REALIZABILITY OF THE GROUP OF RATIONAL SELF-HOMOTOPY EQUIVALENCES

MAHMOUD BENKHALIFA

(communicated by James Stasheff)

Abstract

For a 1-connected CW-complex X, let $\mathcal{E}(X)$ denote the group of homotopy classes of self-homotopy equivalences of X. The aim of this paper is to prove that, for every $n \in \mathbb{N}$, there exists a 1-connected rational CW-complex X_n such that $\mathcal{E}(X_n) \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$, 2^{n+1} times.

1. Introduction

If X is a 1-connected CW-complex, let $\mathcal{E}(X)$ denote the set of homotopy classes of self-homotopy equivalences of X. It is well-known that $\mathcal{E}(X)$ is a group with respect to composition of homotopy classes. As pointed out by D. W. Khan [4], a basic problem about self-equivalences is the realizability of $\mathcal{E}(X)$, i.e., when for a given group G there exists a CW-complex X such that $\mathcal{E}(X) \cong G$.

In this paper we consider a particular problem asked by M. Arkowitz and G. Lupton in [1]: let G be a finite group, is there a rational 1-connected CW-complex X such that $\mathcal{E}(X) \cong G$.

In this case the group G is said to be rationally realizable.

Our main result says:

Theorem. The groups $\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$, 2^{n+1} times are rationally realizable for every $n \in \mathbb{N}$.

We will obtain this result working on the theory elaborated by Sullivan [3] which asserts that the homotopy of 1-connected rational spaces is equivalent to the homotopy theory of 1-connected minimal cochain commutative algebras over the rationals (mccas, for short). Recall that there exists a reasonable concept of homotopy among cochain morphisms between two mccas, analogous in many respects to the topological notion of homotopy.

Because of this equivalence we deduce that $\mathcal{E}(X) \cong \mathcal{E}(\Lambda V, \partial)$, where $(\Lambda V, \partial)$ is the mcca associated with X (called the minimal Sullivan model of X) and where $\mathcal{E}(\Lambda V, \partial)$ denotes the group of self-homotopy equivalences of $(\Lambda V, \partial)$. Therefore we can translate our problem to the following: let G be a finite group. Is there a mcca $(\Lambda V, \partial)$ such that $\mathcal{E}(\Lambda V, \partial) \cong G$?
Note that, in [1], M. Arkowitz and G Lupton have given examples showing that \(\mathbb{Z}_2 \) and \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \) are rationally realizable. Recently and by using a technique radically different from the one used in [1], the author [2] showed that \(\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \) are rationally realizable for all \(n \leq 10 \).

2. The main result

2.1. Notion of homotopy for mccas

Let \((\Lambda(t, dt), d)\) be the free commutative graded algebra on the basis \(\{t, dt\}\) with \(|t| = 0, |dt| = 1\), and let \(d\) be the differential sending \(t \mapsto dt\). Define augmentations \(\varepsilon_0, \varepsilon_1 : (\Lambda(t, dt), d) \to \mathbb{Q}\) by \(\varepsilon_0(t) = 0, \varepsilon_1(t) = 1\).

Definition 2.1. ([3]) Two cochain morphisms \(\alpha_0, \alpha_1 : (\Lambda V, \partial) \to (\Lambda W, \delta)\) are homotopic if there is a cochain morphism \(\Phi : (\Lambda V, \partial) \to (\Lambda W, \delta) \otimes (\Lambda(t, dt), d)\) such that, \(i = 0, 1\). Here \(\Phi\) is called a homotopy from \(\alpha_0\) to \(\alpha_1\).

Thereafter we will need the following lemma.

Lemma 2.1. Let \(\alpha_0, \alpha_1 : (\Lambda V \leq n+1, \partial) \to (\Lambda W \leq n+1, \delta)\) be two cochain morphisms such that \(\alpha_0 = \alpha_1\) on \(V \leq n\). Assume that for every generator \(v \in V \leq n+1\) we have \(\alpha_0(v) = \alpha_1(v) + \partial(y_v)\) where \(y_v \in (\Lambda W \leq n+1)^n\). Then \(\alpha_0\) and \(\alpha_1\) are homotopic.

Proof. Define \(\Phi : (\Lambda V, \partial) \to (\Lambda W, \delta) \otimes (\Lambda(t, dt), d)\) by setting \(\Phi(v) = \alpha_1(v) + \partial(y_v) t - (-1)^{|\partial(y_v)|} y_v dt\) and \(\Phi = \alpha_0\) on \(V \leq n\). It is clear that \(\Phi\) is a cochain algebra satisfying \((id.\varepsilon_0) \circ \Phi = \alpha_1, (id.\varepsilon_1) \circ \Phi = \alpha_0\). □

2.2. The linear maps \(b^n, n \geq 3\)

Definition 2.2. Let \((\Lambda V, \partial)\) be a 1-connected mcca. For every \(n \geq 3\), we define the linear map \(b^n : V^n \to H^{n+1}(\Lambda V \leq n-1)\) by setting

\[b^n(v_n) = [\partial(v_n)]. \] (2.2)

Here \([\partial(v_n)]\) denotes the cohomology class of \(\partial(v_n) \in (\Lambda V \leq n-1)^{n+1}\).

