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Abstract
The fundamental groupoid of a locally 0 and 1-connected

space classifies covering spaces, or equivalently local systems.
When the space is topologically stratified, Treumann, based
on unpublished ideas of MacPherson, constructed an ‘exit cat-
egory’ (in the terminology of this paper, the ‘fundamental
category’) which classifies constructible sheaves, equivalently
stratified etale covers. This paper generalises this construction
to homotopically stratified sets, in addition showing that the
fundamental category dually classifies constructible cosheaves,
equivalently stratified branched covers.

The more general setting has several advantages. It allows
us to remove a technical ‘tameness’ condition which appears
in Treumann’s work; to show that the fundamental groupoid
can be recovered by inverting all morphisms and, perhaps most
importantly, to reduce computations to the two-stratum case.
This provides an approach to computing the fundamental cat-
egory in terms of homotopy groups of strata and homotopy
links. We apply these techniques to compute the fundamental
category of symmetric products of C, stratified by collisions.

Two appendices explain the close relations respectively be-
tween filtered and pre-ordered spaces and between cosheaves
and branched covers (technically locally-connected uniquely-
complete spreads).

1. Introduction

Covers of a (nice) topological space X are classified by the fundamental group
π1X or, if we wish to avoid assuming that X is connected and has a basepoint,
by the fundamental groupoid Π1X. If X is a stratified space then it is natural
to allow the covers to be stratified too. MacPherson observed (unpublished) that
local homeomorphisms onto X which are covers when restricted to each stratum
are classified by a modified version of the fundamental groupoid. The objects of this
are the points of X and the morphisms are homotopy classes of paths which ‘wind
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outwards from the deeper strata’, i.e. once they leave a stratum they do not re-
enter it. The notion of homotopy here is that of a family of such paths. MacPherson
phrased his result in terms of constructible sheaves rather than covering spaces,
but the notions are equivalent under the well-known correspondence of sheaves and
their étale spaces.

MacPherson’s ideas were published and extended by Treumann [Tre07] in which
he refers to paths which wind outwards as exit paths. For any topologically stratified
space he defines the ‘exit 1-category’ — objects are points, morphisms are homotopy
classes of exit paths (with a tameness assumption on the homotopy) — and the ‘exit
2-category’ — objects are points, 1-morphisms are exit paths and 2-morphisms
‘tame’ homotopies through exit paths. He shows that the set-valued functors on
the exit 1-category are equivalent to constructible sheaves and that category-valued
functors on the exit 2-category are equivalent to constructible stacks. Interesting
examples of constructible stacks are given by categories of perverse sheaves on
X. However, there does not yet seem to be any way of identifying the particular
representations which correspond to these.

This paper develops these ideas by defining a ‘fundamental category’ for any
‘pre-ordered space’. Stratified spaces are particular examples, and in this case our
definition reduces to Treumann’s exit 1-category (but without the tameness con-
dition on homotopies). The fundamental category has good properties for a very
wide class of stratified spaces, namely homotopically stratified sets with locally 0
and 1-connected strata. For these:
• The fundamental category can be computed in terms of homotopy groups of

the strata and of the homotopy links — see §3.1.
• The fundamental groupoid can be recovered by localising the fundamental

category at all morphisms — see Corollary 4.3.
• Covariant set-valued functors from the fundamental category classify con-

structible sheaves and, dually, contravariant functors classify constructible
cosheaves — see Theorem 4.6. Geometrically these can be interpreted respec-
tively as classifications of stratified étale and branched covers.

This class of spaces includes Whitney stratified spaces, Thom-Mather stratified
spaces, topologically stratified spaces and Siebenmann’s locally cone-like spaces.
In particular we recover MacPherson’s result. We do not consider the analogue of
Treumann’s exit 2-category but it seems likely that his results would generalise to
homotopically stratified sets.

1.1. Structure of the paper
A pre-ordered space, or po-space, has a distinguished subset of paths: the po-

paths are those paths which are also order-preserving maps, where [0, 1] is ordered
by 6. When X is a stratified space po-paths are precisely Treumann’s exit paths.
The fundamental category Πpo

1 X of a po-space X, defined in §2, is an ordered
analogue of the fundamental groupoid in which morphisms are given by homotopy
classes of po-paths.

In §3 we restrict the discussion to a homotopically nice class of filtered spaces,
Quinn’s homotopically stratified sets. These spaces have two advantages for our pur-
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poses. Firstly they are very general, subsuming almost any other notion of stratified
space. Secondly, the language used in their definition, particularly that of the ho-
motopy link, is well-suited for talking about po-paths. In particular it allows us to
reduce to the simpler case of a space with only two strata. In §3.1 we explain an
approach to computing the fundamental category based on this reduction.

The fundamental groupoid of a locally 0 and 1-connected space classifies covers,
equivalently local systems. In §4 we show that the fundamental category plays a
similar rôle for homotopically stratified spaces with locally 0 and 1-connected strata.
However, because po-paths are not necessarily reversible, we obtain two different
classification results. Covariant set-valued representations of the fundamental cate-
gory of a homotopically stratified set correspond to constructible sheaves, or equiv-
alently to stratified étale covers. Dually, contravariant representations correspond
to constructible cosheaves, or equivalently to stratified branched covers (which we
define in terms of Fox’s notion of a complete spread [Fox57]).

As a corollary of this classification result we deduce that the fundamental
groupoid of a homotopically stratified set with locally 0 and 1-connected strata can
be recovered by localising the fundamental category at the set of all morphisms:
Π1X is the ‘groupoidification’ of Πpo

1 X.
In §5 we consider an example, the symmetric product SPnC with the natural

stratification indexed by partitions of n. Morphisms in the fundamental category
can be expressed in terms of various subgroups of the braid group Bn and symmetric
group Sn associated to partitions.

Appendix A explains how filtered spaces arise as po-spaces with a certain natural
compatibility between the pre-order and the topology. This is included to make the
case that filtered and stratified spaces are not exotic examples in the world of
ordered topology but the bread and butter of the subject. Finally, since cosheaves
and complete spreads are less familiar than sheaves and étale maps we give a brief
review of the relevant theory in Appendix B. This includes what seems to be a new
result: the correspondence between cosheaves and uniquely-complete spreads on a
topological space. This is a small extension of known results in the special case in
which X is a complete metric space.

1.2. Related work
We have already discussed the relation to MacPherson and Treumann’s ideas.

In a less geometric vein, there has been work on homotopy theory for ordered or
directed spaces in category theory and theoretical computer science. Unfortunately
there is a plethora of slightly different definitions. In [Kah06] Kahl shows that the
category of spaces equipped with partial orders and maps between them has a closed
model structure with unordered homotopies as the notion of homotopy. Bubenik
and Worytkiewicz [BW06] follow a similar programme for locally ordered spaces —
spaces X with a partial order which need only be transitive locally, but which is
closed as a subset of X×X. However, here it is only possible to show that such spaces
are contained in a closed model category. Finally, Grandis [Gra03] considers a more
general notion of directed spaces — spaces equipped with a suitable class of ‘directed’
paths. He shows that the directed category has good properties (existence of limits
and colimits, exponentiable directed interval etc) and develops directed homotopy
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theory within it using ordered homotopies (so that directed homotopy is not an
equivalence relation). The intended application in all three cases is in theoretical
computer science, to the theory of concurrent systems. Grandis also uses directed
homotopy to produce interesting examples of higher-dimensional categories, see
[Gra06].

1.3. Acknowledgments
I am grateful to Michael Loenne who explained the ideas behind the example in

§5 and to Beverley O’Neill (generously funded by a Nuffield Undergraduate Bursary)
who worked out the details. I am indebted to David Miller for sparing my blushes
by pointing out a serious error in an earlier draft. I would like to thank Ivan Smith
and particularly Tom Leinster for helpful discussions and suggestions. And finally,
I would like to thank the referee for his meticulous reading and helpful corrections
and comments.

2. The fundamental category

There are various notions of ‘ordered space’. The one we use, the notion of a po-
space, is the simplest. It is a topological space with a pre-order on the set of points.
Recall that a pre-order is a set equipped with a reflexive and transitive relation 6
and that a map is increasing if p 6 q ⇒ f(p) 6 f(q). Po-spaces form a category
with maps between them being both continuous and increasing. We will refer to
these as po-maps for brevity.

Notice that there need be no compatibility between the topology and the pre-
order. However, if we impose a natural compatibility condition then the resulting
po-spaces are filtered spaces (see Appendix A.1). These are the po-spaces which
arise most often in geometry and topology; all the examples we consider will be
of this kind, indeed they will be stratified spaces (see §3). The relation between
po-spaces and filtered spaces is explained more fully in Appendix A.

