$$

are not reached by the differential and by the definition of the linear maps \mathbf{b}^n we deduce that

$$b^{5 \cdot 2^{n+1} - 3}(y_1) = x_{n+1} x_{n+2}^3, \quad b^{9 \cdot 2^{n+2} - 17}(w) = x_1^{28} x_2^{18} x_3^{18} \dots x_n^{18},$$

$$b^{7 \cdot 2^{n+1} - 7}(y_3) = x_{n+1}^3 x_{n+2}, \quad b^{6 \cdot 2^{n+1} - 5}(y_2) = x_{n+1}^{2} x_{n+2}^2,$$

$$b^{9 \cdot 2^{n+2} - 1}(z) = x_1^{2^n + 7}(y_1 y_2 x_{n+2}^3 - y_1 y_3 x_{n+1} x_{n+2}^2 + y_2 y_3 x_{n+1}^2 x_{n+2})$$

$$+ \sum_{k=1}^{n+1} x_k^{9 \cdot 2^{n+2-k}} + x_1^9 x_{n+2}^9.$$

3) Since the differential is nil on the generators x_k , for every $1 \leq k \leq n+2$, any cochain isomorphism $\alpha_{(k)} : (\Lambda V^{\leq k}, \partial) \to (\Lambda V^{\leq k}, \partial)$ can be written as follows:

$$\alpha_{(k)}(x_k) = p_k x_k + \sum q_{m_1, m_2, \dots, m_{k-1}} x_1^{m_1} x_2^{m_2} \dots x_{k-1}^{m_{k-1}}$$
(2.6)

where

$$\sum_{i=1}^{k-1} m_i 2^i = 2^k, \quad p_k, q_{m_1, m_2, \cdots, m_{k-1}} \in \mathbb{Q}, \quad p_k \neq 0.$$

Now the last pages are devoted to the proof of theorem 2.1.

Proof. Let us begin by computing the group $\mathcal{E}(\Lambda V^{\leq 5.2^{n+1}-3}, \partial)$. Indeed, by remark 2.2 and lemma 2.2 the homomorphism $\Phi^{5.2^{n+1}-3} : \mathcal{E}(\Lambda V^{\leq 5.2^{n+1}-3}, \partial) \to \mathcal{C}^{5.2^{n+1}-3}$, given by proposition 2.1, is an isomorphism. So, by definition 2.3, we have to determine all the couples $(\xi^{5.2^{n+1}-3}, [\alpha_{(5.2^{n+1}-4)}]) \in Aut(V^{5.2^{n+1}-3}) \times \mathcal{E}(\Lambda V^{\leq 5.2^{n+1}-4}, \partial)$ such that

$$b^{5 \cdot 2^{n+1} - 3} \circ \xi^{5 \cdot 2^{n+1} - 3} = H^{5 \cdot 2^{n+1} - 2}(\alpha_{(5 \cdot 2^{n+1} - 4)}) \circ b^{5 \cdot 2^{n+1} - 3}.$$
 (2.7)

Indeed, since $V^{\leq 5 \cdot 2^{n+1}-3} = V^{\leq 2^{n+2}-2}$ we deduce that, on the generators $x_k, 1 \leq k \leq n+2$, the cochain morphism $\alpha_{(5\cdot 2^{n+1}-4)}$ is given by the relations (2.6). Therefore

$$H^{5\cdot2^{n+1}-2}(\alpha_{(5\cdot2^{n+1}-4)}) \circ b^{5\cdot2^{n+1}-3}(y_1) = \left(p_{n+1}x_{n+1} + \sum q_{m_1,m_2,\cdots,m_n} x_1^{m_1} x_2^{m_2} \dots x_n^{m_n}\right)^3 \times \left(p_{n+2}x_{n+2} + \sum q_{m'_1,m'_2,\cdots,m'_{n+1}} x_1^{m'_1} x_2^{m'_2} \dots x_{n+1}^{m'_{n+1}}\right),$$

$$b^{5\cdot2^{n+1}-3} \circ \xi^{5\cdot2^{n+1}-3}(y_1) = p_{y_1} x_{n+1}^3 x_{n+2}.$$
 (2.8)