For every 1-connected mcca \((\Lambda V, \partial)\), the linear map \(b_n\) are natural. Namely if \(\alpha : (\Lambda V, \partial) \to (\Lambda W, \delta)\) is a cochain morphism between two 1-connected mccas, then the following diagram commutes for all \(n \geq 2\)

\[
\begin{array}{ccc}
V^{n+1} & \xrightarrow{\alpha^{n+1}} & W^{n+1} \\
\downarrow b^{n+1} & & \downarrow b^{n+1} \\
H^{n+2}(\Lambda V \leq n) & \xrightarrow{H^{n+2}(\alpha_v)} & H^{n+2}(\Lambda W \leq n)
\end{array}
\] (1)
where $\tilde{\alpha} : V^* \to W^*$ is the graded homomorphism induced by α on the indecomposables and where $\alpha_{(n)} : (\Lambda V^\leq n, \partial) \to (\Lambda W^\leq n, \delta)$ is the restriction of α.

2.3. The groups C^{n+1}, where $n \geq 2$

Definition 2.3. Given a 1-connected maca $(\Lambda V^\leq n+1, \partial)$. Let C^{n+1} be the subset of $\text{Aut}(V^{n+1})$ consisting of the couples $(\xi^{n+1}, [\alpha_{(n)}])$ making the following diagram commutes

$$
\begin{array}{ccc}
V^{n+1} & \xrightarrow{\xi^{n+1}} & V^{n+1} \\
\downarrow{b^{n+1}} & & \downarrow{b^{n+1}} \\
H^{n+2}(\Lambda V^\leq n) & \xrightarrow{H^{n+2}(\alpha_{(n)})} & H^{n+2}(\Lambda V^\leq n)
\end{array}
$$

where $\text{Aut}(V^{n+1})$ is the group of automorphisms of the vector space V^{n+1}.

Equipped with the composition laws, the set C^{n+1} becomes a subgroup of $\text{Aut}(V^{n+1}) \times \mathcal{E}(\Lambda V^\leq n, \partial)$.

Proposition 2.1. There exists a surjective homomorphism $\Phi^{n+1} : \mathcal{E}(\Lambda V^\leq n+1, \partial) \to C^{n+1}$ given by the relation

$$
\Phi^{n+1}([\alpha]) = ([\tilde{\alpha}^{n+1}, [\alpha_{(n)}]])
$$

Remark 2.1. It is well-known ([9] proposition 12.8) that if two cochain morphisms $\alpha, \alpha' : (\Lambda V^\leq n+1, \partial) \to (\Lambda V^\leq n+1, \partial)$ are homotopic, then they induce the same graded linear maps on the indecomposables, i.e., $\tilde{\alpha} = \tilde{\alpha'}$, moreover $\alpha_{(n)}, \alpha'_{(n)}$ are homotopic and by using the diagram (1) we deduce that the map Φ^{n+1} is well-defined.

Proof. Let $(\xi^{n+1}, [\alpha_{(n)}]) \in C^{n+1}$. Choose $(v_\sigma)_{\sigma \in \Sigma}$ as a basis of V^{n+1}. Recall that, in the diagram (2), we have

$$
\begin{align*}
H^{n+2}(\alpha_{(n)}) \circ b^{n+1}(v_\sigma) &= \alpha_{(n)} \circ \partial(v_\sigma) + \text{Im} \partial^\leq n \\
b^{n+1} \circ \xi^{n+1}(v_\sigma) &= \partial \circ \xi^{n+1}(v_\sigma) + \text{Im} \partial^\leq n
\end{align*}
$$

(2.3)

where $\partial^\leq n : (\Lambda V^\leq n)^{n+1} \to (\Lambda V^\leq n)^{n+2}$. Note that here we have used the relation (2.2).

Since by definition 2.3 this diagram commutes, the element $(\alpha_{(n)} \circ \partial - \partial \circ \xi^{n+1})(v_\sigma) \in \text{Im} \partial^\leq n$. As a consequence there exists $u_\sigma \in (\Lambda V^\leq n)^{n+1}$ such that

$$
(\alpha_{(n)} \circ \partial - \partial \circ \xi^{n+1})(v_\sigma) = \partial^\leq n(u_\sigma).
$$

(2.4)

Thus we define $\alpha : (\Lambda V^\leq n+1, \partial) \to (\Lambda V^\leq n+1, \partial)$ by setting

$$
\alpha(v_\sigma) = \xi^{n+1}(v_\sigma) + u_\sigma, \quad v_\sigma \in V^{n+1} \quad \text{and} \quad \alpha = \alpha_{(n)} \text{ on } V^\leq n.
$$

(2.5)

As $\partial(v_\sigma) \in (\Lambda V^\leq n)^{n+2}$ then, by (2.4), we get

$$
\partial \circ \alpha(v_\sigma) = \partial(\xi^{n+1}(v_\sigma)) + \partial^\leq n(u_\sigma) = \alpha_{(n)} \circ \partial(v_\sigma) = \alpha \circ \partial(v_\sigma)
$$

(2.6)
So α is a cochain morphism. Now due to the fact that $u_\sigma \in (\Lambda V^{\leq n})^{n+1}$, the linear map $\tilde{\alpha}^{n+1} : V^{n+1} \to V^{n+1}$ coincides with ξ^{n+1}.