From now on we will assume that all spaces are compactly generated. Spaces of
maps are topologised with the k-ification of the compact-open topology (so that
they too are compactly generated).

For po-spaces X and Y let Map6(X, Y ) be the set of po-maps between them.
We topologise this as a subspace of Map (X,Y ). Let I be the ordered interval, i.e.
[0, 1] equipped with the standard order. An element of Map6(I, X) is a continuous
path γ : [0, 1] → X such that γ(s) 6 γ(t) whenever s 6 t; we call it a po-path in X.
The start and end of a po-path determine a continuous map

E0 × E1 : Map6(I,X) → X2 : γ 7→ (γ(0), γ(1)) .

Definition 2.1. The fundamental category Πpo
1 X of a po-space X is the category

whose objects are the points of X and whose morphisms from x to x′ are the (path)
connected components π0(E0 × E1)−1(x, x′) of the space of po-paths from x to x′.
That is, a morphism from x to x′ is a homotopy class of po-paths from x to x′

where the homotopy is through po-paths. Composition is defined by concatenation
of po-paths. The fundamental category is functorial: a po-map f : X → Y induces
a functor Πpo

1 (f) : Πpo
1 X → Πpo

1 Y .
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Example 2.2. Let P be a poset with the descending chain condition, i.e. any de-
scending chain of elements of P is eventually constant. Consider P as a po-space
by giving it the Alexandrov topology (see Appendix A). Any po-path in P is of the
form

γ(t) = pi for t ∈ (ti−1, ti] ∩ [0, 1] i = 0, . . . , n

where p0 6 · · · 6 pn is a chain in P and t−1 < 0 < t0 < · · · < tn = 1 an increasing
sequence in R. There is a homotopy through po-paths

η(s, t) =





γ(t) s = 0
p0 t = 0
pn otherwise,

from γ to the po-path starting at p0 and moving instantly to pn. Hence Πpo
1 P ∼= P

thought of as a category with a single morphism from p to p′ when p 6 p′.

3. Homotopically stratified sets

A stratified space is a filtered space together with some information on how
the strata glue together. There are many ways in which we can specify glueing
data and hence many types of stratified space. In a homotopy-theoretic context the
most flexible is Quinn’s notion of a homotopically stratified set (defined below).
This is the notion of stratified space we will use. It is very general, in particular
Siebenmann’s locally cone-like stratified spaces, Thom-Mather stratified spaces and
Whitney stratified spaces are all homotopically stratified sets. The main example
in this paper is the symmetric product SPnC. We stratify this with one stratum
for each partition of n; the corresponding stratum is the subset of configurations in
which the n points coalesce according to the partition (see §5).

The fundamental category of a homotopically stratified set is equivalent to a
similar category in which morphisms are homotopy classes of po-paths which only
pass through one or two strata. This allows us to describe morphisms in terms of
the homotopy groups of strata and of homotopy links of pairs of strata.

In order to give the definition of a homotopically stratified set we introduce some
terminology. Suppose B is a filtered space. A subspace A ⊂ B is tame if it is a nearly
stratum-preserving deformation retract of a neighbourhood N of A, i.e. there is a
deformation retraction of N onto A such that points remain in the same stratum
under the retraction until the last possible moment, when they must flow into A.
The homotopy link holink (B,A) of a subset A of B is the space of paths (equipped
with the compact-open topology) in B with γ(0) ∈ A and γ(0, 1] ⊂ B − A, i.e. the
space of paths which start in A but leave it immediately. Evaluation at t defines a
map Et : holink (A ∪B,A) → A ∪B.

Definition 3.1. A homotopically stratified set is a filtered space X with finitely
many connected strata Xi such that for any pair i 6 j

1. the inclusion Xi ↪→ Xi ∪Xj is tame and

2. the evaluation map E0 : holink
(
Xi ∪Xj , Xi

) → Xi is a fibration.
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It is not immediately apparent why this is a good definition. One reason is that,
if we assume that X is a metric space, then

holink
(
Xi ∪Xj , Xi

)

E0

²²

E1 // Xj
Ä _

²²
Xi Â Ä // Xi ∪Xj

is a homotopy push-out [Qui88, Lemma 2.4]. Intuitively the homotopy link plays
the rôle of the boundary of a regular neighbourhood of Xi in Xi ∪Xj .

A homotopically stratified set is naturally a po-space, where we give it the pre-
order corresponding to the underlying filtration. Homotopy links can then be de-
scribed in terms of po-maps. Let I1 be the interval [0, 1] made into a po-space via
the filtration {0} ⊂ [0, 1] — see Appendix A. Then

holink
(
Xi ∪Xj , Xi

)
= (E0 × E1)−1

(
Xi ×Xj

) ⊂ Map6(I1, X) .

In fact it is a good heuristic when working with homotopically stratified sets that
their homotopy theory can be understood in terms of maps from I1. The next
lemma, which shows that po-paths are homotopic to elements of the holink, is an
illustration of this principle.

Lemma 3.2. Let X be a homotopically stratified set and γ : [0, 1] → X a po-path
in X from xi ∈ Xi to xj ∈ Xj. Then there is a homotopy of γ, relative to its
end points, to a po-path γ̃ ∈ holink

(
Xi ∪Xj , Xi

)
. Moreover, γ̃ is unique up to

homotopy through po-paths in the homotopy link.

Proof. In general the po-path γ : [0, t] → X will pass through several strata. Let
t−1 < 0 6 t0 < · · · < tn−1 < tn = 1 be such that γ(t) is in one stratum for t ∈
(tk−1, tk]∩ [0, 1] for k = 0, 1, . . . , n. In particular the trace of γ is in Xi for t ∈ [0, t1]
and in Xj for t ∈ (tn, 1]. There is a homotopy of γ which moves it off the intermediate
strata one by one starting from the highest. The segment γ : (tn−1, tn] → X is a
path in some stratum Xk. The final segment γ : [tn, 1] → X is a lift (inverse image)
of γ(tn) along the start point map E0 : holink

(
Xk ∪Xj , Xk

) → Xk. By definition
E0 is a fibration so we can extend this lift along γ : (tn−1, tn] → Xk. The result is
a map

η : (tn−1, tn]× [tn, 1] → X

with η(−, tn) = γ(−), η(tn,−) = γ(−) and η(s, t) ∈ Xj for t 6= tn. This provides a
homotopy, through po-paths, between γ and

γ1(t) =





γ(t) 0 6 t 6 tn−1

η(tn−1, tn − tn−1 + t) tn−1 < t 6 tn−1 + 1− tn
η(tn − 1 + t, 1) tn−1 + 1− tn < t 6 1.

The po-path γ1 now passes through one fewer intermediate strata (since it avoids
Xk). Continuing inductively we obtain the desired γ̃. Uniqueness up to homotopy
follows from multiple applications of the uniqueness up to homotopy of the extension
of a lift along a fibration. The situation is most easily apprehended by looking at
the following diagram.
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Of course we would really like a relative version of this result, allowing us to find
homotopies of families of po-paths to families in the holink. This does not follow for
free from the above lemma; the main difficulty is that the point at which po-paths
in a family leave a given stratum is not a continuous function of the parameters of
the family. Nevertheless Miller has recently announced

Theorem 3.3 (See [Mil09, Theorem 3.9].). Let X be a homotopically stratified set
and suppose X is a metric space. Then the space of po-paths beginning in Xi and
ending in Xj is homotopy equivalent to holink

(
Xi ∪Xj , Xi

)
by a homotopy which

fixes start and end points and takes po-paths ‘instantly’ into the homotopy link.

This theorem allows us to give an equivalent, but simpler, definition of the fun-
damental category. Let Πho

1 X be the category with objects the points of X and with
morphisms from x ∈ Xi to x′ ∈ Xj given by the (path) connected components of

(E0 × E1)−1(x, x′) ⊂ holink
(
Xi ∪Xj , Xi

)
.

In order to define composition we need to concatenate paths and then choose a
homotopic (through po-paths) path in the holink. The above theorem guarantees
the result is well-defined, up to homotopy through po-paths.

Corollary 3.4. The functor Πho
1 X → Πpo

1 X induced by the inclusion of the homo-
topy link in the space of po-paths is an equivalence.

The proof is immediate from Theorem 3.3. Later, in Corollary 4.5, we will give
an independent proof of this in the case when the strata of X are locally 0 and
1-connected. This result allows us to reduce to the two-stratum case: morphisms
in the fundamental category of a homotopically stratified set can be described in
terms of the homotopy links, they do not depend on any intermediate strata.

