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Abstract
We establish certain conditions which imply that a map
f: X — Y of topological spaces is null homotopic when the
induced integral cohomology homomorphism is trivial; one of
them is: H*(X) and 7. (Y") have no torsion and H*(Y") is poly-
nomial.

1. Introduction

We give certain classification theorems for maps via induced cohomology homo-
morphism. Such a classification is based on a new aspects of obstruction theory to
the section problem in a fibration beginning in [4], [5] and developed in some direc-

tions in [24], [25]. Given a fibration F' — FE 5 X, the obstructions to the section
problem of ¢ naturally lay in the groups H*t!(X;m;(F)),i > 0. A basic method here
is to use the Hurewicz homomorphism w; : m;(F) — H;(F) for passing the above
obstructions into the groups H**(X; H;(F)),4 > 0. In particular, this suggests the
following condition on a fibration: The induced homomorphism

(1.1),, uw* HYY (X m(F)) — HYY(X; Hy(F)), 1<i<m,

is an inclusion (assuming uy : m1 (F) — Hi(F) is an isomorphism). Note also that
the idea of using the Hurewicz map in the obstruction theory goes back to the
paper [23]. (Though its main result was erroneous, it became one crucial point for
applications of characteristic classes (see [7]).)

For the homotopy classification of maps X — Y, the space F'in (1.1),, is replaced
by QY and we establish the following statements. Below all topological spaces are
assumed to be path connected (hence, Y is also simply connected) and the ground
coefficient ring is the integers Z. Given a commutative graded algebra (cga) H*
and an integer m > 1, we say that H* is m-relation free if H? is torsion free for
i < m and also there is no multiplicative relation in H*® for i < m + 1; in particular,
H?=1 =0 for 1 < i < [™£2]. We also allow m = oo for H to be polynomial on
even degree generators.
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Theorem 1. Let f: X — Y be a map such that the pair (X,QY") satisfies (1.1),,
X is an m-dimensional polyhedron and H*(Y) is m-relation free. Then f is null
homotopic if and only if

0=H*(f): H*(Y) — H*(X).

Theorem 2. Let X and Y be spaces such that the Hurewicz map u; : m;(QY) —
H;(QY) is an inclusion for 1 < i < m, and Tor (H""(X), H;(QY)/m;(QY)) = 0
when ;(QY) £ 0, X is an m-dimensional polyhedron and H*(Y') is m-relation free.
Then a map f: X —'Y is null homotopic if and only if

0= H*(f): H*(Y) — H*(X).

Theorem 3. Let X be an m-dimensional polyhedron and G a topological group
such that m;(G) is torsion free for 1 < i < m, and Tor (H"*!(X), Cokeru;) = 0,
u; : mi(G) — H;(G) when m;(G) # 0. Suppose that the cohomology algebra H*(BQ)
of the classifying space BG is m-relation free. Then a map f : X — BG is null
homotopic if and only if

0= H*(f): H*(BG) — H*(X).

In fact the two last Theorems follow from the first one, since their hypotheses
imply (1.1),,, too. A main example of G in Theorem 3 is the unitary group U(n)
with m = 2n, since wug; is a trivial inclusion and ws;—; is an inclusion given by
multiplication by the integer (¢ — 1)! for 1 < ¢ < n. A U(n)-principal fibre bundle
over X is classified by a map X — BU(n). Suppose that all its Chern classes are
trivial, then H*(f) = 0 and by Theorem 3, f is null homotopic. Therefore the
U (n)-principal fibre bundle is trivial. Thus, we have in fact deduced the following
statement, the main result of [22] (compare also [29]).

Corollary 1. Let € be a U(n)-principal fibre bundle over X with dim X < 2n and
the only torsion in H?(X) is relatively prime to (i — 1)!. Then & is trivial if and
only if the Chern classes c(§) =0 for 1 <k < n.