Finally it is well-known (see [3]) that any cochain morphism between two 1-connected mca's inducing a graded linear isomorphism on the indecomposables is a homotopy equivalence. Consequently $\alpha \in \mathcal{E}(\Lambda V^{\leq n}, \partial)$. Therefore Φ^{n+1} is surjective. Finally the following relations

$$\Phi^{n+1}([\alpha],[\alpha']) = (\tilde{\alpha} \circ \alpha^{n+1}, [\alpha(n)] \circ [\alpha'(n)]) = (\tilde{\alpha}^{n+1}, [\alpha(n)]) \circ (\alpha^{n+1}, [\alpha'(n)])$$

assure that Φ^{n+1} is a homomorphism of groups. □

Remark 2.2. Assume that $(\alpha(n)) \circ \partial - \partial \circ \xi^{n+1}((V^{n+1}) \cap \partial_{\leq n}(\Lambda V^{\leq n})^{n+1}) = \{0\}$, then the element $u_\sigma \in (\Lambda V^{\leq n})^{n+1}$, given in the formula (2.4), must be a cocycle. Therefore if there are no trivial cocycles belong to $(\Lambda V^{\leq n})^{n+1}$, then the cochain isomorphism α defined in (2.5) will satisfy $\alpha(v_\sigma) = \xi^{n+1}(v_\sigma)$, so it is unique. Hence, in this case, the map Φ^{n+1} is an isomorphism.

2.4. Main theorem

For every natural $n \in \mathbb{N}$, let us consider the following 1-connected mca:

$$AV = A(x_1, \ldots, x_{n+2}, y_1, y_2, y_3, w, z)$$

with $|x_{n+2}| = 2^{n+2} - 2$, $|x_k| = 2^k$ for every $1 \leq k \leq n + 1$. The differential is as follows:

$$\partial(x_1) = \cdots = \partial(x_{n+2}) = 0, \quad \partial(y_1) = x_3 x_{n+1} x_{n+2}, \quad \partial(y_2) = x_2 x_{n+1} x_{n+2}$$

$$\partial(y_3) = x_{n+1} x_{n+2}, \quad \partial(w) = x_1 x_2 x_3 \cdots x_n$$

$$\partial(z) = x_1^{2^{n+1}}(y_1 y_2 x_3^{3} - y_1 y_3 x_{n+1} x_{n+2} + y_2 y_3 x_{n+1} x_{n+2}) + \sum_{k=1}^{n+1} x_k 2^{n+2-k} + x_{n+2} 2.$$

So that

$$|y_1| = 5.2^{n+1} - 3, \quad |y_2| = 6.2^{n+1} - 5, \quad |y_3| = 7.2^{n+1} - 7,$$

$$|w| = 9.2^{n+2} - 17, \quad |z| = 9.2^{n+2} - 1.$$

Theorem 2.1. $\mathcal{E}(AV, \partial) \cong \bigoplus_{2^{n+1}} \mathbb{Z}_2$.

Thereafter we will need the following facts.

Lemma 2.2. There are no cocycles (except 0) in $(\Lambda V^{\leq n})^i$ for $i = 5.2^{n+1} - 3, 6.2^{n+1} - 5, 7.2^{n+1} - 7$.

Proof. First since the generators $x_k, 1 \leq k \leq n + 2$, have even degrees we deduce that $(\Lambda V^{\leq 5.2^{n+1}-3}) \cap x^{2^{n+2}}z = 0$.

Next the vector space $(\Lambda V^{\leq 6.2^{n+1}-6}) \cdot 6.2^{n+1}-5$ has only two generators namely $y_1 x_1^{2^{n+1}-1}, y_1 y_1 x_2 \cdots x_n$ and because of

$$\partial(y_1 x_1^{2^{n+1}-1}) = x_1^{3} x_{n+1} x_{n+2} x_1^{2^{n+1}-1}, \quad \partial(y_1 x_1 x_2 \cdots x_n) = x_1 x_{n+1} x_{n+2} x_1 x_2 \cdots x_n$$

we deduce that there are no cocycles (except 0) in $(\Lambda V^{\leq 6.2^{n+1}-6}) \cdot 6.2^{n+1}-5$.
Finally \((\Lambda V^{7,2^{n+1}-8})^{7,2^{n+1}-7}\) is spanned by
\[y_1x_1^{2n-1}, y_1x_2^{2n-1}, y_1x_1^2x_2^2 \ldots x_{n}, y_2x_1^2 \ldots x_n, \]
and since we have
\[
\partial(y_1x_1^{2n+1-2}) = x_1^{3n+1}x_{n+2}x_1^{2n+1-2}, \quad \partial(y_1x_2^{2n-1}) = x_1^{3n+1}x_{n+2}x_2^{2n-1}, \\
\partial(y_2x_1^{2n-1}) = x_1^{2n+1}x_{n+2}^{2n-1}, \quad \partial(y_1x_1^2x_2^2 \ldots x_n) = x_1^{3n+1}x_{n+2}x_1^2x_2^2 \ldots x_n, \\
\partial(y_2x_1^2 \ldots x_n) = x_1^{2n+2}x_1x_2 \ldots x_n,
\]
we conclude that there are no cocycles (except 0) belonging to \((\Lambda V^{7,2^{n+1}-8})^{7,2^{n+1}-7}\).

\[\square\]

Lemma 2.3. Every cocycles in \((\Lambda V^{9,2^{n+2}-2})^{9,2^{n+2}-1}\) is a coboundary.

