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REALIZABILITY OF THE GROUP OF RATIONAL
SELF-HOMOTOPY EQUIVALENCES

MAHMOUD BENKHALIFA
(communicated by James Stasheff)

Abstract
For a l-connected CW-complex X, let £(X) denote the
group of homotopy classes of self-homotopy equivalences of
X. The aim of this paper is to prove that, for every n € N,
there exists a 1-connected rational CW-complex X,, such that
EXp) 22 ® - DLs.

2n+1 times

1. Introduction

If X is a 1-connected CW-complex, let £(X) denote the set of homotopy classes
of self-homotopy equivalences of X. It is well-known that £(X) is a group with
respect to composition of homotopy classes. As pointed out by D. W. Khan [4], a
basic problem about self-equivalences is the realizability of £(X), i.e., when for a
given group G there exists a CW-complex X such that £(X) = G.

In this paper we consider a particular problem asked by M. Arkowitz and G Lupton
in [1]: let G be a finite group, is there a rational 1-connected CW-complex X such
that £(X) =2 G.
In this case the group G is said to be rationally realizable.
Our main result says:
Theorem. The groups Zs @ --- ®Zsy are rationally realizable for every n € N.

27+1 times

We will obtain this result working on the theory elaborated by Sullivan [3] which
asserts that the homotopy of 1-connected rational spaces is equivalent to the homo-
topy theory of 1-connected minimal cochain commutative algebras over the ratio-
nals (mccas, for short). Recall that there exists a reasonable concept of homotopy
among cochain morphisms between two mccas, analogous in many respects to the
topological notion of homotopy.

Because of this equivalence we deduce that £(X) = E(AV,9), where (AV,0) is
the mcca associated with X (called the minimal Sullivan model of X) and where
E(AV,0) denotes the group of self-homotopy equivalences of (AV, ). Therefore we
can translate our problem to the following: let G be a finite group. Is there a mcca

(AV,0) such that E(AV,0) = G?
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Note that, in [1], M. Arkowitz and G Lupton have given examples showing that Zo

and Zo @ Z, are rationally realizable. Recently and by using a technique radically

different from the one used in [1], the author [2] showed that Zs @ --- ©Zs are
—_——

2n+1 times
rationally realizable for all n < 10.

2. The main result

2.1. Notion of homotopy for mccas
Let (A(t,dt),d) be the free commutative graded algebra on the basis {t, dt} with
|t |=0, | dt|=1, and let d be the differential sending ¢ — dt. Define augmentations

€0,€1 ¢ (A(t,dt),d) = Q by eo(t) =0,e1(t) =1

Definition 2.1. ([/3/) Two cochain morphisms g, 1 @ (AV,0) — (AW,0) are
homotopic if there is a cochain morphism ® : (AV,0) — (AW, ) ® (A(t,dt),d) such
that , i =0,1. Here ® is called a homotopy from g to o .

Thereafter we will need the following lemma.

Lemma 2.1. Let ag, oy : (AVS"HL9) — (AWS"FL8) be two cochain morphisms
such that ag = aq on VS™. Assume that for every generator v € V™! we have

ap(v) = a1 (v) + 9(yy)
where y, € (AW<”+1)". Then oy and ap are homotopic.
Proof. Define @ : (AV,0) — (AV,9) ® (A(t, dt),d) by setting
®(v) = a1 (v) + Oyt — (—=1)1PWI)ly dt and & = g on V" (2.1)
It is clear that ® is a cochain algebra satisfying (id.cg)o® = ay, (id.c1)o® =y O
2.2. The linear maps 0", n > 3

Definition 2.2. Let (AV, ) be a 1-connected mcca. For every n > 3, we define the
linear map b" : V" — H"TYAVS"1) by setting

b (vy,) = [0(v)]- (2.2)
Here [0(v,,)] denotes the cohomology class of d(vy,) € (AVSP—1)ntl,

For every 1-connected mcca (AV,0), the linear map b, are natural. Namely if
a: (AV,0) — (AW, ) is a cochain morphism between two 1-connected mccas, then
the following diagram commutes for all n > 2

VnJrl ant! . Wn+1
pntl p/ntl (1)
n+2 «
Hn+2(Av<n) H (@(ny) N Hn+2(Aw<n)
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where o : V* — W* is the graded homomorphism induced by « on the indecom-
posables and where ) : (AVS",9) — (AWS™,§) is the restriction of a.