3.1. Computing the fundamental category
In this section we give several fibration sequences for computing morphisms in

the fundamental category of a homotopically stratified set X.
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Lemma 3.5. Write Hij for the homotopy link holink
(
Xi ∪Xj , Xi

)
. Fix a base-

point xi for each stratum Xi. The four downward maps in the diagram

E−1
1 (xj)

Â Ä //

E0

²²

Hij

E0zzvvv
vv

vv
vv

v

E1 $$HHHHHHHHH E−1
0 (xi)? _oo

E1

²²
Xi Xj

are fibrations. In addition E0 × E1 : Hij → Xi ×Xj is a fibration.

Proof. Since X is homotopically stratified E0 : Hij → Xi is a fibration. Now
consider the restriction E−1

1 (x′) → Xi of E0 to paths ending at x′. Given a family
F : A × [0, 1] → Xi of paths in Xi and a lift G : A × {0} → E−1

1 (x′) of the start
points we have a lift G : A× [0, 1] → Hij . Then the ‘diagonal’ family F̃ : A× [0, 1] →
E−1

1 (x′) given by

F̃ (a, s)(t) = G (a, s(1− t)) (t)

is a lift of F to E−1
1 (x′) along E0 starting at G(−, 0). Hence the restriction of E0

to E−1
1 (x′) is a fibration.

The end point map E1 : Hij → Xj is a fibration because, given a family F :
A× [0, 1] → Xj of paths in Xj and a lift G : A× {0} → Hij of the starting points,
the family given by the composition of paths

F̃ (a, t) = G(a)(−) ◦ F (a,−)|[0,t]

is a lift of F to Hij . It is easy to see that this construction of a lift also shows that
the restriction of E1 to E−1

0 (xi) is a fibration.
Finally, we must show that E0 × E1 : Hij → Xi × Xj is a fibration. If F =

(F1, F2) : A × [0, 1] → Xi ×Xj is a family of paths and G : A × {0} → Hij a lift
of the starting points then, using essentially the same argument which showed that
E0 : E−1

1 (x′) → Xi is a fibration, we can find a lift G : A× [0, 1] → Hij of F1 along
E0 such that G(a, s)(1) = G(a, 0)(1) = F2(a, 0). Then the composition of paths

F̃ (a, s) = G(a, s) ◦ F2(a,−)|[0,s]

is a lift of F along E0 × E1.

A compatible choice of basepoints for the spaces appearing in Lemma 3.5 is given
by choosing a basepoint γij ∈ Hij with E0(γij) = xi and E1(γij) = xj for each
i < j, i.e. a path with γij(0) = xi, γ

ij(1) = xj and γij(0, 1] ⊂ Xj . With this choice
we obtain five long exact sequences corresponding to the five fibrations. These are
displayed in a single commutative ‘braided’ diagram in Figure 1.

The long exact sequences in Figure 1 give us several methods for computing sets
of morphisms in Πho

1 X. We would also like to be able to compute compositions of
morphisms. In general this is fiddly; the complications arise in keeping track of the
combinatorics when the homotopy links and their fibres are disconnected. Here we
will treat only the simpler case when they are connected. In §5 we treat a more
difficult example where this fails.
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¹¹

³
¸
½Â
$
)
.

²²Â
Â
Â

©©

.
)
$
Â

½
¸

³

π1

(
E−1

0 xi ∩ E−1
1 xj

)

ÃÃ

²²

~~
π1

(
E−1

1 xj

)

--

¹¹

π1

(
E−1

0 xi

)

qq

©©

π1(Hij)

!!²²}}
π1(Xi)

¹¹

,,

π1(Xi)× π1(Xj)

²²

π1(Xj)

©©

rr
Πho

1 X(xi, xj)

!!

²²

}}
π0

(
E−1

0 xi

)

--

ºº

π0

(
E−1

1 xj

)

qq

¨¨

π0(Hij)

ÃÃ²²~~
1 1 1

Figure 1: A commutative braided diagram showing the (lower parts of the) long
exact sequences arising from the fibrations in Lemma 3.5. To aid reading we have
suppressed all basepoints; they are the points xi ∈ Xi, xj ∈ Xj or the path γij ∈
holink

(
Xi ∪Xj , Xi

)
from xi to xj as appropriate. Recall that Πho

1 X(xi, xj) ∼=
π0

(
E−1

0 xi ∩ E−1
1 xj

)
and that we assume strata are connected, hence the row of 1s

at the bottom. See §5 for an example of a computation using these sequences.
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Lemma 3.6. Let X be a homotopically stratified set. Assume that the fibres
E−1

0 (xi) ⊂ Hij are connected for each i 6 j so that we have an exact sequence

· · · // π1E
−1
0 (xi)

π1E1 // π1(Xj) Γij
// Πho

1 X(xi, xj) // 1

where Γij is the map induced by pre-composition by γij. (For the sake of readability
we have suppressed the basepoints.) Then for i 6 j 6 k

π1(Hjk)× π1(Xk)
π1E1×1 //

π1E0×1
²²²²

π1(Xk)× π1(Xk)

compose

²²
π1(Xj)× π1(Xk)

Γij×Γjk

²²²²

π1(Xk)

Γik

²²²²
Πho

1 X(xi, xj)×Πho
1 X(xj , xk) // Πho

1 X(xi, xk)

commutes, where the bottom map is composition in Πho
1 X and the bottom right map

Γik is pre-composition by γijγjk. Hence, at least in principle, we can compose a pair
of morphisms by choosing a lift to π1(Hjk)× π1(Xk) along the left hand surjection
and then applying the clockwise sequence of maps.

Proof. In order to see that the diagram commutes, given [g] ∈ π1(Xj) let [g̃] ∈
π1(Xk) be any choice of ‘lift’ of [g] via

π1(Xj , xj) π1(Hjk, γjk)
π1E0oooo π1E1 // π1(Xk, xk).

The assumption that E−1
0 (xj) ⊂ Hjk is connected ensures that the left hand map is

surjective so that this is always possible. Then, possibly after replacing g by another
representative of its class in π1(Xj , xj), there is a homotopy γjkg̃ ' gγjk (see Figure
2 below) so that for any [h] ∈ π1(Xk) we have

Γik[g̃h] = [γijγjkg̃h] = [γijgγjkh] = Γij [g] ◦ Γjk[h]

as required.

4. Stratified covers

Suppose X is locally path-connected and locally simply-connected. Then the
categories of covers of X, of spaces over X with the unique lifting property for
homotopies, of local systems on X and of set-valued representations of the fun-
damental groupoid of X, i.e. functors from the fundamental groupoid to sets, are
equivalent. (Here we say that a map p : Y → X has the unique lifting property for
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Figure 2: Picture of the homotopy γjkg̃ ' gγjk from Lemma 3.6.

homotopies if there is a unique solution to the lifting problem

A× {0} //
_Ä

²²

Y

p

²²
A× [0, 1] //

;;w
w

w
w

w
X

where A is any CW-complex.)
Now suppose X is homotopically stratified. We will generalise these equiva-

lences to the case when the strata of X are locally path-connected and locally
simply-connected. This condition is equivalent to asking that X be ‘locally po-
path-connected and locally po-simply-connected’ in the following sense.

Lemma 4.1. Suppose X is homotopically stratified. Then the strata of X are locally
path-connected and locally simply-connected if and only if each point x of X has a
neighbourhood U such that, up to homotopy through po-paths, there is a unique po-
path from x to any x′ ∈ U , equivalently, if and only if x is an initial object in
Πpo

1 U .

Proof. If each x has a neighbourhood U such that x is initial in Πpo
1 U then it is

clear that the strata must be locally path-connected and simply-connected. Sup-
pose then that the strata have these properties. Each stratum Xi is an almost
stratum-preserving deformation retract of a neighbourhood N of Xi in X [Qui88,
Proposition 3.2]. Let U be the inverse image under this retraction of a connected and
simply-connected neighbourhood of x in Xi. Let x′ ∈ U . We show that Πpo

1 U(x, x′)
has a unique element. Let ρ be the path from a point of Xi ∩ U to x′ given by the
retraction. Then there is a po-path from x to x′: compose a path in Xi ∩ U from
x to ρ(0) with ρ. To see that this po-path is unique up to homotopy, note that
any po-path γ from x to x′ is homotopic through po-paths to the composition of
a path in Xi ∩ U with ρ. Specifically γ is homotopic to the result of applying the

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 4(1), 2009 370

retraction to γ composed with ρ. The result follows from the fact that U ∩ Xi is
simply-connected.

In order to state our result we need to introduce appropriate generalisations
of covers, local systems and so on. In each case there are two ways to relax the
definition in a stratified context. For the remainder of this section, assume that X
is a homotopically stratified set and that the strata are locally path-connected and
locally simply-connected.

