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REALIZABILITY OF THE GROUP OF RATIONAL
SELF-HOMOTOPY EQUIVALENCES

MAHMOUD BENKHALIFA

(communicated by James Stasheff)

Abstract
For a 1-connected CW-complex X, let E(X) denote the

group of homotopy classes of self-homotopy equivalences of
X. The aim of this paper is to prove that, for every n ∈ N,
there exists a 1-connected rational CW-complex Xn such that
E(Xn) ∼= Z2 ⊕ · · ·⊕Z2︸ ︷︷ ︸

2n+1.times

.

1. Introduction

If X is a 1-connected CW-complex, let E(X) denote the set of homotopy classes
of self-homotopy equivalences of X. It is well-known that E(X) is a group with
respect to composition of homotopy classes. As pointed out by D. W. Khan [4], a
basic problem about self-equivalences is the realizability of E(X), i.e., when for a
given group G there exists a CW-complex X such that E(X) ∼= G.
In this paper we consider a particular problem asked by M. Arkowitz and G Lupton
in [1]: let G be a finite group, is there a rational 1-connected CW-complex X such
that E(X) ∼= G.
In this case the group G is said to be rationally realizable.
Our main result says:
Theorem. The groups Z2 ⊕ · · ·⊕Z2︸ ︷︷ ︸

2n+1.times

are rationally realizable for every n ∈ N.

We will obtain this result working on the theory elaborated by Sullivan [3] which
asserts that the homotopy of 1-connected rational spaces is equivalent to the homo-
topy theory of 1-connected minimal cochain commutative algebras over the ratio-
nals (mccas, for short). Recall that there exists a reasonable concept of homotopy
among cochain morphisms between two mccas, analogous in many respects to the
topological notion of homotopy.
Because of this equivalence we deduce that E(X) ∼= E(ΛV, ∂), where (ΛV, ∂) is
the mcca associated with X (called the minimal Sullivan model of X) and where
E(ΛV, ∂) denotes the group of self-homotopy equivalences of (ΛV, ∂). Therefore we
can translate our problem to the following: let G be a finite group. Is there a mcca
(ΛV, ∂) such that E(ΛV, ∂) ∼= G?
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Note that, in [1], M. Arkowitz and G Lupton have given examples showing that Z2

and Z2 ⊕ Z2 are rationally realizable. Recently and by using a technique radically
different from the one used in [1], the author [2] showed that Z2 ⊕ · · ·⊕Z2︸ ︷︷ ︸

2n+1.times

are

rationally realizable for all n 6 10.

2. The main result

2.1. Notion of homotopy for mccas
Let (Λ(t, dt), d) be the free commutative graded algebra on the basis {t, dt} with

| t |= 0, | dt |=1, and let d be the differential sending t 7→ dt. Define augmentations

ε0, ε1 : (Λ(t, dt), d) → Q by ε0(t) = 0, ε1(t) = 1

Definition 2.1. ([3]) Two cochain morphisms α0, α1 : (ΛV, ∂) → (ΛW, δ) are
homotopic if there is a cochain morphism Φ : (ΛV, ∂) → (ΛW, δ)⊗ (Λ(t, dt), d) such
that , i = 0, 1. Here Φ is called a homotopy from α0 to α1.

Thereafter we will need the following lemma.

Lemma 2.1. Let α0, α1 : (ΛV 6n+1, ∂) → (ΛW6n+1, δ) be two cochain morphisms
such that α0 = α1 on V 6n. Assume that for every generator v ∈ V n+1 we have

α0(v) = α1(v) + ∂(yv)

where yv ∈ (ΛW6n+1)n. Then α0 and α1 are homotopic.