2.3. The groups C"t!, where n > 2

Definition 2.3. Given a 1-connected mcca (AVS"T1 9). Let C"*1 be the subset of
Aut(V ) x E(AVS™,9) consisting of the couples (€™, [ay)]) making the follow-
ing diagram commutes

yntl entl , yntl
prt bt (2)
H"F2(AVST) H" 2 (agn)) . H'2(AVS?)

where Aut(V"™" 1Y) is the group of automorphisms of the vector space V"™HL.

Equipped with the composition laws, the set C"*! becomes a subgroup of
Aut(Vnth) x E(AVS™,9).

Proposition 2.1. There exists a surjective homomorphism ®"+1 : E(AVS"TL 9) —
C™t given by the relation

"t ([a]) = (@, [awm))
Remark 2.1. It is well-known ([3] proposition 12.8) that if two cochain mor-
phisms a,o’ : (AVS"19) — (AVS"HL 9) are homotopic, then they induce the
same graded linear maps on the indecomposables, i.e., & = o/, moreover a(n)7a'(n)

are homotopic and by using the diagram (1) we deduce that the map ®"* is well-
defined.

Proof. Let (£"*1,[a,)]) € C"1. Choose (vy)sex as a basis of V1. Recall that,
in the diagram (2), we have
H™" 2 () 00" (v5) = () 0 O(vo) + Im Iz

bt o " (v,) = 00 " (v,) + Im gy, (2.3)
where d¢,, : (AVS?)"H1 — (AVS?)"+2 Note that here we have used the relation
(2.2).
Since by definition 2.3 this diagram commutes, the element (o) 00—00&" ) (v,) €
Im d¢,,. As a consequence there exists u, € (AVS")"! such that

(a(ny 00 = 00" ) (vy) = O<n(uo). (2.4)
Thus we define a : (AVS"t19) — (AVS"TL 9) by setting
a(ve) =" (vy) Uy , vo €V and a = Q) ON Vsn, (2.5)

As (vy) € (AVS™)"H2 then, by (2.4), we get
doa(vy) =" (vs)) + O<n(uo) = a(n) 0 I(vs) = a0 d(vy)
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So a is a cochain morphism. Now due to the fact that u, € (AVS")"+1 the linear
map ot V7l Y+l coincides with €71,

Finally it is well-known (see [3]) that any cochain morphism between two 1-connected
mccas inducing a graded linear isomorphism on the indecomposables is a homotopy
equivalence. Consequently o € E(AVS"H1 9). Therefore ®"+! is surjective.

Finally the following relations

e ([a)l0)) = @00 [ 0 al]) = @, o)) o (@ fal)

= #"+([a]) 0 &+ (o))
assure that ®"*! is a homomorphism of groups. O

Remark 2.2. Assume that (o) 09 — 00 £"TH)(V ) N o, (AVS™)" ) = {0},
then the element u, € (AVS™)"*1 given in the formula (2.4), must be a cocycle.
Therefore if there are no trivial coycles belong to (AVS™)"*t1 then the cochain
isomorphism a defined in (2.5) will satisfy a(v,) = "1 (v,), so it is unique. Hence,
in this case, the map ®"T1 is an isomorphism.