The generalisations of covers are maps p : Y → X which restrict to covering
maps over each stratum and are either

1. étale, i.e. local homeomorphisms or
2. locally-connected uniquely-complete spreads (see Appendix B).

The second class are branched covers in the topological sense, see Appendix B for the
definition. We refer to such maps as stratified étale covers and stratified branched
covers respectively. Figure 3 illustrates motivating examples. Let Et↓X and Br↓X
be the categories with respective objects the stratified étale and branched covers
over X and with maps the continuous maps over X.

Figure 3: The ‘line with two origins’ is naturally a stratified étale cover of the real
line stratified by {0} and R − {0}; two transversely intersecting lines a stratified
branched cover.

More evidently, the two ways to relax the homotopy-theoretic notion of cover as
a space with the unique homotopy lifting property are to consider maps p : Y → X
which have the unique lifting property either

1. for families of po-paths or
2. for families of op-paths.

Here by an op-path we mean the reverse γ : [0, 1] → X : t 7→ γ(1− t) of a po-path.
A family of po-paths is a continuous map

F : A× [0, 1] → X

where A is a CW-complex and for each a ∈ A the restriction F (a,−) is a po-
path. Families of op-paths are defined analogously. Let ULpo ↓X and ULop ↓X
respectively be the categories of spaces over X with these properties. In both cases
morphisms are continuous maps over X.

Proposition 4.2. A stratified étale cover has the unique lifting property for families
of po-paths. A stratified branched cover has the unique lifting property for families
of op-paths.

Proof. We begin with the cases of a single po-path or op-path and then generalise
to families. Note that if γ : [0, 1] → X is a po-path and γ(t) is in a stratum Xi then
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there is some ε > 0 such that γ(s) ∈ Xi for s ∈ (t− ε, t]. Obviously for an op-path
there is a similar statement but with γ(s) ∈ Xi for s ∈ [t, t + ε).

Suppose that p : Y → X is a stratified étale cover and that γ : [0, 1] → X is a
po-path. Let γ̃(0) be a lift of γ(0) to Y and let L ⊂ [0, 1] be the set of s for which
γ|[0,s] has a unique lift starting at γ̃(0). Clearly 0 ∈ L. Suppose [0, t) ⊂ L. Then by
the first observation γ(t) lies in the same stratum as γ(s) for s ∈ (t− ε, t]. Since p
is a cover over each stratum the unique lifting property of covers shows that t ∈ L.
Hence L is closed. On the other hand, it t ∈ L then γ̃(t) has a neighbourhood U
such that p|U : U → p(U) is a homeomorphism onto an open neighbourhood of γ(t).
It follows that L is open. Since [0, 1] is connected we have L = [0, 1] and we can lift
po-paths uniquely.

Suppose that p : Y → X is a stratified branched cover and that γ : [0, 1] → X
is an op-path. Let γ̃(0) be a lift of γ(0) to Y and let L ⊂ [0, 1] be the set of s for
which γ|[0,s] has a unique lift γ̃ : [0, s] → Y starting at γ̃(0). Clearly 0 ∈ L. Suppose
[0, t) ⊂ L. Then the trace of γ̃ determines an element of

lim
U3γ(t)

π0(p−1U) ∼= p−1γ(t).

This is the unique continuous extension γ̃(t). It follows that L is closed. Now suppose
[0, t] ⊂ L. Then by the observation at the beginning of the proof, γ(s) is in the
same stratum for s ∈ [t, t + ε) for some ε > 0. Since p restricts to a covering of each
stratum we can extend the lift uniquely and L is open. Therefore L = [0, 1] and we
can uniquely lift op-paths.

To deal with the family case it remains only to show that these unique lifts fit
into continuous families. The continuity of the lift of a family of po-paths to a
stratified étale cover follows easily from the local homeomorphism property of the
cover. Thus we will focus on the case of lifting a family F : A × [0, 1] → X of op-
paths, parameterised by a CW-complex A, to a stratified branched cover p : Y → X.
Lifting each op-path individually uniquely defines a lift F̃ : A× [0, 1] → Y which is
certainly continuous on {a}× [0, 1] for each a ∈ A. To show that it is continuous on
A× [0, 1] we use the fact that f : Z → Y is continuous at z

⇐⇒ for each open neighbourhood V 3 f(z) the inverse image f−1V contains an
open neighbourhood of z,

⇐⇒ for each open neighbourhood U 3 pf(z) there is an open neighbourhood of z
mapping to the component V of f(z) in p−1U .

If F̃ is continuous on A× [0, t) then we can use this together with the continuity of
F̃ on each {a} × [0, 1] and the local-connectivity of A to show that F̃ is continuous
on A× [0, t].

Now suppose F̃ is continuous on A× [0, t]. Fix a ∈ A. By the initial observation
F (a, s) is in the same stratum for s ∈ [t, t + δ] for some δ > 0. As Y is a stratified
branched cover the cosheaf of components of Y (see appendix B) is locally-constant
on strata. This means that we can cover

{F (a, s) | s ∈ [t, t + δ]}
by a finite sequence of open neighbourhoods Ui 3 F (a, ti) for t = t0 < t1 < · · · <
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tn = t + δ each having the property that the evident map

p−1x → π0

(
p−1Ui

)

is an isomorphism for each x ∈ Ui. It follows that if F̃ (a, t) and F̃ (a′, t) are in the
same component of p−1U0 and

F (a, s), F (a′, s) ∈ U0 ∪ · · · ∪ Un ∀s ∈ [t, t + δ]

then F̃ (a, t+δ) and F̃ (a′, t+δ) are in the same component of p−1Un. Thus continuity
propagates from (a, t) to (a, t+δ) and F̃ is continuous on the whole of A× [0, 1].

It follows immediately from the definition that a space over X with the unique
lifting property for families of po-paths defines a functor Πpo

1 X → Set. Similarly,
a space over X with the unique lifting property for families of op-paths defines
a functor Πop

1 X → Set, where Πop
1 X is the analogue of Πpo

1 X but with po-paths
replaced by op-paths. We now explain how to construct generalisations of local
systems from such functors.

A local system is a locally-constant sheaf, but it is also a locally-constant cosheaf
(see Appendix B for the definition). The two appropriate generalisations of a lo-
cal system to the stratified context are constructible sheaves and constructible
cosheaves. These are, respectively, sheaves and cosheaves which are locally-constant
when restricted to each stratum of X. Denote the resulting full subcategories of
sheaves and cosheaves by Shc ↓X and Coshc ↓X.

Given a functor F : Πpo
1 X → Set we define a presheaf F on X with F(U)

being the set of functions f : U → ∏
x∈U F (x) such that f(x) ∈ F (x) and f(x′) =

F (γ) (f(x)) whenever γ is a po-path in U from x to x′. It follows from Lemma
4.1 that the stalk Fx = F (x). Furthermore, the restriction of F to a stratum is a
locally-constant presheaf. Hence the sheafification is a constructible sheaf with stalk
F (x) at x ∈ X.

Similarly given a functor G : Πop
1 X → Set we let G be the precosheaf with

cosections G(U) =
∑

x∈U G(x)
/ ∼ where α ∼ α′ if there is an op-path γ in U from

x to x′ with α′ = G(γ)(α). This is locally-constant on strata and, using Lemma 4.1,
we see that the costalk Gx = G(x). Thus the cosheafification (see Appendix B) is a
constructible cosheaf with costalk G(x) at x ∈ X.

Finally, we can construct an étale space over X from any sheaf on X. If the sheaf
is constructible then the étale space will be a cover over each stratum of X, i.e. it
will be a stratified étale cover. Less well-known is the fact (see Appendix B) that we
can construct a locally-connected, uniquely-complete spread from a cosheaf. When
the cosheaf is constructible the corresponding spread is a stratified branched cover.

Theorem 4.3. There are equivalences of categories

Et↓X ' ULpo ↓X ' [Πpo
1 (X),Set] ' Shc ↓X

and Br↓X ' ULop ↓X ' [Πop
1 (X),Set] ' Coshc ↓X.
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Proof. We have shown that there are maps of the objects

Et↓X // ULpo ↓X

²²
Shc ↓X

OO

[Πpo
1 (X),Set]oo

and Br↓X // ULop ↓X

²²
Coshc ↓X

OO

[Πop
1 (X),Set].oo

It is tedious but easy to check that each construction is functorial and that starting
at any category and cycling around the diagram is an auto-equivalence. We leave
this as an exercise!