Proof. Define Φ : (ΛV, ∂) → (ΛV, ∂)⊗ (Λ(t, dt), d) by setting

Φ(v) = α1(v) + ∂(yv)t− (−1)|∂(yv)|yvdt and Φ = α0 on V 6n (2.1)

It is clear that Φ is a cochain algebra satisfying (id.ε0)◦Φ = α1, (id.ε1)◦Φ = α0

2.2. The linear maps bn, n > 3
Definition 2.2. Let (ΛV, ∂) be a 1-connected mcca. For every n > 3, we define the
linear map bn : V n → Hn+1(ΛV 6n−1) by setting

bn(vn) = [∂(vn)]. (2.2)

Here [∂(vn)] denotes the cohomology class of ∂(vn) ∈ (ΛV 6n−1)n+1.

For every 1-connected mcca (ΛV, ∂), the linear map bn are natural. Namely if
α : (ΛV, ∂) → (ΛW, δ) is a cochain morphism between two 1-connected mccas, then
the following diagram commutes for all n > 2

V n+1 - Wn+1

bn+1 b′n+1

? ?

α̃n+1

Hn+2(α(n))Hn+2(ΛV 6n) - Hn+2(ΛW6n)

(1)
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where α̃ : V ∗ → W ∗ is the graded homomorphism induced by α on the indecom-
posables and where α(n) : (ΛV 6n, ∂) → (ΛW6n, δ) is the restriction of α.

2.3. The groups Cn+1, where n > 2
Definition 2.3. Given a 1-connected mcca (ΛV 6n+1, ∂). Let Cn+1 be the subset of
Aut(V n+1)×E(ΛV 6n, ∂) consisting of the couples (ξn+1, [α(n)]) making the follow-
ing diagram commutes

V n+1 - V n+1

bn+1 bn+1

? ?

ξn+1

Hn+2(α(n))Hn+2(ΛV 6n) - Hn+2(ΛV 6n)

(2)

where Aut(V n+1) is the group of automorphisms of the vector space V n+1.

Equipped with the composition laws, the set Cn+1 becomes a subgroup of
Aut(V n+1)× E(ΛV 6n, ∂).

Proposition 2.1. There exists a surjective homomorphism Φn+1 : E(ΛV 6n+1, ∂) →
Cn+1 given by the relation

Φn+1([α]) = (α̃n+1, [α(n)])

Remark 2.1. It is well-known ([3] proposition 12.8) that if two cochain mor-
phisms α, α′ : (ΛV 6n+1, ∂) → (ΛV 6n+1, ∂) are homotopic, then they induce the
same graded linear maps on the indecomposables, i.e., α̃ = α̃′, moreover α(n), α

′
(n)

are homotopic and by using the diagram (1) we deduce that the map Φn+1 is well-
defined.

Proof. Let (ξn+1, [α(n)]) ∈ Cn+1. Choose (vσ)σ∈Σ as a basis of V n+1. Recall that,
in the diagram (2), we have

Hn+2(α(n)) ◦ bn+1(vσ) = α(n) ◦ ∂(vσ) + Im ∂6n

bn+1 ◦ ξn+1(vσ) = ∂ ◦ ξn+1(vσ) + Im ∂6n (2.3)

where ∂6n : (ΛV 6n)n+1 → (ΛV 6n)n+2. Note that here we have used the relation
(2.2).
Since by definition 2.3 this diagram commutes, the element (α(n)◦∂−∂◦ξn+1)(vσ) ∈
Im ∂6n. As a consequence there exists uσ ∈ (ΛV 6n)n+1 such that

(α(n) ◦ ∂ − ∂ ◦ ξn+1)(vσ) = ∂6n(uσ). (2.4)

Thus we define α : (ΛV 6n+1, ∂) → (ΛV 6n+1, ∂) by setting

α(vσ) = ξn+1(vσ) + uσ , vσ ∈ V n+1 and α = α(n) on V 6n. (2.5)

As ∂(vσ) ∈ (ΛV 6n)n+2 then, by (2.4), we get

∂ ◦ α(vσ) = ∂(ξn+1(vσ)) + ∂6n(uσ) = α(n) ◦ ∂(vσ) = α ◦ ∂(vσ)
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So α is a cochain morphism. Now due to the fact that uσ ∈ (ΛV 6n)n+1, the linear
map α̃n+1 : V n+1 → V n+1 coincides with ξn+1.
Finally it is well-known (see [3]) that any cochain morphism between two 1-connected
mccas inducing a graded linear isomorphism on the indecomposables is a homotopy
equivalence. Consequently α ∈ E(ΛV 6n+1, ∂). Therefore Φn+1 is surjective.
Finally the following relations