2.4. Main theorem
For every natural n € N| let us consider the following 1-connected mcca:

AV = A(x1, .., Tpio, Y1, Y2, Y3, W, 2) With |z,40] = 2772 — 2, |z)| = 2% for every
1 < k < n+ 1. The differential is as follows:

ANwy) = =0(ps2) =0, O(y1) =) 1 Tni2, O(y2) =) 125,
Ays) = T34, O(w) = 2Pad®zy® . a)®
n+1

2" 47 9.2m 2k 9 9
0(z) = x7 (yly2$n+2 y1y3$n+1xn+2 +y293xn+1xn+2 "‘Zx + T1T 40
=1

So that
lyr| = 52771 — 3, |ya| = 6.27F — 5, |ys| = 7.2"F — 7,

Theorem 2.1. £(AV,0) = & Zs.

2n+1
Thereafter we will need the following facts.

Lemma 2.2. There are no cocycles (except 0) in (AVS=H) for i = 5271 — 3,
6.2nt+1 — 5, 7.27HL 7,

Proof. First since the %enerators Tk, 1 < k < n+ 2, have even degrees we deduce
that (AV<52""—4)5.2"

Next the vector space

<6 2“*1 6)6.2" 11
¢t (AVS )
ne] O, Y1T1%2 ... 2, and because of

~® has only two generators namely

n+1

2m—1 3 2 3
Oy ) = Ty 1 Tpyod] , Oy Ta ... Ty) = Ty Tpy2T1T2 ... Ty

we deduce that there are no cocycles (except 0) in (AV<6'271+1_6)6'2"+1_5.
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Finally (AVQ'QHH*8)7'2"“*7 is spanned by

ontl_o 2" —1 2.2 2 2" —1
y1x1 s y1$2 , Y1T1T5 . . ..In s ygxl y Y212 ... Tp
and since we have
ontl_oy 3 ontl_o 2" 1y _ .3 2" —1
I(y17y )= Lp4+1Tn+2T7 , Oy ) = Tp41Tn+2T2 )

2" -1y _ .2 2 271 2,2 2y _ .3 2,.2 2
Y221 ~7) = X5 1T 40 s O @iay ... T3) = Ty Tng2TIT5 - . T,

2 2
O(Y2x122 ... Tn) = Ty 1Ty 2 T1T2 - . - Ty,

we conclude that there are no cocycles (except 0) belonging to
(Avg7.2"+178)7.2"+177. ]

Lemma 2.3. FEvery cocycles in (AV<9'2"+2*2)("‘2%2’1 is a coboundary.

Proof. First an easy computation shows that (AV<9-2"7=2)92"7~1 is generated
by the elements on the form:

n+2
ai  .a Ap41, An42 1 _ 1
i@, e,y where 3 1ai2Z — 2ap40 = 13271 4+ 2,
i=

by b bnt1 bnyo nt2 1 1
Yot wo? ., where Y b;20 — 2b,, 49 = 12.2"T1 - 4

Ty 1 Tpya
i=1
c c n+1 . 1
C C: 41 2
ysxitas? xS where Y ;2 — 2¢p40 = 11.2771 46,
i=1
2 PP Y1y2ys3 where e + 2es +4e3 =7,
w292 ¢4 where d; + 2ds + 4ds + 8d4 = 8.

Since

€1 ,..,62 €3 . €1 €2 €3 3 2 2 3
(x5 T3 Y1y2ys) = r7' x5 T3 (%+1$n+2y2y3 — T 1Tp2¥1Y3 + $n+1$n+2y1y2)7

dy ,.d2 .d3 d4) — w$?8+d1 $%8+d2$§8+d31‘}18+d4$é8 ]

18
O(wzi* vy x5° xy STy

we deduce that the elements which could be cocycles in (AV@'QHQQ)9‘2n+2_1 are
of the form
aylx‘flxgz...folﬁleigz + ﬂy2$?1x32~~~$2T11$2T22 + )‘3/35”(1:19532"'1”;?11552?22
with the following relations:
a;=b;j=c¢, 1<i<n, a+pB+A=0,
Cntl =Gny1+2, Cpyz=ani2—2, bpyr=anp1+1, bpia=an2—1