Hence we deduce that $p_{y_1} = p_{n+1}^3 p_{n+2}$ and that all the numbers q_{m_1,m_2,\cdots,m_n} and $q_{m'_1,m'_2,\cdots,m'_{n+1}}$, given in (2.6), should be nil. Thus we can say that the group $\mathcal{E}(\Lambda V^{\leq 5,2^{n+1}-3},\partial)$ is consisting of the classes $[\alpha_{(5,2^{n+1}-3)}]$ such that the cochain isomorphisms $\alpha_{(5,2^{n+1}-3)}$ satisfy:

$$\alpha_{(5,2^{n+1}-4)}(x_{n+1}) = p_{n+1}x_{n+1}, \ \alpha_{(5,2^{n+1}-4)}(x_{n+2}) = p_{n+2}x_{n+2},$$
$$\alpha_{(5,2^{n+1}-4)}(y_1) = p_{y_1}y_1,$$

$$\alpha_{(5.2^{n+1}-3)}(x_k) = p_k x_k + \sum_{k=1}^{\infty} q_{m_1, m_2, \cdots, m_{k-1}} x_1^{m_1} x_2^{m_2} \dots x_{k-1}^{m_{k-1}}, \ 1 \le k \le n \quad (2.9)$$

with $p_{y_1} = p_{n+1}^3 p_{n+2}$.

Computation of the group $\mathcal{E}(\Lambda V^{\leq 6.2^{n+1}-5}, \partial)$.

This group can be computed from $\mathcal{E}(\Lambda V^{\leq 5.2^{n+1}-3}, \partial)$ by using proposition 2.1. Indeed; by remark 2.2 the homomorphism $\Phi^{6.2^{n+1}-5} : \mathcal{E}(\Lambda V^{\leq 6.2^{n+1}-5}, \partial) \to \mathcal{C}^{6.2^{n+1}-5}$ is also an isomorphism. Recalling again that the group $\mathcal{C}^{6.2^{n+1}-5}$ contains all the

couples $(\xi^{6.2^{n+1}-5}, [\alpha_{(6.2^{n+1}-6)}])$ such that

$$H^{6\cdot 2^{n+1}-4}(\alpha_{(6\cdot 2^{n+1}-6)}) \circ b^{6\cdot 2^{n+1}-5} = b^{6\cdot 2^{n+1}-5} \circ \xi^{6\cdot 2^{n+1}-5}.$$
 (2.10)

Since $\alpha_{(6,2^{n+1}-6)} = \alpha_{(5,2^{n+1}-3)}$ on $V^{\leq 6,2^{n+1}-6} = V^{\leq 5,2^{n+1}-3}$, then by using (2.9) and the formula giving $b^{6,2^{n+1}-5}$ in remark 2.3 we get

$$H^{6\cdot 2^{n+1}-4}(\alpha_{(6\cdot 2^{n+1}-6)}) \circ b^{6\cdot 2^{n+1}-4}(y_2) = p_{n+1}^2 p_{n+2}^2 x_{n+1}^2 x_{n+2}^2,$$

$$b^{5\cdot 2^{n+1}-3} \circ \xi^{5\cdot 2^{n+1}-3}(y_2) = p_{y_2} x_{n+1}^2 x_{n+2}^2.$$
(2.11)

¿From the relation (2.10) we deduce that $p_{y_2} = p_{n+1}^2 p_{n+2}^2$. Thus the group $\mathcal{E}(\Lambda V^{\leq 6.2^{n+1}-5}, \partial)$ is consisting of all the classes $[\alpha_{(6.2^{n+1}-5)}]$ such that the cochain isomorphisms $\alpha_{(6.2^{n+1}-5)}$ satisfy:

$$\alpha_{(6.2^{n+1}-5)}(y_2) = p_{y_2}y_2, \quad \alpha_{(6.2^{n+1}-5)} = \alpha_{(5.2^{n+1}-3)}$$
(2.12)

on $V^{\leq 5 \cdot 2^{n+1} - 3}$ with $p_{y_2} = p_{n+1}^2 p_{n+2}^2$.

Computation of the group $\mathcal{E}(\Lambda V^{\leqslant 7.2^{n+1}-7},\partial)$.

First the same arguments show that $\mathcal{E}(\Lambda V^{\leq 7.2^{n+1}-7}, \partial)$ is isomorphic to the group $\mathcal{C}^{7.2^{n+1}-7}$ of all the couples $(\xi^{7.2^{n+1}-7}, [\alpha_{(7.2^{n+1}-8)}])$ such that

$$H^{7.2^{n+1}-6}(\alpha_{(7.2^{n+1}-8)}) \circ b^{7.2^{n+1}-7} = b^{7.2^{n+1}-7} \circ \xi^{7.2^{n+1}-7}.$$
 (2.13)