Φn+1([α].[α′]) = (α̃ ◦ α′
n+1

, [α(n) ◦ α′(n)]) = (α̃n+1, [α(n)]) ◦ (α̃′
n+1

, [α′(n)])

= Φn+1([α]) ◦ Φn+1([α′])

assure that Φn+1 is a homomorphism of groups.

Remark 2.2. Assume that (α(n) ◦ ∂ − ∂ ◦ ξn+1)(V n+1)∩ ∂6n

(
(ΛV 6n)n+1

)
= {0},

then the element uσ ∈ (ΛV 6n)n+1, given in the formula (2.4), must be a cocycle.
Therefore if there are no trivial coycles belong to (ΛV 6n)n+1, then the cochain
isomorphism α defined in (2.5) will satisfy α(vσ) = ξn+1(vσ), so it is unique. Hence,
in this case, the map Φn+1 is an isomorphism.

2.4. Main theorem
For every natural n ∈ N, let us consider the following 1-connected mcca:

ΛV = Λ(x1, . . . , xn+2, y1, y2, y3, w, z) with |xn+2| = 2n+2 − 2, |xk| = 2k for every
1 6 k 6 n + 1. The differential is as follows:

∂(x1) = · · · = ∂(xn+2) = 0 , ∂(y1) = x3
n+1xn+2 , ∂(y2) = x2

n+1x
2
n+2

∂(y3) = xn+1x
3
n+2 , ∂(w) = x28

1 x18
2 x18

3 . . . x18
n

∂(z) = x2n+7
1 (y1y2x

3
n+2 − y1y3xn+1x

2
n+2 + y2y3x

2
n+1xn+2)+

n+1∑

k=1

x9.2n+2−k

k + x9
1x

9
n+2.

So that

|y1| = 5.2n+1 − 3, |y2| = 6.2n+1 − 5, |y3| = 7.2n+1 − 7,

|w| = 9.2n+2 − 17, |z| = 9.2n+2 − 1.

Theorem 2.1. E(ΛV, ∂) ∼= ⊕
2n+1

Z2.

Thereafter we will need the following facts.

Lemma 2.2. There are no cocycles (except 0) in (ΛV 6i−1)i for i = 5.2n+1 − 3,
6.2n+1 − 5, 7.2n+1 − 7.

Proof. First since the generators xk, 1 6 k 6 n + 2, have even degrees we deduce
that (ΛV 65.2n+1−4)5.2n+1−3 = 0.

Next the vector space (ΛV 66.2n+1−6)6.2n+1−5 has only two generators namely
y1x

2n−1
1 , y1x1x2 . . . xn and because of

∂(y1x
2n−1
1 ) = x3

n+1xn+2x
2n+1−1
1 , ∂(y1x1x2 . . . xn) = x3

n+1xn+2x1x2 . . . xn

we deduce that there are no cocycles (except 0) in (ΛV 66.2n+1−6)6.2n+1−5.
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Finally (ΛV 67.2n+1−8)7.2n+1−7 is spanned by

y1x
2n+1−2
1 , y1x

2n−1
2 , y1x

2
1x

2
2 . . . x2

n , y2x
2n−1
1 , y2x1x2 . . . xn

and since we have

∂(y1x
2n+1−2
1 ) = x3

n+1xn+2x
2n+1−2
1 , ∂(y1x

2n−1
2 ) = x3

n+1xn+2x
2n−1
2 ,

∂(y2x
2n−1
1 ) = x2

n+1x
2
n+2x

2n−1
1 , ∂(y1x

2
1x

2
2 . . . x2

n) = x3
n+1xn+2x

2
1x

2
2 . . . x2

n,

∂(y2x1x2 . . . xn) = x2
n+1x

2
n+2x1x2 . . . xn,

we conclude that there are no cocycles (except 0) belonging to
(ΛV 67.2n+1−8)7.2n+1−7.