Proof. First an easy computation shows that \((\Lambda V^{9,2^{n+2}-2})^{9,2^{n+2}-1}\) is generated by the elements on the form:
\[
y_1x_1^{a_1}x_2^{a_2} \ldots x_{n+1}^{a_{n+1}}x_{n+2}^{a_{n+2}} \quad \text{where} \quad \sum_{i=1}^{n+2} a_i 2^i - 2a_{n+2} = 13.2^{n+1} + 2, \\
y_2x_1^{b_1}x_2^{b_2} \ldots x_{n+1}^{b_{n+1}}x_{n+2}^{b_{n+2}} \quad \text{where} \quad \sum_{i=1}^{n+2} b_i 2^i - 2b_{n+2} = 12.2^{n+1} + 4, \\
y_3x_1^{c_1}x_2^{c_2} \ldots x_{n+1}^{c_{n+1}}x_{n+2}^{c_{n+2}} \quad \text{where} \quad \sum_{i=1}^{n+2} c_i 2^i - 2c_{n+2} = 11.2^{n+1} + 6, \\
x_1^{e_1}x_2^{e_2}x_3^{e_3}y_1y_2y_3 \quad \text{where} \quad e_1 + 2e_2 + 4e_3 = 7, \\
w_1x_1^{d_1}x_2^{d_2}x_3^{d_3}x_4^{d_4} \quad \text{where} \quad d_1 + 2d_2 + 4d_3 + 8d_4 = 8.
\]

Since
\[
\partial(x_1^{e_1}x_2^{e_2}x_3^{e_3}y_1y_2y_3) = x_1^{e_1}x_2^{e_2}x_3^{e_3}(x_1^{3}x_{n+2}y_{3} - x_1^{2}x_{n+2}x_{1}y_{3} - x_1^{2}x_{n+2}x_{2}y_{3} - x_1^{2}x_{n+2}x_{3}y_{3} + x_1^{3}x_{n+2}y_{2}), \\
\partial(wx_1^{d_1}x_2^{d_2}x_3^{d_3}x_4^{d_4}) = wx_1^{d_1}x_2^{d_2}x_3^{d_3}x_4^{d_4}x_1^{3}x_{n+2}x_{3}x_{4} \ldots x_{n},
\]
we deduce that the elements which could be cocycles in \((\Lambda V^{9,2^{n+2}-2})^{9,2^{n+2}-1}\) are of the form
\[
\alpha y_1x_1^{a_1}x_2^{a_2} \ldots x_{n+1}^{a_{n+1}}x_{n+2}^{a_{n+2}} + \beta y_2x_1^{b_1}x_2^{b_2} \ldots x_{n+1}^{b_{n+1}}x_{n+2}^{b_{n+2}} + \lambda y_3x_1^{c_1}x_2^{c_2} \ldots x_{n+1}^{c_{n+1}}x_{n+2}^{c_{n+2}}
\]
with the following relations:
\[
a_i = b_i = c_i, \quad 1 \leq i \leq n, \quad \alpha + \beta + \lambda = 0, \\
c_{n+1} = a_{n+1} + 2, \quad c_{n+2} = a_{n+2} - 2, \quad b_{n+1} = a_{n+1} + 1, \quad b_{n+2} = a_{n+2} - 1.
\]
Accordingly the elements
\[
y_1x_1^{a_1}x_2^{a_2} \ldots x_{n+1}^{a_{n+1}}x_{n+2}^{a_{n+2}} = y_1x_1^{2}x_2^{2} \ldots x_{n+1}^{2}x_{n+2}^{2} - y_1x_1^{a_1}x_2^{a_2} \ldots x_{n+1}^{a_{n+1}+2}x_{n+2}^{a_{n+2}-2}, \\
y_2x_1^{b_1}x_2^{b_2} \ldots x_{n+1}^{b_{n+1}}x_{n+2}^{b_{n+2}} = y_1x_1^{a_1}x_2^{a_2} \ldots x_{n+1}^{a_{n+1}+2}x_{n+2}^{a_{n+2}-2} - y_2x_1^{a_1}x_2^{a_2} \ldots x_{n+1}^{a_{n+1}+2}x_{n+2}^{a_{n+2}-2}
\]
with \(\sum_{i=1}^{n+1} a_i 2^i + a_{n+2} (2^{n+2} - 2) = 13.2^{n+1} + 2,\) span the space of cocycles in \((\Lambda V^{9,2^{n+2}-2})^{9,2^{n+2}-1}\).
Finally due to
\[
\partial(y_1 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} x_{n+2}^{a_{n+2}-3}) = -y_1 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} x_{n+2}^{a_{n+2}} + y_3 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+2} x_{n+2}^{a_{n+2}-2},
\]
\[
\partial(y_2 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} x_{n+2}^{a_{n+2}-4}) = -y_2 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} x_{n+2}^{a_{n+2}-1} + y_3 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+2} x_{n+2}^{a_{n+2}-2},
\]
we deduce that \((\Lambda V^{9.2^{n+2}-2})^{9.2^{n+2}-1}\) is generated by coboundaries and the lemma is proved.

By the same manner we have

Lemma 2.4. The sub-vector space of cocycles in \((\Lambda V^{9.2^{n+2}-18})^{9.2^{n+2}-17}\) is generated by the elements on the form

\[
y_1 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} x_{n+2}^{a_{n+2}} - y_2 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+1} x_{n+2}^{a_{n+2}-1} - y_3 x_1^{a_1} x_2^{a_2} \ldots x_n^{a_n+2} x_{n+2}^{a_{n+2}-2},
\]

where \(\sum_{i=1}^{n+2} a_i = 2a_{n+2} = 13.2^{n+1} - 14\). Moreover each generator of \((\Lambda V^{9.2^{n+2}-18})^{9.2^{n+2}-17}\) is a coboundary.