While the proof of this statement in [22] does not admit an immediate generaliza-
tion for an infinite dimensional X, Theorem 3 does by taking m = oco. Furthermore,
for G = U and X = BU recall that [BU, BU] is an abelian group, so we get that two
maps f,g: BU — BU are homotopic if and only if H*(f) = H*(g) : H*(BU;Q) —
H*(BU;Q) (compare [14], [21]). Note also that when m = oo in Theorem 3, H*(Y)
must have infinitely many polynomial generators (e.g. Y = BU, BSp) as it follows
from the solution of the Steenrod problem for finitely generated polynomial rings
[1] (the underlying spaces do not have torsion free homotopy groups in all degrees).

Finally, note that beside obstruction theory we apply a main ingredient of the
proof of Theorem 1 is an explicit form of minimal multiplicative (non-commutative)
resolution of an m-relation free cga (of a polynomial algebra when m = o) in total
degrees < m (compare [24], [26]). Namely, the generator set of the resolution in the
above range only consists of monomials formed by —; products. Remark that the
idea of using —; product when dealing with polynomial cohomology, especially in
the context of homogeneous spaces, has been realized by several authors [17], [9],
[20], [13] (see also [18] for further references).
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In sections 2 and 3 we recall certain basic definitions and constructions, including
the functor D(X; H,) [2],[3], for the aforementioned obstruction theory, and in
section 4 prove Theorems 1-3.

2. Functor D(X;H)

Given a bigraded differential algebra A = {A%} with d : A% — A™1J and total
degree n =i+ j, let D(A) be the set [3] defined by D(A) = M(A)/G(A) where

M(A) = {a€A'lda=—aa, a=a*>" 1 +a>2+...},
GA) = {peAllp=1+p" t+p> 2+ },
and the action M(A) x G(A) — M(A) is given by the formula
axp=p tap+p ldp. (2.1)
In other words, two elements a,b € M(A) are on the same orbit if there is p €
G(A),p=1+p, with
b—a=ap —p'b+dp. (2.2)
Note that an element a = {a**} from M(A) is of total degree 1 and referred to

as twisting; we usually suppress the second degree below. There is a distinguished
element in the set D(A), the class of 0 € A, and denoted by the same symbol.

There is simple but useful (cf. [24])

Proposition 1. Let f,g: A®* — B** be two dga maps that preserve the bigrading.
If they are (f, g)-derivation homotopic via s : A% — Bi=4 e, f—g=sd+ds
and s(ab) = (—1)l% fasb 4 sagb, then D(f) = D(g) : D(A) — D(B).

Proof. Given a € M(A), apply the (f, g)-derivation homotopy s to get fa — ga =
dsa + sda = dsa + s(—aa) = dsa + fasa — saga. From this we deduce that fa and
ga are equivalent by (2.2) for p’ = —sa. O

Another useful property of D is fixed by the following comparison theorem [2], [3]:

Theorem 4. If f : A — B is a cohomology isomorphism, then D(f) : D(A) —
D(B) is a bijection.

For our purposes the main example of D(A) is the following (cf. [2],[3])
Example 1. Fiz a graded (abelian) group H,. Let
p:(RsoH,, 0% — H,, 0%:R,H, — R;_1H,,
be its free group resolution. Form the bigraded Hom complex
(R**,d") = (Hom(RH, ,RH,),d%), d%:R*>" — R*T1H

an element f € R** has bidegree (s,t) if f : RjH; — R;j_sHq_. Note also that
R** becomes a dga with respect to the composition product.
Given a topological space X, consider the dga

(H,V) = (C*(X;R),V = d° + df)
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which is bigraded via H™' =[] C'(X;R7Y). Thus we get

r=i+j
H={H"}, H'= [ ®' V:H'—HTH

n=r+t

We refer to r as the perturbation degree which is mainly exploited by inductive
arguments below. For example, for a twisting cochain h € M(H), we have

h:h2++hr+, hTEHT’l_T,
satifying the following sequence of equalities:
V(h?*) =0, V(h*) = —h?n% V(h*) = —h?h> —h3h? ... . (2.3)

Define
D(X;H,)=D(H,V).