Lemma 2.3. Every cocycles in (ΛV 69.2n+2−2)9.2n+2−1 is a coboundary.

Proof. First an easy computation shows that (ΛV 69.2n+2−2)9.2n+2−1 is generated
by the elements on the form:

y1x
a1
1 xa2

2 ...x
an+1
n+1 x

an+2
n+2 where

n+2∑
i=1

ai2i − 2an+2 = 13.2n+1 + 2,

y2x
b1
1 xb2

2 ...x
bn+1
n+1 x

bn+2
n+2 where

n+2∑
i=1

bi2i − 2bn+2 = 12.2n+1 + 4,

y3x
c1
1 xc2

2 ...x
cn+1
n+1 x

cn+2
n+2 where

n+1∑
i=1

ci2i − 2cn+2 = 11.2n+1 + 6,

xe1
1 xe2

2 xe3
3 y1y2y3 where e1 + 2e2 + 4e3 = 7,

wxd1
1 xd2

2 xd3
3 xd4

4 where d1 + 2d2 + 4d3 + 8d4 = 8.

Since

∂(xe1
1 xe2

2 xe3
3 y1y2y3) = xe1

1 xe2
2 xe3

3 (x3
n+1xn+2y2y3 − x2

n+1x
2
n+2y1y3 + xn+1x

3
n+2y1y2),

∂(wxd1
1 xd2

2 xd3
3 xd4

4 ) = wx28+d1
1 x18+d2

2 x18+d3
3 x18+d4

4 x18
5 . . . x18

n

we deduce that the elements which could be cocycles in (ΛV 69.2n+2−2)9.2n+2−1 are
of the form

αy1x
a1
1 xa2

2 ...x
an+1
n+1 x

an+2
n+2 + βy2x

b1
1 xb2

2 ...x
bn+1
n+1 x

bn+2
n+2 + λy3x

c1
1 xc2

2 ...x
cn+1
n+1 x

cn+2
n+2

with the following relations:

ai = bi = ci , 1 6 i 6 n , α + β + λ = 0,

cn+1 = an+1 + 2 , cn+2 = an+2 − 2 , bn+1 = an+1 + 1 , bn+2 = an+2 − 1.

Accordingly the elements

y1x
a1
1 xa2

2 ...x
an+1
n+1 x

an+2
n+2 − y3x

a1
1 xa2

2 ...x
an+1+2
n+1 x

an+2−2
n+2 ,

y2x
a1
1 xa2

2 ...x
an+1+1
n+1 x

an+2−1
n+2 − y3x

a1
1 xa2

2 ...x
an+1+2
n+1 x

an+2−2
n+2

with
n+1∑
i=1

ai2i + an+2(2n+2 − 2) = 13.2n+1 + 2, span the space of cocycles in

(ΛV 69.2n+2−2)9.2n+2−1.
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Finally due to

∂(y1y3x
a1
1 xa2

2 ...x
an+1−1
n+1 x

an+2−3
n+2 )

= −y1x
a1
1 xa2

2 ...x
an+1
n+1 x

an+2
n+2 + y3x

a1
1 xa2

2 ...x
an+1+2
n+1 x

an+2−2
n+2 ,

∂(y2y3x
a1
1 xa2

2 ...x
an+1
n+1 x

an+2−4
n+2 )

= −y2x
a1
1 xa2

2 ...x
an+1+1
n+1 x

an+2−1
n+2 + y3x

a1
1 xa2

2 ...x
an+1+2
n+1 x

an+2−2
n+2

we deduce that (ΛV 69.2n+2−2)9.2n+2−1 is generated by coboundaries and the lemma
is proved.