Remark 2.3. We have the following elementary facts:

1) Any isomorphism \(\xi^i : V^i \rightarrow V^i\), where \(i = 2, \ldots, 2^{n+1}, 2^{n+2} - 2, 5.2^{n+1} - 3, 6.2^{n+1} - 5, 7.2^{n+1} - 7, 9.2^{n+2} - 17\) and \(9.2^{n+2} - 1\), is a multiplication with a nonzero rational number, so we write

\[
\xi^2 = p_1, \quad \xi^4 = p_2, \ldots, \quad \xi^{2^{n+2}} = p_{n+2},
\]

\[
\xi^{5.2^{n+1}-3} = p_{y_1}, \quad \xi^{6.2^{n+1}-5} = p_{y_2}, \quad \xi^{7.2^{n+1}-7} = p_{y_3}, \quad \xi^{9.2^{n+2}-17} = p_w, \quad \xi^{9.2^{n+2}-1} = p_z.
\]

2) As the generators

\[
x_1^{2^{n+1}} x_{n+2}, x_2^{2^{n+1}} x_{n+2}, x_2^{x_1^{3}} x_{n+2}, x_1^{1} x_2^{2}, x_1^{x_2^{18}} x_{n+2}, \ldots, x_1^{28} x_2^{18} x_{n+2},
\]

\[
x_1^{2^{n+1}} x_{n+2}, x_2^{x_1^{3}} x_{n+2}, \ldots, x_2^{2^{n+1}} x_{n+2}, x_2^{9} x_{n+2}, x_1^{x_2^{9}} x_{n+2},
\]

\[
x_1^{2^{n+1}} (y_1 x_2^{x_3} x_{n+2} - y_1 x_3 x_1^{x_2} x_{n+2} + y_2 y_3 x_1^{x_2} x_{n+2})
\]

are not reached by the differential and by the definition of the linear maps \(b^n\) we deduce that

\[
b_1^{5.2^{n+1}-3}(y_1) = x_1^{2^{n+1}} x_{n+2}, \quad b_1^{9.2^{n+2}-17}(w) = x_1^{28} x_2^{18} x_{n+2}, \quad b_1^{7.2^{n+1}-5}(y_2) = x_1^{2} x_2^{x_1^{9}} x_{n+2},
\]

\[
b_1^{9.2^{n+2}-1}(z) = x_1^{2^{n+1} + 7} (y_1 x_2^{x_3} x_{n+2} - y_1 x_3 x_1^{x_2} x_{n+2} + y_2 y_3 x_1^{x_2} x_{n+2})
\]

\[
+ \sum_{k=1}^{n+1} x_1^{2^{n+2-k}} x_{n+2}^{x_2^9}.
\]
3) Since the differential is nil on the generators x_k, for every $1 \leq k \leq n + 2$, any cochain isomorphism $\alpha_{(k)} : (AV \leq k, \partial) \to (AV \leq k, \partial)$ can be written as follows:

$$\alpha_{(k)}(x_k) = pkx_k + \sum q_{m_1, m_2, \ldots, m_{k-1}} x_1^{m_1} x_2^{m_2} \ldots x_{k-1}^{m_{k-1}}$$ (2.6)

where

$$\sum_{i=1}^{k-1} m_i 2^i = 2^k, \quad p_k, q_{m_1, m_2, \ldots, m_{k-1}} \in \mathbb{Q}, \quad p_k \neq 0.$$

Now the last pages are devoted to the proof of theorem 2.1.

Proof. Let us begin by computing the group $\mathcal{E}(AV \leq 5 \cdot 2^{n+1}-3, \partial)$. Indeed, by remark 2.2 and lemma 2.2 the homomorphism $\Phi^{5 \cdot 2^{n+1}-3} : \mathcal{E}(AV \leq 5 \cdot 2^{n+1}-3, \partial) \to \mathcal{O}^{5 \cdot 2^{n+1}-3}$, given by proposition 2.1, is an isomorphism. So, by definition 2.3, we have to determine all the couples $(x_1^k, \ldots, x_n^k, [\alpha_{(5, 2^{n+1}-4)}]) \in Aut(V^{5 \cdot 2^{n+1}-3}) \times \mathcal{E}(AV \leq 5 \cdot 2^{n+1}-4, \partial)$ such that

$$b^{5 \cdot 2^{n+1}-3} \circ \xi^{5 \cdot 2^{n+1}-3} = H^{5 \cdot 2^{n+1}-2}(\alpha_{(5, 2^{n+1}-4)}) \circ b^{5 \cdot 2^{n+1}-3}.$$ (2.7)

Indeed, since $V \leq 5 \cdot 2^{n+1}-3 = V \leq 2^{n+2}-2$, we deduce that, on the generators $x_k, 1 \leq k \leq n + 2$, the cochain morphism $\alpha_{(5, 2^{n+1}-4)}$ is given by the relations (2.6). Therefore

$$H^{5 \cdot 2^{n+1}-2}(\alpha_{(5, 2^{n+1}-4)}) \circ b^{5 \cdot 2^{n+1}-3}(y_1) = \left(p_{n+1}x_{n+1} + \sum q_{m_1, m_2, \ldots, m_n} x_1^{m_1} x_2^{m_2} \ldots x_n^{m_n} \right)^3 \times \left(p_{n+2}x_{n+2} + \sum q_{n_1, n_2, \ldots, n_{n+2}} x_1^{n_1} x_2^{n_2} \ldots x_{n+2}^{n_{n+2}} \right),$$

$$b^{5 \cdot 2^{n+1}-3} \circ \xi^{5 \cdot 2^{n+1}-3}(y_1) = p_{y_1} x_{n+1}^3 x_{n+2}^3.$$ (2.8)