Then D(X; H,) becomes a functor on the category of topological spaces and contin-
uous maps to the category of pointed sets.

Example 2. Given two dga’s B* and C** with d® : B® — B! and d{ : C7! —
CitLt 4§ =0, let A = BRC. View (A,d) as bigraded via A = {A™ d}, A" =
[Ty B'®C d=dP®1+1®d{. Note also that the dga (H, V) in the previous
example can also be viewed as a special case of the above tensor product algebra by
setting B* = C*(X) and C** = R**.

3. Predifferential d(¢) of a fibration

Let F — E - X be a fibration. In [2] a unique element of D(X; H.(F))
is naturally assigned to ; this element is denoted by d(§) and referred to as the
predifferential of £. The naturalness of d(£) means that for a map f:Y — X,

d(f(&)) = D(F)(d(E)), (3.1)

where f(§) denotes the induced fibration on Y.

Originally d(£) appeared in homological perturbation theory for measuring the
non-freeness of the Brown-Hirsch model: First, in [11] G. Hirsch modified E. Brown’s
twisting tensor product model (Cy(X) ® Ci(F'),dy) — (C«(E),dEg) [6], [8] by re-
placing the chains C,(F) by its homology H.(F') provided the homology is a free
module. In [2] the Hirsch model was extended for arbitrary H,(F') by replacing
it by a free module resolution RH,(F') to obtain (Cy(X) ® RH.(F),dy) in which
dp =dx ®14+1®dr+ —Nh and h is just an element of M(H) in Example 1
with H, = H,(F). Furthermore, to an isomorphism p : (C.(X) ® RH.(F),d) —
(Ci«(X) ® RH.(F),dp) between two such models answers an equivalence relation
h ~, I/ in M(H), and the class of h in D(X; H.(F)) is identified as d(§). More
precisely, we recall some basic constructions for the definition of d(§) we need for
the obstruction theory in question.

For convenience, assume that X is a polyhedron and that 71 (X) acts trivially
on H,(F). Then £ defines the following colocal system of chain complexes over X :
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To each simplex o € X is assigned the singular chain complex (C.(F;),7,) of the
space F, = ¢ 1(o) :

X350 — (C*(Fa)ar}/a') - (C*(E)adE)7
and to a pair 7 C o of simplices an induced chain map
C.(F;) — C.(Fy).

Set C, = {C>t}, €2t = Hom®" (R, H.(F),C.(F,)) where C, is regarded as bigraded
via Co = Cy,Cix = 0,1 # 0, and f : RjHy(F) — Cj_sq—+(Fy) is of bidegree
(s,t). Then we obtain a colocal system of cochain complexes C = {C¥*} on X.
Define F as the simplicial cochain complex C*(X;C) of X with coefficients in the
colocal system C. Then

F={Fwt}, FHit=cCHX;CM).
Furthermore, obtain the bicomplex F = {F"} via
H Fhdt g Frt L FraLt gttt 5 = gCL gR = [y )
r=itj
and finally set
F={Fmy, = ] 7

m=r+t

We have a natural dg pairing

(Fo+7) @ (H, V) = (F,0+7)
defined by — product on C*(X;—) and the obvious pairing C, ® R — C, in
coefficients; in particular we have v(fh) = ~(f)h for f ® h € F ® H. Denote
R, = Hom(RH.(F), H.(F)) and define

(Fyr0,) = (H(F,7),0,) = (C*(X;R,),0,).

Clearly, the above pairing induces the following dg pairing

In other words, this pairing is also defined by — product on C*(X;—) and the
pairing R, ® R — R, in coefficients. Note that p induces an epimorphism of chain
complexes

p* (M, V) = (F,,0,).