By the same manner we have

Lemma 2.4. The sub-vector space of cocycles in (ΛV 69.2n+2−18)9.2n+2−17 is gen-
erated by the elements on the form

y1x
a′1
1 x

a′2
2 ...x

a′n+1
n+1 x

a′n+2
n+2 − y3x

a′1
1 x

a′2
2 ...x

a′n+1+2

n+1 x
a′n+2−2

n+2 ,

y2x
a′1
1 x

a′2
2 ...x

a′n+1+1

n+1 x
a′n+2−1

n+2 − y3x
a′1
1 x

a′2
2 ...x

a′n+1+2

n+1 x
a′n+2−2

n+2 ,

where
n+2∑
i=1

a′i2
i − 2a′n+2 = 13.2n+1 − 14. Moreover each generator of

(ΛV 69.2n+2−18)9.2n+2−17 is a coboundary.

Remark 2.3. We have the following elementary facts:
1) Any isomorphism ξi : V i → V i, where i = 2, . . . , 2n+1, 2n+2 − 2, 5.2n+1 − 3,
6.2n+1−5, 7.2n+1−7, 9.2n+2−17 and 9.2n+2−1, is a multiplication with a nonzero
rational number, so we write

ξ2 = p1 , ξ4 = p2 , . . . , ξ2n+2
= pn+2

ξ5.2n+1−3 = py1 , ξ6.2n+1−5 = py2 , ξ7.2n+1−7 = py3 , ξ9.2n+2−17 = pw, ξ9.2n+2−1 = pz.

2) As the generators

x3
n+1xn+2, x2

n+1x
2
n+2, xn+1x

3
n+2, x28

1 x18
2 x18

3 . . . x18
n ,

x9.2n+1

1 , x9.2n

2 , . . . , x9
n+1, x9.2

n+1, x9
1x

9
n+2,

x2n+7
1 (y1y2x

3
n+2 − y1y3xn+1x

2
n+2 + y2y3x

2
n+1xn+2)

are not reached by the differential and by the definition of the linear maps bn we
deduce that

b5.2n+1−3(y1) = xn+1x
3
n+2, b9.2n+2−17(w) = x28

1 x18
2 x18

3 . . . x18
n ,

b7.2n+1−7(y3) = x3
n+1xn+2, b6.2n+1−5(y2) = x2

n+1x
2
n+2,

b9.2n+2−1(z) = x2n+7
1 (y1y2x

3
n+2 − y1y3xn+1x

2
n+2 + y2y3x

2
n+1xn+2)

+
n+1∑

k=1

x9.2n+2−k

k + x9
1x

9
n+2.
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3) Since the differential is nil on the generators xk, for every 1 6 k 6 n + 2, any
cochain isomorphism α(k) : (ΛV 6k, ∂) → (ΛV 6k, ∂) can be written as follows:

α(k)(xk) = pkxk +
∑

q
m1,m2,··· ,mk−1

xm1
1 xm2

2 ...x
mk−1
k−1 (2.6)

where
k−1∑

i=1

mi2i = 2k , pk, q
m1,m2,··· ,mk−1

∈ Q , pk 6= 0.

Now the last pages are devoted to the proof of theorem 2.1.

Proof. Let us begin by computing the group E(ΛV 65.2n+1−3, ∂). Indeed, by remark
2.2 and lemma 2.2 the homomorphism Φ5.2n+1−3 : E(ΛV 65.2n+1−3, ∂) → C5.2n+1−3,
given by proposition 2.1, is an isomorphism. So, by definition 2.3, we have to deter-
mine all the couples (ξ5.2n+1−3, [α(5.2n+1−4)]) ∈ Aut(V 5.2n+1−3)×E(ΛV 65.2n+1−4, ∂)
such that

b5.2n+1−3 ◦ ξ5.2n+1−3 = H5.2n+1−2(α(5.2n+1−4)) ◦ b5.2n+1−3. (2.7)

Indeed, since V 65.2n+1−3 = V 62n+2−2 we deduce that, on the generators xk, 1 6 k 6
n + 2, the cochain morphism α(5.2n+1−4) is given by the relations (2.6). Therefore

H5.2n+1−2(α(5.2n+1−4)) ◦ b5.2n+1−3(y1)