Accordingly the elements

ai .az Ant1 Ani2 ai _as An41+2 apy2—2
ylel .’,U2 ...l'n+1 .'L’n+2 — ygl’l fL'Q ""ITL—O—l xn+2 y
Ant1+2 ant2—2

ai .az ant1+1l_anta—1 ai .az
yor{tag? Ly T e T —ysatt gy
n+1 .
with Y ;2" + a,42(2"? — 2) = 13.2"F1 + 2, span the space of cocycles in
i=1

(Avg9.2"+2—2)942"+2—1'
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Finally due to

ai a2 an+1—1_ant2—3
Oyrysey oy x, ' oy )

_ ai .az Ant1 Ani2 ai _.as An41+2 apy2—2
= —Y1T) To"...Tp L] Tyl + YT Tq T Ty R

ai a2 Ant1, Ant2—4
O(yoysx( x5 ..z, V)

— ai a2 ant1t+l_ any2—1 ay _as Apt1+2 ang2—2
= —Y2Ty To - Tpi]  Tpio T YT Ty TN Tplo

we deduce that (AV<9-2"7=2)9.2""~1 i senerated by coboundaries and the lemma
is proved. O

By the same manner we have

(AV<9.2"+2—18)9.2"+2—17

Lemma 2.4. The sub-vector space of cocycles in s gen-
erated by the elements on the form
7 7 ’ ’ ’ ’ ’
a; Qg Apt1 Onyo ay ag pp1+2 ap,yo—2
Y1Ty Tyt Ny — sty T,y
’ ’ / ’ ’ ’ ’ ’
ay, Qs A+l an =1 ay Qs Ap1t+2 ap . o—2
Yoy T Y — st N w Ty
n+2 .
where Y a2 — 2a,,, = 13.2""Y — 14. Moreover each generator of
i=1

(AVS92" T2 =18Y9.2" 217 o 4y coboundary.

Remark 2.3. We have the following elementary facts:

1) Any isomorphism £ : V¢ — Vi where i = 2,...,2nT1 2nt2 9 5on+l 3
6.2n+1 —5, 7.2nt 7 9,272 17 and 9.2712 —1, is a multiplication with a nonzero
rational number, so we write

52:]917 54:p21"'7 £2n+2:pn+2
55.2”“4 =y, 56.2"+175 =Py 57.2"“4 = pyss 59.2"“717 = Do, 59.2"”71 = ..
2) As the generators

xi+1xn+2, $721+1xi+27 $n+1xi+2v xfgxégxés . ~~x71¢87

x?.Q"‘H’ x3.2"7 ey x?hLl? x?ﬂ%la xgl)x?ﬂ»%

2" 47 3 2 2
7 T (Y12, 0 — Y1Y3Tnt 1T 1o + Y2U3Th 41 Tng2)

are not reached by the differential and by the definition of the linear maps b™ we
deduce that

5.2nt1_3 _ 3 9.27+2_17 _ 28,.18,.18 18
b’ (1) = Tn+1Tn12s b (w) = Pz a3 .. 2,7,
7.ontl_7 _ 3 6.2" 115 _ 2 2
b (y3) = Tp41Tn+2, b (y2) - Tpnt1Tn+2s
b9.2“+271 2T 3 2 2
(2) = 7 (y1y293n+2 — YN1Y3Tn+1Th42 + y2y3$n+196n+2)

n+1
9.2n+2-k 9,.9
+ E Ty, + 212, 0.
k=1
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3) Since the differential is nil on the generators xy, for every 1 < k < n+ 2, any
cochain isomorphism oy : (A\VSF,8) — (AVSF ) can be written as follows:

mE_1

a(k)(gck) = DTk + qul,m%m ,mk_lelx;nQ"'xk—l (26)

where

k—1
Zm’i21 :2k7 pk’qml«mzv”rmk 1 6@7 Pk #O
i=1

Now the last pages are devoted to the proof of theorem 2.1.