In turn, p* induces an isomorphism in cohomology.
Consider the following equation

+N(f)=rfh (32)
with respect to a pair (h, f) € H! x FO,
h = h T A ; = 7_[7",1—7-7
f= f+ e, fTEFTTT
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satisfying the initial conditions:

V(h) = —hh

WO =0, [f), = p7(1) € FOO, 1.
Let (h, f) be a solution of the above equation. Then d(§) € D(X; H.(F)) is defined
as the class of h. Moreover, the transformation of h by (2.1) is extended to pairs
(h, f) by the map

(M(H) x FO) x (G(H) x F~1) — M(H) x F°
given for ((h, f), (p,s)) € (M(H) x F°) x (G(H) x F~1) by the formula
(h, f)* (p,s) = (hxp, fp+s(h*p)+ (5 +7)(s)). (3.3)

We have that a solution (h, f) of the equation exists and is unique up to the above
action. Therefore, d(€) is well defined.

Note that action (3.3) in particular has a property that if (h, f) = (h, f) * (p, s)
and A" = 0 for 2 < r < n, then in view of (2.2) one gets the equalities

Rt = hx (1 +p") = A"+ V(p"). (3.4)

3.1. Fibrations with d(§) =0
The main fact of this subsection is the following theorem from [4]:

Theorem 5. Let F — E — X be a fibration such that (X, F) satisfies (1.1)p,. If
the restriction of d(§) € D(X; Hy(F)) to d(§)|xm € D(X™; H.(F)) is zero, then &
has a section on the m-skeleton of X. The case of m = oo, i.e., d(§) = 0, implies
the existence of a section on X.

Proof. Given a pair (h, f) € H x F, let (hyr, ftr) denote its component that lies in
C*(X; Hom(Hy(F), RH.(F))) x C*(X; Hom(Hy(F), C«(Fy))).

Below (hyy, fir) is referred to as the transgressive component of (h, f). Observe that
since RHy(F) = Ho(F) = Z, we can view (R}, fI) as a pair of cochains laying in
C>"(X;RH,.(F)) x C"(X;C.(F,)). Such an interpretation allows us to identify a
section x" : X" — E on the r-skeleton X" C X with a cochain, denoted by ¢}, in
C"(X;C(Fy)) via ¢ (o) = x"|o : A" — F, C E, 0 C X" is an r-simplex, r > 0.

The proof of the theorem just consists of choosing a solution (A, f) of (3.2) so that
the transgressive component fi,. = {f},.}r>0 is specified by f/. = ¢y, with x a section
of ¢. Indeed, since F is path connected, there is a section x' on X'; consequently,
we get the pairs (0, f7).) := (0,¢)) and (0, f.) == (0,¢}) with y(f1) = 6(f{).). Then
5(fE) € C*(X;C(F)) is a y-cocycle and [0(f1)], € C*(X; Hi(F)) becomes the
obstruction cocycle c(x!) € C?(X; 7w (F)) for extending of x! on X2; moreover, one
can choose h?,. to be satisfying p*(hZ.) = [6(f} )], (since p* is an epimorphism and
a weak equivalence).

Suppose by induction that we have constructed a solution (h, f) of (3.2) and a
section x™ on X" such that A" =0 for 2 <r < n, fi. = C; and

pr(hih) = [0(f1))y € C"FH(XG H(F)).
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In view of (2.3) we have V(h"*!) = 0 and from the above equality immediately
follows that

u? (c(x™)) = p* (hiy™)

in which ¢(x") € C"1(X; 7, (F)) is the obstruction cocycle for extending of x™ on
X"t and u# : O" Y X7, (F)) — O (X H(F)).

Since d(§)|xm = 0, there is p € G(H) such that (h * p)|xm = 0; in particular,
(h*p)"*tt =0 € H*"L~" and in view of (3.4) we establish the equality h"T! =
—V(p"), i.e., [h"*1] = 0 € H*(H,V); in particular, [h!] = 0 € H**(X; H,,(F)).
Consequently, [u”(c(x"))] = 0 € H" Y(X; H,(F)). Since (1.1),, is an inclusion
induced by u#, [c(x™)] = 0 € H""(X;m,(F)). Therefore, we can extend " on

X"+ without changing it on X" ! in a standard way. Finally, put f/:* = it
and choose a V-cocycle htt? satisfying p*(h:"2) = [6(f7-1)],. The induction step
is completed. O

4. Proof of Theorems 1, 2 and 3

First we recall the following application of Theorem 5 ([4])

Theorem 6. Let f: X — Y be a map such that X is an m-polyhedron and the pair
(X,QY) satisfies (1.1),. If 0 = D(f) : D(Y; H.(QY)) — D(X; H.(QY)), then f
is null homotopic.