Hence we deduce that $p_{y_1} = p_{n+1} p_{n+2}$ and that all the numbers $q_{m_1, m_2, \ldots, m_n}$ and $q_{n_1, n_2, \ldots, n_{n+2}}$, given in (2.6), should be nil. Thus we can say that the group $\mathcal{E}(AV \leq 5 \cdot 2^{n+1}-3, \partial)$ is consisting of the classes $[\alpha_{(5, 2^{n+1}-3)}]$ such that the cochain isomorphisms $\alpha_{(5, 2^{n+1}-3)}$ satisfy:

$$\alpha_{(5, 2^{n+1}-4)}(x_{n+1}) = p_{n+1} x_{n+1}, \quad \alpha_{(5, 2^{n+1}-4)}(x_{n+2}) = p_{n+2} x_{n+2},$$

$$\alpha_{(5, 2^{n+1}-4)}(y_1) = p_{y_1} y_1;$$

$$\alpha_{(5, 2^{n+1}-3)}(x_k) = pkx_k + \sum q_{m_1, m_2, \ldots, m_k} x_1^{m_1} x_2^{m_2} \ldots x_{k-1}^{m_{k-1}}, \quad 1 \leq k \leq n.$$ (2.9)

With $p_{y_1} = p_{n+1} p_{n+2}$.

Computation of the group $\mathcal{E}(AV \leq 6 \cdot 2^{n+1}-5, \partial)$.

This group can be computed from $\mathcal{E}(AV \leq 5 \cdot 2^{n+1}-3, \partial)$ by using proposition 2.1. Indeed; by remark 2.2 the homomorphism $\Phi^{6 \cdot 2^{n+1}-5} : \mathcal{E}(AV \leq 6 \cdot 2^{n+1}-5, \partial) \to \mathcal{O}^{6 \cdot 2^{n+1}-5}$ is also an isomorphism. Recalling again that the group $\mathcal{O}^{6 \cdot 2^{n+1}-5}$ contains all the
couples \((\xi^{5,2^{n+1}-5}, [\alpha(6,2^{n+1}-6)])\) such that

\[
H^{6,2^{n+1}-4}(\alpha(6,2^{n+1}-6)) \circ b^{6,2^{n+1}-5} = b^{6,2^{n+1}-5} \circ \xi^{6,2^{n+1}-5}.
\]

\(\text{(2.10)}\)

Since \(\alpha(6,2^{n+1}-6) = \alpha(5,2^{n+1}-3)\) on \(V^{\leq 6,2^{n+1}-6} = V^{\leq 5,2^{n+1}-3}\), then by using (2.9) and the formula giving \(b^{6,2^{n+1}-5}\) in Remark 2.3 we get

\[
H^{6,2^{n+1}-4}(\alpha(6,2^{n+1}-6)) \circ b^{6,2^{n+1}-4}(y_2) = p^2_n + p^2_{n+1} x_{n+1}^3 x_{n+2}^2,
\]

\[b^{5,2^{n+1}-3} \circ \xi^{5,2^{n+1}-3}(y_2) = p_{y_2} x_{n+1}^2 x_{n+2}^2.\]

\(\text{(2.11)}\)

From the relation (2.10) we deduce that \(p_{y_2} = p^2_n + p^2_{n+1}\). Thus the group \(\mathcal{E}(AV^{\leq 6,2^{n+1}-5}, \partial)\) is consisting of all the classes \([\alpha(6,2^{n+1}-5)]\) such that the cochain isomorphisms \(\alpha(6,2^{n+1}-5)\) satisfy:

\[
\alpha(6,2^{n+1}-5)(y_2) = p_{y_2} y_2, \quad \alpha(6,2^{n+1}-5) = \alpha(5,2^{n+1}-3)
\]

\(\text{(2.12)}\)

on \(V^{\leq 5,2^{n+1}-3}\) with \(p_{y_2} = p^2_n + p^2_{n+1}\).

Computation of the group \(\mathcal{E}(AV^{\leq 7,2^{n+1}-7}, \partial)\).

First the same arguments show that \(\mathcal{E}(AV^{\leq 7,2^{n+1}-7}, \partial)\) is isomorphic to the group \(C^{7,2^{n+1}-7}\) of all the couples \((\xi^{7,2^{n+1}-7}, [\alpha(7,2^{n+1}-8)])\) such that

\[
H^{7,2^{n+1}-6}(\alpha(7,2^{n+1}-8)) \circ b^{7,2^{n+1}-7} = b^{7,2^{n+1}-7} \circ \xi^{7,2^{n+1}-7}.
\]

\(\text{(2.13)}\)

Next since \(\alpha(7,2^{n+1}-8) = \alpha(6,2^{n+1}-5)\) on \(V^{\leq 7,2^{n+1}-8} = V^{\leq 6,2^{n+1}-5}\), we get

\[
H^{7,2^{n+1}-6}(\alpha(7,2^{n+1}-8)) \circ b^{7,2^{n+1}-7}(y_3) = p_{n+1} p^3_n + p^3_{n+2} x_{n+1} x_{n+2}^3,
\]

\[b^{7,2^{n+1}-7} \circ \xi^{7,2^{n+1}-7} = p_{y_3} x_{n+1} x_{n+2}^3.\]

\(\text{(2.14)}\)

and from (2.13) we get the equation \(p_{y_3} = p_{n+1} p^3_n + p^3_{n+2}\). This implies that \(\mathcal{E}(AV^{\leq 7,2^{n+1}-7}, \partial)\) is consisting of all the classes \([\alpha(7,2^{n+1}-7)]\) such that the cochain isomorphisms \(\alpha(7,2^{n+1}-7)\) satisfy:

\[
\alpha(7,2^{n+1}-7)(y_3) = p_{y_3} y_3, \quad \alpha(7,2^{n+1}-7) = \alpha(6,2^{n+1}-5)
\]

\(\text{(2.15)}\)

on \(V^{\leq 6,2^{n+1}-5}\) with \(p_{y_3} = p_{n+1} p^3_n + p^3_{n+2}\).