Proof. Let us begin by computing the group E(AV<52""" =3 9) Indeed, by remark
2.2 and lemma 2.2 the homomorphism ®%2"" =3 : £(AV<5-2"7' =3 gy _, 52" =3,
given by proposition 2.1, is an isomorphism. So, by definition 2.3, we have to deter-
mine all the couples ({5'2“1*3, [ovs.0nt1—g)]) € Aut(V5'2n+1*3) X E(AV@‘QTLH"‘, 0)
such that

n4+1l_ n4+1_ n+1_ n4+1_
B2 TP o 22T = HO R (5 gnea_gy) 0 7P TR (2.7)

Indeed, since V52 =8 — <2 =2 e deduce that, on the generators x,1 < k <

n + 2, the cochain morphism a5 on+1_4) is given by the relations (2.6). Therefore
5.on+l_ gn+1_
H>? 2(04(5.2%174)) o b>? 3(3/1)

3
m m m
= (pn+1$n+1 + E Doy g o T1 T 2~~xn")

’
my

mb m; +1
X (pn+2xn+2 + E qm/ ml e ! .’131 .’1,'2 2"'xn-§7—l1 ’
oMMy

n+1__
%o 55'2 3(y1) = Py, xi+1x7z+2~ (2.8)

Hence we deduce that p,, = p3 41Pn+2 and that all the numbers ¢, ..
andgq , , ., ,given in (2.6), should be nil. Thus we can say that the group
n+1

IR
E(AVS32"T' =3 9) is consisting of the classes [ov(5.0n+1_3)] such that the cochain
isomorphisms (5 gn+1_3) satisfy:

2n+17

b5.

04(5.2n+1—4)($n+1) = Pn+1%n+1; 04(5.2n+1—4)($6n+2) = Pn+2%n+2;

a(5.2n+1—4)(y1) = Py Y1,

QU(5.2n+1_3) (xk) = PrTk + qulymﬂv”' 1,,,Lk71$?11$312...$;nf171, 1<k<n (2.9)

with Py, = p%+1pn+2~

Computation of the group £(AVS62"" =5 §),
This group can be computed from 5(AV<5'2TL+1_37 0) by using proposition 2.1. In-
deed; by remark 2.2 the homomorphism ®6-2""" =5 ; £(AV<6-2"7" =5 g) _, 0627715

is also an isomorphism. Recalling again that the group C62"" =5 contains all the
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56.2"‘*'175

couples ( , [ (g.2n+1—¢)]) such that

H6‘2n+1_4(a(642n+1_6)) o} b6'2n+1_5 = b6‘2n+1_5 o 56'2n+1_5. (210)

gn+1_ gn+1

Since qg.an+1_g) = Qzan+1_g) on VSO 6 = V<5277 =3 then by using (2.9)

-5

and the formula giving 52" =5 in remark 2.3 we get

6.271+1—4 6.271T1—4 2 2 2 2
H (6.2n+1-6)) 0 b (Y2) = Pt 1Pnt2Tni1Tnto;s
5.2n1t1_3 5.2n+1_3 2 2
b O{ (yQ) = Py2Tp+1Tn42- (211)

;From the relation (2.10) we deduce that p,, = p2,,p%, . Thus the group

E(AVSE2"T=5 9) is consisting of all the classes [¢(6.2n+1-5)] such that the cochain
isomorphisms g on+1_5) satisfy:

04(6,2”+1—5)(y2) = Py2Y2, C(p.2n+1_5) = Q(5.2n+1_3) (2~12)

<52ntio3 . .2 2
on VS° with py, = Py 110040

Computation of the group 5(AV<7'2H1_7, 9).
First the same arguments show that 5(AV<7'2TL+1’7, 0) is isomorphic to the group

C7-2""" =7 of all the couples (€7-2"" 7, [ov(7.2n+1_g)]) such that

H™2" (a7 g1 _g)) 0 072 7T = 72T o 72T (2.13)