Remark 4.4. If a functor F : C → D induces an equivalence F ∗ : [D,Set] →
[C,Set] then F is fully faithful. Therefore F is an equivalence if, in addition, it is
essentially surjective. To see that F is fully faithful, note that F ∗ has a left adjoint
L (which is also fully faithful). It follows from the Yoneda lemma that L takes
the representable functor homC(c,−) to the representable homD(Fc,−), and that it
takes composition with f : c′ → c to composition with Ff : Fc′ → Fc, i.e. that the
diagram

Cop F op
//

²²

Dop

²²
[C,Set]

L
// [D,Set],

in which the vertical functors are the Yoneda embeddings, commutes. The claim
follows.

Corollary 4.5. If X is homotopically stratified and each stratum is locally path-
connected and locally simply-connected then the functor Πho

1 X → Πpo
1 X arising from

the inclusion of the homotopy link in the space of po-paths is an equivalence.

Proof. Theroem 4.3 and the preceding discussion can be repeated with Πho
1 X in

place of Πpo
1 X. We conclude that Πho

1 X → Πpo
1 X induces an equivalence

[Πpo
1 X,Set] → [

Πho
1 X,Set

]
,

and so is an equivalence by Remark 4.4.

Corollary 4.6. Suppose X is a homotopically stratified space with locally connected
and locally simply-connected strata. Let Πpo

1 Xloc be the category obtained by local-
ising the fundamental category at the set of all morphisms — thus the objects of
Πpo

1 Xloc are the points of X and the morphisms are equivalence classes of words in
the morphisms of Πpo

1 X and formal inverses thereof under obvious relations arising
from composition and cancellation. The functor Πpo

1 Xloc → Π1X given by compos-
ing the terms in these words is an equivalence, i.e. Π1X is the ‘groupoidification’ of
Πpo

1 X.

Proof. The obvious functors Πpo
1 X → Πpo

1 Xloc → Π1X induce functors

[Π1X,Set] → [Πpo
1 Xloc,Set] → [Πpo

1 X,Set].
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It follows from the connectivity assumptions on the strata that X is locally con-
nected and locally simply-connected. Hence [Π1X,Set] is equivalent to the category
of covers of X. On the other hand [Πpo

1 Xloc,Set] → [Πpo
1 X,Set] is the inclusion of

the full subcategory of functors which take all maps to isomorphisms. A strati-
fied étale cover is a genuine cover precisely when the monodromy induced by any
po-path is an isomorphism. Thus

[Πpo
1 Xloc,Set] → [Πpo

1 X,Set]

corresponds to the inclusion of the category of covers in the category of stratified
étale covers. Hence [Π1X,Set] → [Πpo

1 Xloc,Set] is an equivalence. It follows from
Remark 4.4 that Πpo

1 Xloc → Π1X is an equivalence.

Thus the fundamental category of a homotopically stratified set (with locally
connected and simply connected strata) contains at least as much information as
the fundamental groupoid. In some cases this fact can be used to compute the
fundamental group by computing a skeleton of Πpo

1 X, localising this to obtain a
groupoid — which is equivalent to the fundamental groupoid by the above theorem
— and then reading off the fundamental group as the automorphisms of an object.
The following example is offered as a ‘proof of concept’, not because it is an elegant
way to compute π1RPn!

Example 4.7. Real projective space RPn has a filtration RP0 ⊂ RP1 ⊂ · · · ⊂ RPn.
Let f : Sn → RPn be the standard 2 to 1 covering, and g : Rn+1 − {0} → RPn the
standard quotient map. Let

yi = (0, . . . , 0, 1, 0, . . . , 0)

where the non-zero entry is in the ith place and choose the basepoint xi = f(yi) for
the stratum Xi := RPi−RPi−1. The full subcategory on the objects xi is a skeleton
of Πpo

1 RPn because every point is connected to precisely one of the xi by a reversible
po-path. In order to characterise po-paths it is helpful to define the function

L : RPn → {0, . . . , n} : [p0 : . . . : pn] 7→ max{j | pj 6= 0}.
Then p ∈ Xi ⇐⇒ L(p) = i, and a path γ : [0, 1] → RPn is a po-path if and only if
the composite L ◦ γ : [0, 1] → {0, . . . , n} is increasing.

Let γ : [0, 1] → RPn be a po-path from xi to xj where i < j. (The case i = j
is uninteresting because the strata are simply-connected.) Let γ̃ : [0, 1] → Sn be the
unique lift of γ along the covering map f starting at yi. The end point of γ̃ is then at
εγyj where εγ ∈ {±1}. Furthermore, by homotopy lifting, the end point is the same
for any po-path homotopic to γ through po-paths so there is a well-defined map

ε : Πpo
1 RP

n(xi, xj) → {±1}.
In fact this is a bijection. To see this consider the map

η̃ : [0, 1]2 → Rn+1 − {0} : (s, t) 7→ (1− s)γ̃(t) + s(0, . . . , 1− t, . . . , εγt, . . . , 0)

where the only non-zero entries of the right hand term are in the ith and jth places.
The composite η = g ◦ η̃ is a homotopy relative to end points from γ to an element
of holink

(
Xi ∪Xj , Xi

)
. To see that it is a homotopy through po-paths note that,
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because γ is a po-path, we have εγ γ̃j(t) > 0 for t ∈ [0, 1]. It follows that L(η(s, t))
is an increasing function of t for each s ∈ [0, 1] as required.

Hence Πpo
1 RPn(xi, xj) = {α, β} is a two element set. (Properly we should write

αij and βij but we omit the subscripts for ease of reading.) It is easy to check that
εγ·γ′ = εγεγ′ so that composing paths we have α2 = β2 and αβ = βα. Localising
introduces inverses α−1 and β−1 satisfying

αβ−1 = α−1β = βα−1 = β−1α.

The automorphisms of x0 in the resulting groupoid are

〈αβ−1 | (αβ−1)2 = 1〉 ∼= Z/2Z ∼= π1(RPn, x0)

as expected from Corollary 4.6.

5. Configuration spaces of points in the plane

In this section we compute (a skeleton of) Πpo
1 X when X is the configuration

space of n indistinguishable but not necessarily distinct points in C, i.e. X is the
symmetric product SPnC := Cn/Sn where the symmetric group Sn acts on Cn

by permuting coordinates. A point x of SPnC determines a configuration of n
indistinguishable points in C given by the set of coordinates of any pre-image of x
in Cn.

The symmetric product has a natural stratification by orbit types indexed by
partitions of n. The strata are the subsets of points corresponding to configurations
where the n points coalesce according to the indexing partition. More precisely,
let C be a concrete partition of {1, . . . , n}, i.e. C is a set {C1, . . . , Ck} of disjoint
subsets of {1, . . . , n} whose union is the entire set. Define

Y C = {(z1, . . . , zn} ∈ Cn | za = zb ⇐⇒ a, b ∈ Ci for some 1 6 i 6 k}.
Then Y C is a closed complex submanifold of an open subset of Cn and has codi-
mension

k∑

i=1

(|Ci| − 1) .

It is obtained by deleting complex linear subspaces from a complex linear subspace
and is therefore connected. For a concrete partition C let P(C) be the corresponding
(abstract) partition of n with cardinalities |C1|, . . . , |Ck|. For a partition P set

Y P =
⋃

P(C)=P

Y C .

Note that there is an element π ∈ Sn inducing a complex-analytic isomorphism
Y C ∼= Y C′ exactly when P(C) = P(C ′). Hence the Y P are invariant under the
action of Sn on Cn. The quotients XP = Y P /Sn form a stratification of X by
connected complex analytic strata.

The poset of strata is the set of partitions with the relation P 6 Q if Q is
a refinement of P , that is if Q is obtained by further partitioning the parts of
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P . We denote the number of parts in P by |P | and write the partition with k
parts of cardinalities p1, . . . , pk as (p1| · · · |pk). In this notation, the top element,
corresponding to the open stratum, is (1|1| · · · |1) and the bottom, corresponding to
the stratum where all n points coalesce, is (n).

Fix a basepoint xP in each stratum. Elements of Πpo
1 X(xP , xQ) are represented by

po-paths from xP to xQ in the homotopy link. Thinking of points of the symmetric
product as configurations in C, the graph of such a po-path corresponds to a set
of strings in C × [0, 1] joining a configuration of type P to one of type Q. The
condition that it is a po-path in the homotopy link means that the set of strings is
a braid on |Q| strings where the starts of the strings are glued together according
to the partition P . Furthermore, each string is labelled by a natural number which
records the cardinality of the corresponding part of Q. The sum of these for the
set of strings emanating from a point, which corresponds to a part of P , is the
cardinality of that part. Two representations give the same morphism if they are
isotopic relative to the end points. Thus there are the usual braid relations on |Q|
strings, but also relations coming from ‘internal’ braiding within the parts of P
which becomes ‘external’ braiding of the |Q| strings. Figure 4 illustrates this in a
simple example.