The group \(\mathcal{E}(AV^{\leq 9,2^{n+2}-17}, \partial)\).

Let us determine the group \(C^{9,2^{n+2}-17}\) of all the couples \((\xi^{9,2^{n+2}-17}, [\alpha(9,2^{n+2}-16)])\) such that

\[
H^{9,2^{n+2}-16}(\alpha(9,2^{n+2}-16)) \circ b^{9,2^{n+2}-17} = b^{9,2^{n+2}-17} \circ \xi^{9,2^{n+2}-17}.
\]

\(\text{(2.16)}\)
Note that \(\alpha_{(9.2^{n+2}-18)} = \alpha_{(7.2^{n+1}-7)} \) on \(V^{\leq 9.2^{n+1}-18} = V^{\leq 7.2^{n+1}-7} \). So we deduce that
\[
H^{9.2^{n+2}-16}(\alpha_{(9.2^{n+2}-18)}) \circ b^{9.2^{n+2}-17}(w) = p_1^{28} x_1^{28} \prod_{k=2}^{n} (p_k x_k + \sum q_{m_1,m_2,\ldots,m_{k-1}} x_1^m x_2^{m_2} \cdots x_{k-1}^{m_{k-1}})^{18},
\]
\[
b^{9.2^{n+2}-17} \circ \xi^{9.2^{n+2}-17}(w) = p_w x_1^{28} x_2^{18} x_3^{18} \cdots x_n^{18}.
\]
(2.17)

Now from the relation (2.16) we deduce that \(p_w = p_1^{38} p_2^{18} \cdots p_n^{18} \) and that all the numbers \(q_{m_1,m_2,\ldots,m_{k-1}} \) given in (2.6), should be nil.

Now by proposition 2.1 we have
\[
(\Phi^{9.2^{n+2}-17})^{-1}(C^{9.2^{n+2}-17}) = E(\Lambda V^{\leq 9.2^{n+2}-17}, \partial)
\]
so, by going back to the relation (2.5), we can say that if \([\alpha] \in E(\Lambda V^{\leq 9.2^{n+2}-17}, \partial) \), then
\[
\alpha(w) = p_w w + a
\]
(2.18)

where \(a \in (\Lambda V^{\leq 9.2^{n+2}-18})^{9.2^{n+2}-17} \). A simple computation shows that
\[
(\alpha \circ \partial - \partial \circ \xi^{9.2^{n+2}-17})(V^{9.2^{n+2}-17}) \cap \partial_\leq 9.2^{n+2}-18(\Lambda V^{\leq 9.2^{n+2}-17})^{9.2^{n+2}-17} = \{0\}.
\]

Therefore by remark 2.2 the element \(a \) is a cocycle. But lemma 2.4 asserts that any cocycle in \((\Lambda V^{\leq 9.2^{n+2}-18})^{9.2^{n+2}-17} \) is a coboundary.

Thus summarizing our above analysis we infer that the cochain isomorphisms \(\alpha \) satisfy
\[
\alpha(w) = p_w w + \partial(a), \quad \text{where } \partial(a) = a
\]
(2.19)

Finally by lemma 2.1 all these cochain isomorphisms form one homotopy class which we represent by the cochain isomorphism denoted \(\alpha_{(9.2^{n+2}-17)} \) and satisfying:
\[
\alpha_{(9.2^{n+2}-17)}(w) = p_w w, \quad \alpha_{(9.2^{n+2}-17)}(x_k) = p_k x_k, \quad 1 \leq k \leq n
\]
(2.20)
\[
\alpha_{(9.2^{n+2}-17)}(y_1) = p_{y_1} y_1, \quad \alpha_{(9.2^{n+2}-17)}(y_2) = p_{y_2} y_2, \quad \alpha_{(9.2^{n+2}-17)}(y_3) = p_{y_3} y_3
\]
with
\[
p_{y_1} = p_{n+1}^{3} p_{n+2}, \quad p_{y_2} = p_{n+1}^{2} p_{n+2}, \quad p_{y_3} = p_{n+1}^{3}, \quad p_w = p_1^{28} p_2^{18} \cdots p_n^{18}.
\]
(2.21)

Computation of the group \(E(\Lambda V^{\leq 9.2^{n+2}-1}, \partial) \),
\(C^{9.2^{n+2}-1} \) is the group of all the couples \((\xi^{9.2^{n+2}-1}, [\alpha_{(9.2^{n+2}-2)}]) \) such that
\[
H^{9.2^{n+2}}(\alpha_{(9.2^{n+2}-2)}) \circ b^{9.2^{n+2}-1} = b^{9.2^{n+2}-1} \circ \xi^{9.2^{n+2}-1}.
\]
(2.22)
Due to the fact that $\alpha_{(9.2^{n+2}-2)} = \alpha_{(9.2^{n+2}-1)}$ on $V^{9.2^{n+1}-2} = V^{9.2^{n+1}-17}$, we deduce that $\alpha_{(9.2^{n+2}-2)}$ satisfies the relations (2.20). Consequently

\[
\begin{align*}
\theta_{9.2^{n+2}-1} & \circ \xi_{9.2^{n+2}-1}(z) = p_z x_1^{2^n+7} (y_1 y_2 x^3_n + 2 - y_1 y_3 x_{n+1}^2 + y_2 y_4 x_{n+2}^2) \\
& + \sum_{k=1}^{n+1} p_z x_k^{2^n+2-k} + p_z x_1^9 + p_2 x_9^9,
\end{align*}
\]

\[
H^{9.2^{n+2}}(\alpha_{(9.2^{n+2}-2)}) \circ \theta_{9.2^{n+2}-1}(z)
= p_{n+1}^{2^n+7} p_n^{2^n+6} x_1^{2^n+7} (y_1 y_2 x^3_{n+2} - y_1 y_3 x_{n+1}^2 + y_2 y_4 x_{n+2}^2)
+ \sum_{k=1}^{n+1} p_k^{9.2^{n+2-k}} x_k^{9} x_{n+2}^{9} + p_1 p_n^{9} x_{n+2}^{9}.
\]