=
(
pn+1xn+1 +

∑
qm1,m2,··· ,mn

xm1
1 xm2

2 ...xmn
n

)3

×
(
pn+2xn+2 +

∑
q

m′1,m′2,··· ,m′
n+1

x
m′

1
1 x

m′
2

2 ...x
m′

n+1
n+1

)
,

b5.2n+1−3 ◦ ξ5.2n+1−3(y1) = py1x
3
n+1xn+2. (2.8)

Hence we deduce that py1 = p3
n+1pn+2 and that all the numbers qm1,m2,··· ,mn

and q
m′1,m′2,··· ,m′

n+1
, given in (2.6), should be nil. Thus we can say that the group

E(ΛV 65.2n+1−3, ∂) is consisting of the classes [α(5.2n+1−3)] such that the cochain
isomorphisms α(5.2n+1−3) satisfy:

α(5.2n+1−4)(xn+1) = pn+1xn+1, α(5.2n+1−4)(xn+2) = pn+2xn+2,

α(5.2n+1−4)(y1) = py1y1,

α(5.2n+1−3)(xk) = pkxk +
∑

qm1,m2,··· ,mk−1
xm1

1 xm2
2 ...x

mk−1
k−1 , 1 6 k 6 n (2.9)

with py1 = p3
n+1pn+2.

Computation of the group E(ΛV 66.2n+1−5, ∂).
This group can be computed from E(ΛV 65.2n+1−3, ∂) by using proposition 2.1. In-
deed; by remark 2.2 the homomorphism Φ6.2n+1−5 : E(ΛV 66.2n+1−5, ∂) → C6.2n+1−5

is also an isomorphism. Recalling again that the group C6.2n+1−5 contains all the
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couples (ξ6.2n+1−5, [α(6.2n+1−6)]) such that

H6.2n+1−4(α(6.2n+1−6)) ◦ b6.2n+1−5 = b6.2n+1−5 ◦ ξ6.2n+1−5. (2.10)

Since α(6.2n+1−6) = α(5.2n+1−3) on V 66.2n+1−6 = V 65.2n+1−3, then by using (2.9)
and the formula giving b6.2n+1−5 in remark 2.3 we get

H6.2n+1−4(α(6.2n+1−6)) ◦ b6.2n+1−4(y2) = p2
n+1p

2
n+2x

2
n+1x

2
n+2,

b5.2n+1−3 ◦ ξ5.2n+1−3(y2) = py2x
2
n+1x

2
n+2. (2.11)

¿From the relation (2.10) we deduce that py2 = p2
n+1p

2
n+2. Thus the group

E(ΛV 66.2n+1−5, ∂) is consisting of all the classes [α(6.2n+1−5)] such that the cochain
isomorphisms α(6.2n+1−5) satisfy:

α(6.2n+1−5)(y2) = py2y2 , α(6.2n+1−5) = α(5.2n+1−3) (2.12)

on V 65.2n+1−3 with py2 = p2
n+1p

2
n+2.

Computation of the group E(ΛV 67.2n+1−7, ∂).

First the same arguments show that E(ΛV 67.2n+1−7, ∂) is isomorphic to the group
C7.2n+1−7 of all the couples (ξ7.2n+1−7, [α(7.2n+1−8)]) such that

H7.2n+1−6(α(7.2n+1−8)) ◦ b7.2n+1−7 = b7.2n+1−7 ◦ ξ7.2n+1−7. (2.13)

Next since α(7.2n+1−8) = α(6.2n+1−5) on V 67.2n+1−8 = V 66.2n+1−5, we get

H7.2n+1−6(α(7.2n+1−8)) ◦ b7.2n+1−7(y3) = pn+1p
3
n+2xn+1x

3
n+2,

b7.2n+1−7 ◦ ξ7.2n+1−7 = py3xn+1x
3
n+2 (2.14)

and from (2.13) we get the equation py3 = pn+1p
3
n+2. This implies that

E(ΛV 67.2n+1−7, ∂) is consisting of all the classes [α(7.2n+1−7)] such that the cochain
isomorphisms α(7.2n+1−7) satisfy:

α(7.2n+1−7)(y3) = py3y3 , α(7.2n+1−7) = α(6.2n+1−5) (2.15)

on V 66.2n+1−5 with py3 = pn+1p
3
n+2.