Next since $\alpha_{(7.2^{n+1}-8)} = \alpha_{(6.2^{n+1}-5)}$ on $V^{\leqslant 7.2^{n+1}-8} = V^{\leqslant 6.2^{n+1}-5}$, we get

$$H^{7.2^{n+1}-6}(\alpha_{(7.2^{n+1}-8)}) \circ b^{7.2^{n+1}-7}(y_3) = p_{n+1}p_{n+2}^3 x_{n+1}x_{n+2}^3,$$

$$b^{7.2^{n+1}-7} \circ \xi^{7.2^{n+1}-7} = p_{y_3}x_{n+1}x_{n+2}^3$$
(2.14)

and from (2.13) we get the equation $p_{y_3} = p_{n+1}p_{n+2}^3$. This implies that $\mathcal{E}(\Lambda V^{\leq 7.2^{n+1}-7}, \partial)$ is consisting of all the classes $[\alpha_{(7.2^{n+1}-7)}]$ such that the cochain isomorphisms $\alpha_{(7.2^{n+1}-7)}$ satisfy:

$$\alpha_{(7,2^{n+1}-7)}(y_3) = p_{y_3}y_3, \quad \alpha_{(7,2^{n+1}-7)} = \alpha_{(6,2^{n+1}-5)}$$
(2.15)

on $V^{\leq 6.2^{n+1}-5}$ with $p_{y_3} = p_{n+1}p_{n+2}^3$.

The group $\mathcal{E}(\Lambda V^{\leqslant 9.2^{n+2}-17},\partial)$.

Let us determine the group $C^{9\cdot 2^{n+2}-17}$ of all the couples $(\xi^{9\cdot 2^{n+2}-17}, [\alpha_{(9\cdot 2^{n+2}-16)}])$ such that

$$H^{9.2^{n+2}-16}(\alpha_{(9.2^{n+2}-18)}) \circ b^{9.2^{n+2}-17} = b^{9.2^{n+2}-17} \circ \xi^{9.2^{n+2}-17}.$$
 (2.16)

368

Note that $\alpha_{(9,2^{n+2}-18)} = \alpha_{(7,2^{n+1}-7)}$ on $V^{\leq 9,2^{n+1}-18} = V^{\leq 7,2^{n+1}-7}$. So we deduce that

$$H^{9.2^{n+2}-16}(\alpha_{(9.2^{n+2}-18)}) \circ b^{9.2^{n+2}-17}(w) = p_1^{28} x_1^{28} \cdot \prod_{k=2}^n \left(p_k x_k + \sum q_{m_1,m_2,\cdots,m_{k-1}} x_1^{m_1} x_2^{m_2} \dots x_{k-1}^{m_{k-1}} \right)^{18},$$

$$b^{9.2^{n+2}-17} \circ \xi^{9.2^{n+2}-17}(w) = p_w x_1^{28} x_2^{18} x_3^{18} \dots x_n^{18}.$$
 (2.17)

Now from the relation (2.16) we deduce that $p_w = p_1^{38} p_2^{18} \dots p_n^{18}$ and that all the numbers $q_{m_1,m_2,\dots,m_{k-1}}$, given in (2.6), should be nil.

Now by proposition 2.1 we have

$$(\Phi^{9\cdot 2^{n+2}-17})^{-1}(\mathcal{C}^{9\cdot 2^{n+2}-17}) = \mathcal{E}(\Lambda V^{\leqslant 9\cdot 2^{n+2}-17}, \partial)$$

so, by going back to the relation (2.5), we can say that if $[\alpha] \in \mathcal{E}(\Lambda V^{\leq 9.2^{n+2}-17}, \partial)$, then

$$\alpha(w) = p_w w + a \tag{2.18}$$

where $a \in (\Lambda V^{\leq 9.2^{n+2}-18})^{9.2^{n+2}-17}$. A simple computation shows that

$$(\alpha \circ \partial - \partial \circ \xi^{9 \cdot 2^{n+2} - 17})(V^{9 \cdot 2^{n+2} - 17}) \cap \partial_{\leqslant 9 \cdot 2^{n+2} - 18}((\Lambda V^{\leqslant 9 \cdot 2^{n+2} - 18})^{9 \cdot 2^{n+2} - 17}) = \{0\}.$$

Therefore by remark 2.2 the element *a* is a cocycle. But lemma 2.4 asserts that any cocycle in $(\Lambda V^{\leq 9.2^{n+2}-18})^{9.2^{n+2}-17}$ is a coboundary.