(2.23)

Therefore from the formulas (2.22) and (2.23) we deduce the following equations:

\[
p_z = p_{n+1}^{2^n+7} p_n^{2^n+6} = p_1^{2^{n+1}} = \ldots = p_9^{2} = p_{n+1}^{9} = p_1^{9}.
\]

Again by proposition 2.1 we have

\[
(\Phi^{9.2^{n+2}-1})^{-1}(\alpha^{9.2^{n+2}-1}) = E(\Lambda V^{9.2^{n+2}-1}, \partial)
\]

so, by going back to the relation (2.5), if $[\beta] \in E(\Lambda V^{9.2^{n+2}-1}, \partial)$, then $\beta(z) = p_z z + c$ where, by using remark 2.2, the element c is a cocycle in $(\Lambda V^{9.2^{n+2}-2})_{9.2^{n+1}-1}$. By lemma 2.4 any cocycle is a coboundary. Thus the cochain morphism β satisfy

\[
\beta(z) = p_z z + \partial(c'), \quad \text{where} \quad \partial(c') = c \quad (2.24)
\]

\[
\beta = \alpha_{9.2^{n+2}-1}, \quad \text{on} \quad V^{9.2^{n+2}-2}.
\]

Due to lemma 2.1 all these cochain isomorphisms form one homotopy class which we represent by $\alpha_{(9.2^{n+2}-1)}$ and satisfying

\[
\alpha_{(9.2^{n+2}-1)}(z) = p_z z, \quad \alpha_{(9.2^{n+2}-1)}(w) = p_w w, \quad \alpha_{(9.2^{n+2}-1)}(x_k) = p_k x_k, \quad 1 \leq k \leq n + 2,
\]

\[
\alpha_{(9.2^{n+2}-1)}(y_1) = p_{y_1} y_1, \quad \alpha_{(9.2^{n+2}-1)}(y_2) = p_{y_2} y_2, \quad \alpha_{(9.2^{n+2}-1)}(y_3) = p_{y_3} y_3
\]

with the following equations:

\[
p_{y_1} = p_{n+1}^{3} p_{n+2} \,, \quad p_{y_2} = p_{n+1}^{2} p_{n+2}^{2} \,, \quad p_{y_3} = p_{n+1}^{2} p_{n+2}^{3} \,, \quad p_w = p_1^{28} p_2^{18} \ldots p_2^{18} \,,
\]

\[
p_z = p_{n+1}^{2^n+7} p_n^{2^n+6} \,, \quad p_{n+2}^{2^n+1} \,, \quad \ldots \,, \quad p_9^{2} = p_{n+1}^{9} \,, \quad p_1^{9}
\]

which have the following solutions:

\[
p_{n+2} = p_{y_2} = p_w = 1, \quad p_z = p_{y_1} = p_{y_3} = p_1 = p_2 = \ldots = p_n = p_{n+1} = \pm 1.
\]

So we distinguish two cases:

First case: when $p_{n+1} = 1$, then

\[
p_{n+2} = p_{y_2} = p_w = 1, \quad p_z = p_{y_1} = p_{y_3} = p_{n+1} = 1, \quad p_1 = p_2 = \cdots = p_n = \pm 1.
\]

So we find 2n homotopy classes.
Second case: when \(p_{n+1} = -1 \), then

\[
p_{n+2} = p_y = p_w = 1, \quad p_z = p_{y_1} = p_{y_2} = p_{n+1} = -1, \quad p_1 = p_2 = \cdots = p_n = \pm 1
\]

and we also find \(2^n \) homotopy classes. Hence, in total, we get \(2^{n-1} \) homotopy classes which are of order 2 (excepted the class of the identity) in the group \(\mathcal{E}(\Lambda V^{\leq 2^{n+2}-1}, \partial) \).

In conclusion we conclude that

\[
\mathcal{E}(\Lambda V^{\leq 2^{n+2}-1}, \partial) \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \tag{2n+1 \text{ times}}
\]

Now by the fundamental theorems of rational homotopy theory due to Sullivan [3] we can find a 1-connected rational CW-complex \(X_n \) such that

\[
\mathcal{E}(X_n) \cong \mathcal{E}(\Lambda V^{\leq 2^{n+2}-1}, \partial) \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \tag{2n+1 \text{ times}}
\]

\(\square \)

Remark 2.4. The spaces \(X_n \) are infinite-dimensional CW-complexes: rational homology is non-zero in infinitely many degrees and, as rational spaces, with infinitely many cells in each degree in which they have non-zero homology.

We close this work by conjecturing that for a 1-connected rational CW-complex \(X \), if the group is not trivial, then \(\mathcal{E}(X) \) is either infinite or \(\mathcal{E}(X) \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \tag{2n \text{ times}} \)

for a certain natural number \(n \).

References

This article may be accessed via WWW at http://tcms.org.ge/Journals/JHRS/

Mahmoud Benkhalifa
makhalifa@uqu.edu.sa

Department of Mathematics
Faculty of Applied Sciences
Umm Al-Qura University
Mekka, Saudi Arabia