8 _ y<6.2"t =5

. n+1l__
Next since as ont1_g) = Qg gnti_gy on VS72 we get
(7.2 8) (6.2 5) )

nt1_ nt+1_
H™? 6(04(7.2"“78)) 0 b 7(93) = pn+1pi+2‘r”+1z§z+2’
n+1l__ n+1l__
b2 Tog™? "= Py3$n+1xf’z+z (2.14)
and from (2.13) we get the equation py,, = ppi1p,,. This implies that

E(AVST-2"T =T ) is consisting of all the classes [et(7.2n+1_7] such that the cochain
isomorphisms (7 gn+1_7) satisfy:

a(r.ont1_7y(Y3) = Pys¥3, Qr.ant1_7) = Q(g.2n+1_5) (2.15)

<6.2"ftl_5 _ . _ 3
onV with py, = pny1p; 4o

The group S(AV@'QTL“’N,@).

n42_ nt2_
CQ.2 17 59.2 17, [

Let us determine the group
such that

of all the couples ( a(9.2n+2_16)])

n+2 n+2 n+2 n+2
H9.2 —16( ° b9.2 —17 — b9.2 —17 ° 59.2 —17. (216)

04(9.2n+2—18))
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Note that cgon+2_15) = Q(7.9n+1_7) On Yo2mt-18 — y<T2" =T g4 we deduce
that

n+2 _ n+2_
H942 16( « (9.2"+2—18)) o b9'2 17(UI)

n
18
_..28_28 my ., mo mi—1
=pi T -H(Pk$k+§ Dy, omp_y L1 T2 Ty ) g
k=2

n+2 n+2__
pO2TIANT o (02" RN1T 0y 28218508 18 (2.17)

Now from the relation (2.16) we deduce that p, = p3opi®...pl% and that all the

numbers ¢ given in (2.6), should be nil.

my,mg, Mg )

Now by proposition 2.1 we have
(¢9.2"L+2—17>—1(09.2"*2—17) — E(AV@'Q"“_”, 9)

so, by going back to the relation (2.5), we can say that if [a] € E(AV<92"7 =17 g),
then

a(w) =pyw+a (2.18)
where a € (AV<9'2H+2’18)9'2"+2*17. A simple computation shows that
(a0d—do 59‘2"*2717)(‘/9.2"“717) n 3@‘2%2718((AV<9,2"+2718)9‘2"+2717) = {0}.
Therefore by remarliz22 the eJlgment a is a cocycle. But lemma 2.4 asserts that any
cocycle in (AVS92"77=18)9.2" =17 g 4 coboundary.
Thus summarizing our above analysis we infer that the cochain isomorphisms «

satisfy

a(w) = pyw+ 9d(a’), where d(a’) = a (2.19)

n+1 __
O = Q(ron+i_ry, ON Y92 18

Finally by lemma 2.1 all these cochain isomorphisms form one homotopy class which
we represent by the cochain isomorphism denoted ag on+2_17) and satisfying:

Qgant2_17y (W) = ppw , aggantz_17)(Tk) =prTE , 1< k<N (2.20)
ag.ont2_17) (Y1) = Pyt 5 ane1n)(Y2) = P2 5 Qo.ant—17)(Y3) = Dy Y3
with

Dy = Doy 1DPnt2y Dyo = Poy1D2iar Pys = Prt1Posas Puw = DS ...pi8.  (2.21)

Computation of the group £(AV<2"7~1 §),

n+2_ n+2_
CQ.2 59.2 17 [

1is the group of all the couples ( Q(9.an+2_2)]) such that

HY?" (g gnia_gy) 0 b2 71 = p2 2001 g 0271 (2.22)
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<9.2"tt_2 _ y,g9.27tl17
on VS =Vs ,