Thus summarizing our above analysis we infer that the cochain isomorphisms α satisfy

$$\alpha(w) = p_w w + \partial(a'), \quad \text{where } \partial(a') = a$$

$$\alpha = \alpha_{(7.2^{n+1}-7)}, \quad \text{on } V^{\leq 9.2^{n+1}-18}$$
(2.19)

Finally by lemma 2.1 all these cochain isomorphisms form one homotopy class which we represent by the cochain isomorphism denoted $\alpha_{(9,2^{n+2}-17)}$ and satisfying:

$$\alpha_{(9,2^{n+2}-17)}(w) = p_w w \quad , \quad \alpha_{(9,2^{n+2}-17)}(x_k) = p_k x_k \quad , \quad 1 \le k \le n$$
(2.20)

$$\alpha_{(9,2^{n+2}-17)}(y_1) = p_{y_1}y_1 \quad , \quad \alpha_{(9,2^{n+2}-17)}(y_2) = p_{y_2}y_2 \quad , \quad \alpha_{(9,2^{n+2}-17)}(y_3) = p_{y_3}y_3$$

with

$$p_{y_1} = p_{n+1}^3 p_{n+2}, \ p_{y_2} = p_{n+1}^2 p_{n+2}^2, \ p_{y_3} = p_{n+1} p_{n+2}^3, \ p_w = p_1^{28} p_2^{18} \dots p_n^{18}.$$
 (2.21)

Computation of the group $\mathcal{E}(\Lambda V^{\leqslant 9.2^{n+2}-1}, \partial)$. $\mathcal{C}^{9.2^{n+2}-1}$ is the group of all the couples $(\xi^{9.2^{n+2}-1}, [\alpha_{(9.2^{n+2}-2)}])$ such that

$$H^{9.2^{n+2}}(\alpha_{(9,2^{n+2}-2)}) \circ b^{9.2^{n+2}-1} = b^{9.2^{n+2}-1} \circ \xi^{9.2^{n+2}-1}.$$
 (2.22)

Due to the fact that $\alpha_{(9,2^{n+2}-2)} = \alpha_{(9,2^{n+2}-17)}$ on $V^{\leq 9,2^{n+1}-2} = V^{\leq 9,2^{n+1}-17}$, we deduce that $\alpha_{(9,2^{n+1}-2)}$ satisfies the relations (2.20). Consequently

$$b^{9 \cdot 2^{n+2}-1} \circ \xi^{9 \cdot 2^{n+2}-1}(z) = p_z x_1^{2^n+7}(y_1 y_2 x_{n+2}^3 - y_1 y_3 x_{n+1} x_{n+2}^2 + y_2 y_3 x_{n+1}^2 x_{n+2}) + \sum_{k=1}^{n+1} p_z x_k^{9 \cdot 2^{n+2-k}} + p_z x_1^9 x_{n+2}^9, H^{9 \cdot 2^{n+2}}(\alpha_{(9 \cdot 2^{n+2}-2)}) \circ b^{9 \cdot 2^{n+2}-1}(z) = p_1^{2^n+7} p_{n+1}^5 p_{n+2}^6 x_1^{2^n+7}(y_1 y_2 x_{n+2}^3 - y_1 y_3 x_{n+1} x_{n+2}^2 + y_2 y_3 x_{n+1}^2 x_{n+2}) + \sum_{k=1}^{n+1} p_k^{9 \cdot 2^{n+2-k}} x_k^{9 \cdot 2^{n+2-k}} + p_1^9 p_{n+2}^9 x_1^9 x_{n+2}^9.$$
(2.23)

Therefore from the formulas (2.22) and (2.23) we deduce the following equations

$$p_z = p_1^{2^n+7} p_{n+1}^5 p_{n+2}^6 = p_1^{9 \cdot 2^{n+1}} = \dots = p_n^{9 \cdot 2^2} = p_{n+1}^{9 \cdot 2} = p_1^9 p_{n+2}^9.$$

Again by proposition 2.1 we have

$$(\Phi^{9.2^{n+2}-1})^{-1}(\mathcal{C}^{9.2^{n+2}-1}) = \mathcal{E}(\Lambda V^{\leqslant 9.2^{n+2}-1}, \partial)$$

so, by going back to the relation (2.5), if $[\beta] \in \mathcal{E}(\Lambda V^{\leq 9.2^{n+2}-1}, \partial)$, then $\beta(z) = p_z z + c$ where, by using remark 2.2, the element c is a cocycle in $(\Lambda V^{\leq 9.2^{n+2}-2})^{9.2^{n+2}-1}$. By lemma 2.4 any cocycle is a coboundary. Thus the cochain morphism β satisfy

$$\beta(z) = p_z z + \partial(c'), \quad \text{where } \partial(c') = c$$

$$\beta = \alpha_{9,2^{n+2}-17}, \quad \text{on } V^{\leq 9,2^{n+2}-2}.$$
(2.24)