Figure 4: Two representatives of a morphism in the fundamental category from xP

to xQ where P = (3|2) and Q = (2|1|1|1).

Let’s make this precise. In order that we may work with subgroups of Sn and of
the braid group Bn we choose a po-path γP,Q from xP to xQ whenever P < Q. We do
this in such a way that γP,R is the composite path γP,Q ·γQ,R whenever P < Q < R.
Label the points in the configuration corresponding to the basepoint in the open
stratum by 1, . . . , n. The chosen po-paths then identify a concrete partition C of
{1, . . . , n} with P(C) = P corresponding to each basepoint xP : namely i and j are
in the same part at xP if the points i and j coalesce along the reverse of the po-path
from xP to x(1|···|1). Henceforth we will abuse notation by denoting this choice of
concrete partition by the same letter as the corresponding abstract partition.

To each concrete partition P of {1, . . . , n} into k subsets of cardinality p1, . . . , pk

we associate three subgroups of Sn and three subgroups of Bn. Let

SP = {σ ∈ Sn : i ∼P j ⇐⇒ σ(i) ∼P σ(j)},
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where ∼P is the equivalence relation on {1, . . . , n} corresponding to P . This group
of symmetries of P is a product:

SP
∼= ISP × ESP

where the internal symmetries ISP
∼= Sp1 × · · · × Spk

permute the elements within
the parts and the external symmetries ESP 6 Sk permute the parts amongst
themselves, preserving the cardinality. Similarly we define BP to be the product
IBP ×EBP of the internal braids IBP

∼= Bp1 × · · · ×Bpk
, which braid the strings

within the parts, and the external braids EBP . The latter are defined by the pull-
back square

EBP
//

²²

Bk

²²
ESP

// Sk.

The partition P defines embeddings of IBP and EBP into Bn as commuting sub-
groups. This determines an embedding of BP into Bn.

It is well-known — and visually obvious — that the fundamental group of the top
stratum X(1|···|1) is the braid group Bn on n strings. More generally, for a partition
P into subsets of cardinality p1, . . . , pk, the fundamental group of the stratum XP is
isomorphic to EBP . We do not get the full braid group on k strings because points
of the stratum correspond to sets of k points labelled by the cardinalities p1, . . . , pk

and this labelling must be preserved by the braiding. There are also no ‘internal’
braids.

Pick partitions P 6 Q. Let E0 : holink
(
XP ∪XQ, XP

) → XP be the evaluation
at 0 map. From Figure 1 there is an exact sequence

π1

(
E−1

0 xP , γP,Q
) → π1

(
XQ, xQ

) → Πpo
1 (xP , xQ) → π0

(
E−1

0 xP

) → 1. (1)

The fibre E−1
0 xP is the space of ‘geometric braids’ embedded in C× [0, 1] starting

at the configuration xP and immediately splitting into |Q| strings. These strings
are labelled by the cardinalities of the parts of Q in such a way that the sum of the
labels on the set of strings emanating from the same point of xP is the cardinality
of the corresponding part of P .

Since the ends are free to move the set of components π0

(
E−1

0 xP

)
is the set of

ways in which P can be refined to Q. We can describe this in terms of concrete
partitions of {1, . . . , n} as follows. Define a subset

SP,Q = {σ ∈ Sn : σ(i) ∼Q σ(j) ⇒ i ∼P j}.
The subgroup ISP acts on the left and SQ acts on the right. The set of ways of
refining P to Q is the double orbit space:

π0

(
E−1

0 xP

) ∼= ISP \SP,Q/SQ.

The image of π1E1 : π1

(
E−1

0 xP , γP,Q
) → π1

(
XQ, xQ

) ∼= EBQ consists of braids
on |Q| strings (respecting labels) which can be continuously deformed by gathering
together strings in the same part of P so that they become the trivial braid on |P |
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strings. Thus the image is precisely the subgroup IBP ∩EBQ (where the intersection
is taken by embedding both in Bn).

Therefore (1) gives an exact sequence

1 → IBP ∩ EBQ\EBQ → Πpo
1 (xP , xQ) → ISP \SP,Q/SQ → 1. (2)

Here is an explicit way to construct the middle term. Let EBP,Q be the subset of
B|Q| defined by the pullback square

EBP,Q //

²²

B|Q|

²²
SP,Q // Sn

where the map B|Q| → Sn is obtained by permuting the parts of the partition at
xQ whilst leaving the ordering within parts fixed. Note that SQ,Q = SQ, and also
EBQ,Q = EBQ because EBQ fits into the pullback square

EBQ //

²²

B|Q|

²²
SQ // Sn.

It follows from this and the fact that SQ ⊂ SP,Q that there is an inclusion EBQ →
EBP,Q. Furthermore, the group SQ acts on the right on the set SP,Q and it follows
that EBQ acts on EBP,Q with orbit space SP,Q/SQ. I.e., appropriately interpreted,
there is an exact sequence

1 → EBQ → EBP,Q → SP,Q/SQ → 1.

The partition Q determines an embedding of EBP,Q into Bn, and henceforth we
identify EBP,Q with its image in Bn. Denote the image of EBP,Q in the orbit space
IBP \Bn by IBP \EBP,Q. Comparing with (2) it follows that

Πpo
1 (xP , xQ) ∼= IBP \EBP,Q. (3)

The composition in Πpo
1 X is simple to describe in terms of the composition in Bn.

Suppose P 6 Q 6 R. Composition within Sn determines a map SP,Q×SQ,R → SP,R

and it follows that composition in Bn gives a map

EBP,Q × EBQ,R → EBP,R.

Noting that the internal braids IBQ commute with EBP,Q and are a subgroup of
the internal braids IBP we see that the above map descends to

IBP \EBP,Q × IBQ\EBQ,R → IBR\EBP,R : ([α], [β]) 7→ [αβ].

This is the composition in Πpo
1 X.

The quotient map Cn → Cn/Sn = X is a stratified branched cover. It corresponds
to the functor

xP 7→ ISP \Sn and Πpo
1 (xP , xQ) ∼= IBP \EBP,Q 7→ ISP \SP,Q
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where the map ISQ\Sn → ISP \Sn corresponding to an element of ISP \SP,Q is
induced by composition SP,Q × Sn → Sn in Sn.

A. Pre-orders and spaces

A pre-order P is a set equipped with a reflexive and transitive relation 6. An
increasing map f : P → Q is one such that f(p) 6 f(p′) whenever p 6 p′. Let
Preorder be the category of pre-orders and increasing maps.

If 6 is also antisymmetric, i.e. p 6 q and q 6 p implies p = q, then P is a poset.
Each pre-order P has an associated poset given by quotienting by the equivalence
relation

p ∼ p′ ⇐⇒ p 6 p′ and p′ 6 p.

The quotient map P → P/∼ is increasing. This construction is right adjoint to the
natural inclusion Poset ↪→ Preorder.

Pre-orders arise naturally from topology: if X is a topological space there is a
pre-order on the points of X given by

x 6 y ⇐⇒ (x ∈ U ⇒ y ∈ U) ⇐⇒ x ∈ y

where y is the closure of y, and U is an open set. This is called the specialisation pre-
order because lower points are more ‘special’ and higher ones more ‘generic’ (in the
sense familiar to algebraic geometers). It defines a functor S : Top → Preorder.

Conversely, given a pre-order P we can topologise it (not necessarily uniquely)
so that the resulting specialisation pre-order is P . The coarsest topology with this
property has closed sets generated (under finite union and arbitrary intersection)
by the Dp = {q | q 6 p} for p ∈ P . The finest topology with this property is the
Alexandrov topology , in which the sets Up = {q | p 6 q} form a basis. Write D(P )
for P with the coarsest topology and U(P ) for P with the Alexandrov topology.
Here D stands for ‘downward-closed’ and U for ‘upward-open’. The identity maps

US(X) → X → DS(X)

are continuous, so U is a candidate left adjoint and D a candidate right adjoint
for S. It turns out that D is not a right adjoint, indeed it is not even a functor;
an increasing map P → Q need not induce a continuous map D(P ) → D(Q). For
example if we order [0, 1] in the usual way then

t 7→
{

t/2 t ∈ [0, 1)
1 t = 1

is increasing but not continuous as a map D[0, 1] → D[0, 1]. However, a map of
pre-orders is increasing if, and only if, it is continuous in the Alexandrov topologies.
In particular

U : Preorder → Top

is a functor and is left adjoint to specialisation. The identity maps on the underlying
sets give the unit and counit of the adjunction

P → SU(P ) and US(X) → X.
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It follows from the equivalences p 6 q ⇐⇒ q ∈ Up ⇐⇒ Uq ⊂ Up that P ∼= SU(P ).
However, the topology of US(X) can be much finer than that of X. For instance if
X is a metric space then US(X) has the discrete topology. In fact, US(X) ∼= X if
and only if X ∼= U(P ) for some pre-order P , in which case we say X is an Alexandrov
space.