Due to the fact that a(g.on+2_2) = qg.on+2_17) we

deduce that g on+1_9) satisfies the relations (2.20). Consequently

9.2n+t2_1  .9.9nt2_1 _ 2" +7 3 2 2
b 0§ (2) = P27 T (N1Y2T 10 — Y1YBTnt 1T 0 T Y2Y3 T 11 Tnt2)
n+1
Z 9.2nt+2-k 9.9
+ P2Ty + plexn+2v
k=1
9.2n+2 g.2nt+2_q
H (v(9.2n+2-9)) 0 b (2)
_ 2"47. 5 6 2" 47 3 2 2
=P1 Pny1Ppi2Tq (ylyzzn+2 — Y1Y3Tp1Tp 40 + y2yS$n+1xn+2)
n+1
9.2n 12—k g gnt2-k 9.9 9,..9
+ E Di x5, + D1y 2T Ty 4o (2.23)
k=1

Therefore from the formulas (2.22) and (2.23) we deduce the following equations

L, 2"47. 5 6 _ .92t _,922 92 _ .99
Pz =P1  Pnt1Pny2 = D1 = ... =DPn T Pny1 = P1Pny2-

Again by proposition 2.1 we have
(@9'2"“_1)_1(09‘2””_1) _ S(AV@'Q"H_I,a)

s0, by going back to the relation (2.5), if [] € E(AV<02""~1 9) then B(z) = p.z+c

where, by using remark 2.2, the element c is a cocycle in (AV@'Q"H*Q)E"Q"“*. By

lemma 2.4 any cocycle is a coboundary. Thus the cochain morphism [ satisfy
B(z) = p.z+ 9(c'), where 9(c') =c (2.24)

nt2
8= agoniz_17, on VS)2 2,

Due to lemma 2.1 all these cochain isomorphisms form one homotopy class which
we represent by c (g on+2_1) and satisfying

a(9.2n+271)(z) = P:%, 0[(9.2n+271)(w) = PwW, 0‘(9.2”“71)(9%) = PkTk,
1<k<n+2,

C¥(942n+2—1)(3/1) = Py Y1, 04(9.2n+2—1)(y2) = Py2Y2, a(9.2n+2—1)(y3) = Py3Y3

with the following equations:

3 2 2 3 28 18 18
Pyi = Ppt1Pn+2 5 Pys = Ppt1Pni2s Pys = Pn+1Ppyos Pw =P1 P2 ---DP2 s
L, 2"47. 5 6 _ .9.27tt _,922 92 _ 9.9
Pz =D pn+1pn+2 =D =...=DPy *pn-i-l *plpn+2

which have the following solutions:

pn+2:py2:pw:17 Pz:Pyl:Py3:p1:P2:---:Pn:Pn+1:i1~

So we distinguish two cases:
First case: when p,41 = 1, then

Pnt2 =Dys =DPw =1, Pz=Dy, =Dys =Pn+1 =1, p1=p2=--=pp ==l

So we find 2™ homotopy classes.
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Second case: when p, 11 = —1, then

pn+2:py2:pw:17 pz:pylzpygzpn-‘rl:_lv p1=p2 = =p, =%l

and we also find 2" homotopy classes. Hence, in total, we get 2"~' homotopy
classes which are of order 2 (excepted the class of the identity ) in the group
E(AVSI2TEL gy,

In conclusion we conclude that

EAVSEYT 9 27, 5. @,

27+1 times

Now by the fundamental theorems of rational homotopy theory due to Sullivan [3]
we can find a 1-connected rational CW-complex X,, such that

E(X,) 2 ENVSIY T 9 27,6 - @,
N——

2n+1 times

Remark 2.4. The spaces X,, are infinite-dimensional CW-complezes: rational ho-
mology is non-zero in infinitely many degrees and, as rational spaces, with infinitely
many cells in each degree in which they have non-zero homology.

We close this work by conjecturing that for a 1-connected rational CW-complex
X, if the group is not trivial, then £(X) is either infinite or £(X) = Zsy @ - - - %o
—_——

2™ times
for a certain natural number n.
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