Proof. Let QY — PY 5 Y be the path fibration and f(7) the induced fibration.
It suffices to show that f(m) has a section. Indeed, (3.1) together with D(f) =0
implies d(f(m)) = 0, so Theorem 5 guaranties the existence of the section. O

Now we are ready to prove the theorems stated in the introduction. Note that just
below we shall heavily use multiplicative, non-commutative resolutions of cga’s that
are enriched with —; products. Namely, given a space Z, recall its filtered model
fz : (RH(Z),dy) — C*(Z) [24],[26] in which the underlying differential (bi)graded
algebra (RH(Z),d) is a non-commutative version of Tate-Jozefiak resolution of the
cohomology algebra H*(Z) ([28],[15]), while h denotes a perturbation of d similar
to [10]. Moreover, given a map X — Y, there is a dga map RH(f) : (RH(Y),dp) —
(RH(X),dp) (not uniquely defined!) such that the following diagram

RH(f)

(RH(Y),dn) —" (RH(X),d)
fy | IRES (41)
oy M o

commutes up to («, 8)-derivation homotopy with « = C(f)o fy and 8 = fxoRH(f)
(see, [12],[24]).

Proof of Theorem 1. The non-trivial part of the proof is to show that H(f) = 0
implies f is null homotopic. In view of Theorem 6 it suffices to show that D(f) = 0.
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By (4.1) and Proposition 1 we get the commutative diagram of pointed sets

D(Hy) P D(Hx)

D(fy) l lD(fX)
py:m.v)) Y pexim.Qy)
in which
Hx = RH*(X)&Hom(RH,(QY) , RH,(QY)),

Hy = RH*(Y)&Hom(RH,(QY) , RH,(QY))

(see Example 2) and the vertical maps are induced by fx ® 1 and fy ® 1; these
maps are bijections by Theorem 4. Below we need an explicit form of RH(f) to see
that H(f) = 0 necessarily implies RH(f)|ye = 0 with VO™ = @, . V",
hence, the restriction of the map H(f) := RH(f) ® 1 to RH™ ® 1, RH™ =
Dicitjcm R'HI(Y), is zero, and, consequently,

D(fx) e D(H(f)) = 0. (4.2)

First observe that any multiplicative resolution (RH,d) = (T(V**),d), V = (V),
of a cga H admits a sequence of multiplicative generators, denoted by

] ~—1 " —1 Qpt1 (= Vﬁnﬁk7 a; € VO’*7 n Z ]_7 (43)

where a; —; a; = (—1)Ua+D0a+g, — a; and a; # a; for i # j. Further-
more, the expression ab —; uv also has a sense by means of formally (successively)
applying the Hirsch formula

¢ —1 (ab) = (¢ —1 a)b+ (1)@l Dg(c — b). (4.4)
The resolution differential d acts on (4.3) by iterative application of the formula
d(a —1 b) =da —1 b— (=11 — db+ (—1)!%lab — (=1)ll0bIH+Dpq,
Consequently, we get

d(ar =1 - =1 ap) =) (=D (ai, —1 - =1 ay) - (a5, =10 =1 a5,)
(1:3)

where the summation is over unshuffles (i;j) = (i1 < -+ < ig;j1 < - - < jo) of n.