Alexandrov spaces can be alternatively characterised as those spaces for which
each point x has a unique minimal open neighbourhood Ux (by minimal we mean
that for any open U we have x ∈ U ⇐⇒ Ux ⊂ U). A simple consequence is that
any space with a finite topology is Alexandrov. Finally note that, if P is a pre-order
whose associated poset is finite then U(P ) ∼= D(P ) and there is a unique topological
space whose specialisation pre-order is P .

A.1. Pre-ordered and filtered spaces
A pre-ordered space, or po-space for short, is a pair (X, 6) consisting of a topolog-

ical space X and a pre-order 6 on the points of X. A map of po-spaces, or po-map,
f : X → Y is a continuous and increasing map. Let PoSpace be the resulting
category.

We can think of po-spaces in two other ways. The first is as a space equipped
with two topologies, a ‘spatial’ topology and an Alexandrov topology which defines
the pre-order. Po-maps correspond to maps which are continuous with respect to
the spatial and Alexandrov topologies. The second is as a space over a poset, i.e.
as a space X together with a surjective map σX : X → PX where PX is the poset
associated to the pre-order on the points of X and σX the quotient map. We call
PX the poset of strata of X, for reasons which will become apparent in a moment.
In this picture po-maps are commutative squares

X

σX

²²

f // Y

σY

²²
PX g

// PY

in which f is continuous and g increasing.
The definition of po-space assumes no compatibility between the topology and

the pre-order. We now consider two compatibility conditions

C1 : the down-sets Dx = {x′ | x′ 6 x} are closed for all x ∈ X;

C2 : the up-sets Ux = {x′ | x′ > x} are open for all x ∈ X.

The first of these is perhaps the most natural, we expect 6 to be a closed condition.
The second condition implies the first.

Po-spaces satisfying C1 are better known as filtered spaces: a topological space
X is filtered if there are non-empty closed subspaces Xi indexed by a poset PX such
that

1. Xi ⊂ Xj ⇐⇒ i 6 j;

2. the subsets Xi = Xi −
⋃

j<i Xj partition X.
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The Xi are known as the strata of the filtration and PX is referred to as the poset
of strata. There is an induced pre-order on the points of a filtered space X coming
from the map σX : X → PX taking points to the stratum in which they lie. I.e. we
define x 6 x′ ⇐⇒ σX(x) 6 σX(x′). By definition, for x ∈ Xi

Dx = {x′ | x′ 6 x} = Xi

is closed, so that a filtered space is a po-space satisfying C1. Conversely, if (X, 6) is
a po-space satisfying C1 then we can filter it by the the non-empty closed subsets
Xi = {x′ | x′ 6 x}.

The second compatibility condition C2 is equivalent, from the filtered perspective,
to asking that upward unions of strata

⋃

j>i

Xi = X −
⋃

k 6>i

Xk

are open for each i. Equivalently, the surjection σX : X → PX is continuous with
respect to the Alexandrov topology on PX . We will say X is well-filtered when this
holds — it is automatic for a space with a finite filtration. The strata of a well-
filtered space are locally-closed, i.e. each is a closed subset of an open subset of the
space.

Example A.1. We define a well-filtered space In whose underlying space is the
interval [0, 1] with the standard topology and whose filtration is

{0} ⊂
[
0,

1
n

]
⊂ · · · ⊂

[
0,

n− 1
n

]
⊂ [0, 1].

The strata are the subsets {0}, (0, 1
n ], . . . , (n−1

n , 1] and the poset of strata is 0 6 1 6
· · · 6 n. The Alexandrov topology on this has open sets

{0, 1, . . . , n}, {1, 2, . . . , n}, . . . , {n} and ∅.
The continuous surjection corresponding to the filtration is given by t 7→ dnte.

The ordered interval I is the space [0, 1] with the standard topology and order.
It is filtered because Dt = {s| s 6 t} = [0, t] is closed, but not well-filtered because
Ut = [t, 1] is not open for t 6= 0.

A continuous map f : X → Y of filtered spaces is filtered if there is an increasing
map of the indexing posets g : PX → PY such that f(Xi) ⊂ Yg(i). This is a rather
weak condition and we will instead consider the stronger notion of a stratified map,
i.e. a map for which

f(Xi) ⊂ Y g(i).

Every stratified map is filtered. The map g can be recovered from f (but the require-
ment that g be increasing is a restriction on f). Note that f : X → Y is stratified
if and only if

X

σX

²²

f // Y

σY

²²
PX g

// PY
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commutes so that stratified maps are po-maps and vice versa. Hence the two com-
patibility conditions C1 and C2 between the topology and the pre-order cut out
two full subcategories

PoSpace ⊃ Filt ⊃ WellFilt

consisting respectively of the filtered and the well-filtered spaces, and the stratified
maps between them. Most interesting examples of po-spaces arising ‘in nature’ seem
to be filtered or even well-filtered, certainly we will focus on these. However, for the
purposes of theory it is convenient to work with po-spaces.

B. Cosheaves and complete spreads

The notion of a sheaf and the correspondence of sheaves and étale spaces are
well-known. In contrast cosheaves are rarely discussed and there are few references.
A further complication is that, unlike the case of sheaves, a cosheaf of abelian
groups is not simply a cosheaf of sets whose cosections have compatible abelian
group structures. Thus the theories of cosheaves of sets and of abelian groups are
different. (The reason is that, whilst the underlying set of a product of abelian
groups is just the product of the underlying sets of the abelian groups, the same is
not true for coproducts — the coproduct of sets is the disjoint union whereas the
coproduct of abelian groups is the direct sum.)

This appendix provides the necessary background for the use of cosheaves in this
paper, and in particular explains the correspondence between cosheaves on a space
X and locally-connected, uniquely complete spreads over X. Surprisingly, this result
seems to be new — it is a minor generalisation of the results of [Fun95, §5,6] which
treats the special case in which X is a complete metric space.

A precosheaf of sets on a topological space X is a functor F : U(X) → Set from
the category of open subsets of X and inclusions to the category of sets. Elements
of F(U) are called cosections over U , and the maps F(U) → F(V ) for U ⊂ V are
called extensions. A cosheaf of sets on X is a precosheaf which preserves colimits,
i.e. for any collection {Ui} of open sets F (

⋃
i Ui) is the colimit of

∑

i,j

F (Ui ∩ Uj) →
∑

i

F (Ui) .

The displayed map is induced from the inclusions of Ui ∩ Uj into Ui and Uj in the
obvious way. To be concrete, this means that

F
(⋃

i

Ui

)
=

∑

i

F (Ui)
/ ∼

is the quotient of the disjoint union by the equivalence relation generated by αi ∼ αj

if there is β ∈ F (Ui ∩ Uj) which extends to both αi ∈ F (Ui) and αj ∈ F (Uj). Maps
of precosheaves and cosheaves are natural transformations. We denote the categories
of precosheaves and cosheaves on X by Precosh↓X and Cosh↓X respectively.

Example B.1. Given a continuous map pY : Y → X the assignment

U 7→ π0

(
p−1

Y U
)
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is a precosheaf CY . (Here π0 denotes components, not path components.) This de-
fines a functor C : Top↓X → Precosh↓X.

If Y is locally-connected then CY is in fact a cosheaf. To see this, recall that a
space is locally-connected if and only if the connected components of open subsets
are open. It follows that

π0 : LCTop → Set,

where LCTop is the full subcategory of locally-connected spaces, is left adjoint to
the discrete space functor. Since left adjoints preserve colimits CY is a cosheaf when
Y is locally-connected; we call it the cosheaf of components of Y .