The group E(ΛV 69.2n+2−17, ∂).

Let us determine the group C9.2n+2−17 of all the couples (ξ9.2n+2−17, [α(9.2n+2−16)])
such that

H9.2n+2−16(α(9.2n+2−18)) ◦ b9.2n+2−17 = b9.2n+2−17 ◦ ξ9.2n+2−17. (2.16)
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Note that α(9.2n+2−18) = α(7.2n+1−7) on V 69.2n+1−18 = V 67.2n+1−7. So we deduce
that

H9.2n+2−16( α (9.2n+2−18)) ◦ b9.2n+2−17(w)

= p28
1 x28

1 .

n∏

k=2

(
pkxk +

∑
q

m1,m2,··· ,mk−1
xm1

1 xm2
2 ...x

mk−1
k−1

)18

,

b9.2n+2−17 ◦ ξ9.2n+2−17(w) = pwx28
1 x18

2 x18
3 . . . x18

n . (2.17)

Now from the relation (2.16) we deduce that pw = p38
1 p18

2 . . . p18
n and that all the

numbers q
m1,m2,··· ,mk−1

, given in (2.6), should be nil.

Now by proposition 2.1 we have

(Φ9.2n+2−17)−1(C9.2n+2−17) = E(ΛV 69.2n+2−17, ∂)

so, by going back to the relation (2.5), we can say that if [α] ∈ E(ΛV 69.2n+2−17, ∂),
then

α(w) = pww + a (2.18)

where a ∈ (ΛV 69.2n+2−18)9.2n+2−17. A simple computation shows that

(α ◦ ∂ − ∂ ◦ ξ9.2n+2−17)(V 9.2n+2−17) ∩ ∂69.2n+2−18

(
(ΛV 69.2n+2−18)9.2n+2−17

)
= {0}.

Therefore by remark 2.2 the element a is a cocycle. But lemma 2.4 asserts that any
cocycle in (ΛV 69.2n+2−18)9.2n+2−17 is a coboundary.
Thus summarizing our above analysis we infer that the cochain isomorphisms α
satisfy

α(w) = pww + ∂(a′), where ∂(a′) = a (2.19)

α = α(7.2n+1−7), on V 69.2n+1−18

Finally by lemma 2.1 all these cochain isomorphisms form one homotopy class which
we represent by the cochain isomorphism denoted α(9.2n+2−17) and satisfying:

α(9.2n+2−17)(w) = pww , α(9.2n+2−17)(xk) = pkxk , 1 6 k 6 n (2.20)
α(9.2n+2−17)(y1) = py1y1 , α(9.2n+2−17)(y2) = py2y2 , α(9.2n+2−17)(y3) = py3y3

with

py1 = p3
n+1pn+2, py2 = p2

n+1p
2
n+2, py3 = pn+1p

3
n+2, pw = p28

1 p18
2 . . . p18

n . (2.21)

Computation of the group E(ΛV 69.2n+2−1, ∂).

C9.2n+2−1 is the group of all the couples (ξ9.2n+2−1, [α(9.2n+2−2)]) such that

H9.2n+2
(α(9.2n+2−2)) ◦ b9.2n+2−1 = b9.2n+2−1 ◦ ξ9.2n+2−1. (2.22)
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Due to the fact that α(9.2n+2−2) = α(9.2n+2−17) on V 69.2n+1−2 = V 69.2n+1−17, we
deduce that α(9.2n+1−2) satisfies the relations (2.20). Consequently

b9.2n+2−1 ◦ ξ9.2n+2−1(z) = pzx
2n+7
1 (y1y2x

3
n+2 − y1y3xn+1x

2
n+2 + y2y3x

2
n+1xn+2)