Due to lemma 2.1 all these cochain isomorphisms form one homotopy class which we represent by $\alpha_{(9,2^{n+2}-1)}$ and satisfying

$$\begin{aligned} \alpha_{(9,2^{n+2}-1)}(z) &= p_z z, \quad \alpha_{(9,2^{n+2}-1)}(w) = p_w w, \quad \alpha_{(9,2^{n+2}-1)}(x_k) = p_k x_k, \\ 1 &\leq k \leq n+2, \\ \alpha_{(9,2^{n+2}-1)}(y_1) &= p_{y_1} y_1, \quad \alpha_{(9,2^{n+2}-1)}(y_2) = p_{y_2} y_2, \quad \alpha_{(9,2^{n+2}-1)}(y_3) = p_{y_3} y_3 \end{aligned}$$

with the following equations:

$$p_{y_1} = p_{n+1}^3 p_{n+2} , \ p_{y_2} = p_{n+1}^2 p_{n+2}^2, \ p_{y_3} = p_{n+1} p_{n+2}^3, \ p_w = p_1^{28} p_2^{18} \dots p_2^{18},$$
$$p_z = p_1^{2^n+7} p_{n+1}^5 p_{n+2}^6 = p_1^{9 \cdot 2^{n+1}} = \dots = p_n^{9 \cdot 2^2} = p_{n+1}^{9 \cdot 2} = p_1^9 p_{n+2}^9$$

which have the following solutions:

$$p_{n+2} = p_{y_2} = p_w = 1$$
, $p_z = p_{y_1} = p_{y_3} = p_1 = p_2 = \dots = p_n = p_{n+1} = \pm 1$.

So we distinguish two cases:

First case: when $p_{n+1} = 1$, then

 $p_{n+2} = p_{y_2} = p_w = 1$, $p_z = p_{y_1} = p_{y_3} = p_{n+1} = 1$, $p_1 = p_2 = \dots = p_n = \pm 1$. So we find 2^n homotopy classes.

Second case: when $p_{n+1} = -1$, then

$$p_{n+2} = p_{y_2} = p_w = 1$$
, $p_z = p_{y_1} = p_{y_3} = p_{n+1} = -1$, $p_1 = p_2 = \dots = p_n = \pm 1$

and we also find 2^n homotopy classes. Hence, in total, we get 2^{n-1} homotopy classes which are of order 2 (excepted the class of the identity) in the group $\mathcal{E}(\Lambda V^{\leqslant 9.2^{n+2}-1},\partial).$

In conclusion we conclude that

$$\mathcal{E}(\Lambda V^{\leqslant 9.2^{n+2}-1},\partial) \cong \underbrace{\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2}_{2^{n+1} \text{ times}}$$

Now by the fundamental theorems of rational homotopy theory due to Sullivan [3] we can find a 1-connected rational CW-complex X_n such that

$$\mathcal{E}(X_n) \cong \mathcal{E}(\Lambda V^{\leq 9.2^{n+2}-1}, \partial) \cong \underbrace{\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2}_{2^{n+1}.\text{times}}.$$

Remark 2.4. The spaces X_n are infinite-dimensional CW-complexes: rational homology is non-zero in infinitely many degrees and, as rational spaces, with infinitely many cells in each degree in which they have non-zero homology.

We close this work by conjecturing that for a 1-connected rational CW-complex X, if the group is not trivial, then $\mathcal{E}(X)$ is either infinite or $\mathcal{E}(X) \cong \underbrace{\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2}_{\mathbb{Z}_2}$ 2^n .times

for a certain natural number n.

References

- [1] M. Arkowitz and G Lupton, Rational obstruction theory and rational homotopy sets, Math. Z, 235, N.3 (2002), 525-539.
- [2] M. Benkhalifa, Rational self-homotopy equivalences and Whitehead exact sequence, Journal of Homotopy and Related Structures Vol. 4 No. 1 (2009), 111-121.

- [3] Y. Felix, S. Halperin and J-C. Thomas, *Rational homotopy theory*, Springer-Verlag, GTM 205, 2000.
- [4] D.W. Khan, Realization problem for the group of homotopy classes of selfhomotopy equivalences, Math. Annalen 220 (1976), 37-46.

This article may be accessed via WWW at http://tcms.org.ge/Journals/JHRS/

Mahmoud Benkhalifa makhalifa@uqu.edu.sa

Department of Mathematics Faculty of Applied Sciences Umm Al-Qura University Mekka, Saudi Arabia