This example shows that we can naturally turn spaces over a given space into
precosheaves on that space. Conversely, every precosheaf F has an associated display
space DF ∈ Top↓X. As a set the display space is the disjoint union

∑

x∈X

Fx

where Fx = limU3x F(U) is the costalk of F at x. (An element β of the costalk Fx

is simply a set of consistent choices βU of cosections over each open neighbourhood
U of x.) We topologise the display space by declaring

Vα = {β ∈ Fx | x ∈ U, βU = α}
for each open U ⊂ X and α ∈ F(U) to be a basis of opens. The obvious projection

pF : DF → X

with fibres the costalks is then continuous because p−1
F U =

∑
α∈F(U) Vα is open. It

is easy to check that D determines a functor Precosh↓X → Top↓X.
One might imagine that C and D were adjoint, but this is not quite so. There is

a natural map CDF → F for any precosheaf F given by

CDF(U) → F(U) : [β] 7→ βU

where [β] is the component of p−1
F U containing β ∈ Fx. This is well-defined since

p−1
F U =

∑
α∈F(U) Vα is a disjoint union of opens so each component is contained

within a unique Vα. However, the natural map

Y → DCY : y 7→ {[y] ∈ π0(p−1
Y U)}U3x

need not be continuous. The inverse image of a basic open subset is a connected
component of p−1

Y U for some U . This need not be open unless Y is locally-connected.
Fortunately, the solution to this difficulty is simple. The inclusion LCTop↓X ↪→
Top↓X has a right adjoint Y 7→ Ŷ given by the unique minimal refinement of the
topology on Y which is locally-connected, see e.g. [Fun95, §5]. Write D̂ for the
functor F 7→ D̂F .

Proposition B.2. The functor C : LCTop↓X → Precosh↓X is left adjoint to
D̂ : Precosh↓X → LCTop↓X.
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Proof. The unit Y → DCY and counit CDF → F were constructed above when
Y was locally-connected. We can easily check that in this case these determine a
natural isomorphism

Precosh↓X (CY,F) ∼= Top↓X (Y,DF) .

We obtain the result by composing with the natural isomorphism

Top↓X (Y,DF) ∼= LCTop↓X
(
Y, D̂F

)
.

We have already seen that CY is a cosheaf when Y is locally-connected. Con-
versely, it follows from the lemma below that DF is locally-connected when F is a
cosheaf.

Lemma B.3. If F is a cosheaf, U ⊂ X is open and α ∈ F(U) then the basic open
set Vα = {β ∈ Fx | x ∈ U, βU = α} ⊂ DF is non-empty and connected.

Proof. Suppose Vα = ∅. Then each x ∈ U has an open neighbourhood Vx ⊂ U such
that α is not in the image of the extension F(Vx) → F(U). These Vx form a cover
of U and so the cosheaf condition exhibits F(U) as the quotient of

∑

x∈X

F(Vx)

by an equivalence relation. Since the extensions are the composites F(Vx) →∑
x∈X F(Vx) → F(U) this contradicts the fact that α is not in the image of any of

these. Hence Vα is non-empty.
It remains to show that Vα is connected. Consider an arbitrary cover of Vα by

basic open subsets Vαi for αi ∈ F(Ui) where Ui ⊂ U . For ease of reading we write
Vi for Vαi .

Let U ′ =
⋃

i Ui. First we show that Vα = Vα′ for some unique α′ ∈ F(U ′). Note
that if x ∈ U − U ′ then x has a neighbourhood Wx ⊂ U such that α is not in the
image of the extension F(Wx) → F(U). Otherwise there is an element β ∈ Fx with
βU = α. This implies that β ∈ Vα which contradicts the fact that the Vi cover Vα.
Cover U by U ′ and the Wx for x ∈ U −U ′. The cosheaf condition exhibits F(U) as
a quotient of

F(U ′) +
∑

x∈U−U ′
F(Wx)

by the equivalence relation generated by equating extensions from the intersections.
Since Vα 6= ∅, and there are no elements in any of the F(Wx) whose extensions are
α, there is a unique α′ ∈ F(U ′) whose extension to F(U) is α.

Without loss of generality we may now assume that U ′ = U . Considering the
cosheaf condition for U =

⋃
i Ui we have

F(U) = colim


∑

i,j

F(Ui ∩ Uj) →
∑

i

F(Ui)


 .
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By construction the extension of each αi to F(U) is α. Since the αi are identified in
the colimit we must, for any pair of indices i and j, be able to find a finite sequence
of indices i = i1, . . . , in = j and elements

βk ∈ F(Uik
∩ Uik+1)

which extend to αik
∈ F(Uik

) and αik+1 ∈ F(Uik+1). Thus for any Vi and Vj we
have found a finite sequence Vik

with Vi = Vi1 , Vj = Vin and

Vik
∩ Vik+1 6= ∅

for i = 1, . . . , n−1. It follows that Vα is connected, for if Vα = V +V ′ is disconnected
we could cover V and V ′ by basic opens to obtain a cover with a pair i and j of
indices for which there was no such sequence.

Remark B.4. Note that we did not need to assume that the subset U of the previous
lemma was connected. The cosheaf condition implies that the open subset Vα is
contained within the inverse image via p : DF → X of a single connected component
of U .

It follows immediately that DF is locally-connected when F is a cosheaf, but in
fact DF has even better properties. The idea of a complete spread was introduced
by Fox in [Fox57] to give a purely topological notion of a branched cover. A map
pY : Y → X is a spread if the set of connected components of p−1

Y U for open U in
X forms a basis for the topology of Y . It is a complete spread if whenever we make
a consistent choice of component αU ⊂ p−1

Y U for each neighbourhood U of some
fixed x ∈ X — consistent meaning that αU ⊂ αV whenever U ⊂ V — then the
intersection ∩U3xαU 6= ∅. If, in addition, there is a unique point in this intersection
we say Y is uniquely-complete. More succinctly, a spread Y is uniquely-complete if
and only if

p−1
Y x → lim

U3x
π0

(
p−1

Y U
)

: y 7→ {
[y] ∈ π0(p−1

Y U)
}

U3x

is a bijection for each x ∈ X. Write UCS↓X for the category of locally-connected,
uniquely-complete spreads over X, maps are continuous maps over X.

Corollary B.5. If F is a cosheaf then DF is a locally-connected, uniquely-complete
spread.

Proof. Assume F is a cosheaf on X. Let U ⊂ X be open. Then p−1
DFU =

∑
α∈F(U) Vα.

The above lemma shows that the right hand side is the decomposition into connected
components. By definition these form a basis of the topology of DF , which is thus
a spread. As remarked above, DF is locally-connected, and

lim
U3x

π0

(
p−1

DFU
)

= lim
U3x

π0


 ∑

α∈F(U)

Vα


 ∼= lim

U3x
F(U) = Fx

so that DF is uniquely-complete.

Proposition B.6. The unit Y → D̂CY is a homeomorphism if and only if Y is
a locally-connected, uniquely-complete spread over X. The counit CD̂F → F is an
isomorphism if and only if F is a cosheaf.
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Proof. First consider the unit. If Y is locally-connected, CY is a cosheaf and so
DCY is locally-connected by the above lemma. Hence D̂CY = DCY . Consider the
map Y → DCY . The restriction to the fibre over x is

p−1
Y x → lim

U3x
π0

(
p−1

Y U
)

= CYx = p−1
DCY x

which is a bijection precisely when Y is uniquely-complete. When this holds, the
map is a homeomorphism if and only if the inverse images of the basis {Vα} for
the topology of DCY are a basis for the topology of Y . The inverse image of Vα,
where α ∈ CY (U) = π0(p−1

Y U), is simply the connected component α of p−1
Y U . So

the map is a homeomorphism precisely when these components form a basis, i.e.
precisely when Y is a spread.

Now consider the counit. If CD̂F ∼= F then F is a cosheaf because D̂F is
locally-connected. On the other hand if F is a cosheaf then DF is locally-connected
so D̂F = DF . Furthermore we have seen, in the proof of the above corollary, that

CDF(U) = π0

(
p−1

DFU
) ∼= F(U),

i.e. that the counit is an isomorphism.

We have shown that the adjoint functors C and D̂ restrict to an equivalence
between the full subcategories of locally-connected, uniquely-complete spreads and
cosheaves. The situation is summarised in the following commutative diagram (the
vertical arrows are the inclusions).

LCTop↓X
C

((PPPPPPPPPPPP Precosh↓XD̂oo

UCS↓X

OO

oo ∼ // Cosh↓X

OO

Remark B.7. The composite CD̂ : Precosh↓X → Cosh↓X is a cosheafification
functor. That is, for any precosheaf F there is a map CD̂F → F with the universal
property that for any cosheaf E and map ϕ : E → F of precosheaves there is a unique
factorisation:

CD̂F

²²
E ϕ

//

∃!
<<z

z
z

z
F

We will not go into a full discussion of the functoriality of cosheaves here. However
note that a cosheaf can be restricted to a subspace ı : Y → X by defining

ı∗F(V ) = lim
U⊃V

F(U).

This corresponds to restricting the corresponding locally-connected uniquely-comp-
lete spread DF to Y . The restriction of a cosheaf to a point is simply the costalk.
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