+
n+1∑

k=1

pzx
9.2n+2−k

k + pzx
9
1x

9
n+2,

H9.2n+2
(α(9.2n+2−2)) ◦ b9.2n+2−1(z)

=p2n+7
1 p5

n+1p
6
n+2x

2n+7
1 (y1y2x

3
n+2 − y1y3xn+1x

2
n+2 + y2y3x

2
n+1xn+2)

+
n+1∑

k=1

p9.2n+2−k

k x9.2n+2−k

k + p9
1p

9
n+2x

9
1x

9
n+2. (2.23)

Therefore from the formulas (2.22) and (2.23) we deduce the following equations

pz = p2n+7
1 p5

n+1p
6
n+2 = p9.2n+1

1 = . . . = p9.22

n = p9.2
n+1 = p9

1p
9
n+2.

Again by proposition 2.1 we have

(Φ9.2n+2−1)−1(C9.2n+2−1) = E(ΛV 69.2n+2−1, ∂)

so, by going back to the relation (2.5), if [β] ∈ E(ΛV 69.2n+2−1, ∂), then β(z) = pzz+c

where, by using remark 2.2, the element c is a cocycle in (ΛV 69.2n+2−2)9.2n+2−1. By
lemma 2.4 any cocycle is a coboundary. Thus the cochain morphism β satisfy

β(z) = pzz + ∂(c′), where ∂(c′) = c (2.24)

β = α9.2n+2−17, on V 69.2n+2−2.

Due to lemma 2.1 all these cochain isomorphisms form one homotopy class which
we represent by α(9.2n+2−1) and satisfying

α(9.2n+2−1)(z) = pzz, α(9.2n+2−1)(w) = pww, α(9.2n+2−1)(xk) = pkxk,
1 6 k 6 n + 2,

α(9.2n+2−1)(y1) = py1y1, α(9.2n+2−1)(y2) = py2y2, α(9.2n+2−1)(y3) = py3y3

with the following equations:

py1 = p3
n+1pn+2 , py2 = p2

n+1p
2
n+2, py3 = pn+1p

3
n+2, pw = p28

1 p18
2 . . . p18

2 ,

pz = p2n+7
1 p5

n+1p
6
n+2 = p9.2n+1

1 = . . . = p9.22

n = p9.2
n+1 = p9

1p
9
n+2

which have the following solutions:

pn+2 = py2 = pw = 1, pz = py1 = py3 = p1 = p2 = . . . = pn = pn+1 = ±1.

So we distinguish two cases:
First case: when pn+1 = 1, then

pn+2 = py2 = pw = 1, pz = py1 = py3 = pn+1 = 1, p1 = p2 = · · · = pn = ±1.

So we find 2n homotopy classes.
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Second case: when pn+1 = −1, then

pn+2 = py2 = pw = 1, pz = py1 = py3 = pn+1 = −1, p1 = p2 = · · · = pn = ±1

and we also find 2n homotopy classes. Hence, in total, we get 2n−1 homotopy
classes which are of order 2 (excepted the class of the identity ) in the group
E(ΛV 69.2n+2−1, ∂).

In conclusion we conclude that

E(ΛV 69.2n+2−1, ∂) ∼= Z2 ⊕ · · ·⊕Z2︸ ︷︷ ︸
2n+1.times

Now by the fundamental theorems of rational homotopy theory due to Sullivan [3]
we can find a 1-connected rational CW-complex Xn such that

E(Xn) ∼= E(ΛV 69.2n+2−1, ∂) ∼= Z2 ⊕ · · ·⊕Z2︸ ︷︷ ︸
2n+1.times

.

Remark 2.4. The spaces Xn are infinite-dimensional CW-complexes: rational ho-
mology is non-zero in infinitely many degrees and, as rational spaces, with infinitely
many cells in each degree in which they have non-zero homology.

We close this work by conjecturing that for a 1-connected rational CW-complex
X, if the group is not trivial, then E(X) is either infinite or E(X) ∼= Z2 ⊕ · · ·⊕Z2︸ ︷︷ ︸

2n.times

for a certain natural number n.
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