In the case of H to be m-relation free with a basis U? ¢ H?, i < m, we have
that the minimal multiplicative resolution RH of H can be built by taking V with
VO~ Ui < m, and V™™ n > 0, to be the set consisting of monomials (4.3) for
1 < i—n < m (compare [26]). The verification of the acyclicity in the negative
resolution degrees of RH restricted to the range RH (™ is straightforward (see also
Remark 1). Regarding the map RH(f), we can choose it on RH(™) as follows. Let
RoH(f): RyH(Y) — RoH(X) be determined by H(f) in an obvious way and then
define RH(f) for a € V(™ by

RoH(f)(a), a €V,

RH(f)(a) = R()H(f)(al) ~—~1 1 R()H(f)(an), a=ay ~1 " """ ~—1 an_H,
a €V " a; €V n>1,
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and extend to RH (™) multiplicatively. Furthermore, fx and fy are assumed to be
preserving the generators of the form (4.3) with respect to the right most association
of —1 products in question. Since h annihilates monomials (4.3) and the existence
of formula (4.4) in a simplicial cochain complex, fx and fy are automatically
compatible with the differentials involved. Then the maps o and ( in (4.1) also
preserve ~—1 products, and become homotopic by an (a, 3)-derivation homotopy
s: RH(Y) — C*(X) defined as follows: choose s on V* by ds = o — 3 and extend
on V~™* inductively by

s(ag =1 zn) = —afag) —1 $(zn) + s(ag) —1 B(zn) + s(zn)s(ag), n =1,

in which z; = a; and 2z = ay —1 --- —1 a for k > 2, a; € VO*. Clearly, H(f) =0
implies RH(f)|yemy = 0. Since (4.2), D(f) = 0 and so f is null homotopic by
Theorem 6. Theorem is proved.

Remark 1. Let Vr(Lm) be a subset of VU™ consisting of all monomials formed by
the - and ~—1 products evaluated on a string of variables aq, ..., a,. Then there is
a bijection of V™ with the set of all faces of the permutahedron P, ([19], [27])
such that the resolution differential d is compatible with the cellular differential of
P, (compare [16]). In particular, the monomial a; ~—1 -+ ~—1 ay, s assigned to the
top cell of Py, while the monomials ag(1) - - Gy(n), 0 € Sp, to the vertices of P,, (see
Fig. 1 for n = 3). Thus, the acyclicity of P,, immediately implies the acyclicity of
RH™) in the negative resolution degrees as desired.

cla—1b)

(a~—1c)b (b—1c)a

¢ a—1b—ic e

a(b—1 ¢ b(a —1 ¢)

(a~—1 b)e

Figure 1. Geometrical interpretation of some syzygies involving —; product as
homotopy for commutativity in the resolution RH.

Remark 2. An ezample provided by the Hopf map f : S — S? shows that the
implication H(f) = 0 = RH(f)|lyw = 0, k < m for RH(f) making (4.1) com-
mutative up to («, §)-derivation homotopy is not true in general. More precisely,
let v € ROH?(S?) and y € RYH3(S?) with px € H*(S?) and py € H3(S3) to be
the generators, and let x1 € R™YH*(S?) with dvqy = x°. Then s(z?) = a(x)s(x)
is a cocycle in C3(S3) with dgss(x) = a(x) (since B = 0) and [a(x)s(z)] = py.
Consequently, while H(f) =0 = R°H(f), a map RH(f) : RH(S?) — RH(S?) re-
quired in (4.1) has a non-trivial component increasing the resolution degree: Namely,
R™YH*(S%) — R°H3(S?), 21 — .
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Proof of Theorem 2. The conditions that u; : m;(2Y) — H;(2Y) is an inclusion and
Tor (H™(X), H;(QY)/m;(QY)) = 0 for 1 < i < m, immediately implies (1.1),,.
So the theorem follows from Theorem 1.

Proof of Theorem 8. Since the homotopy equivalence Q2BG ~ G, the conditions of
Theorem 2 are satisfied: Indeed, there is the following commutative diagram
m(G) 5 Hi(G)
( Lin
(@ eQ % H(G)®Q
where i,, iy and u ® 1 are the standard inclusions (the last one is a consequence of

a theorem of Milnor-Moore). Consequently, uy : 7, (QBG) — Hp(Q2BG), k < m, is
an inclusion, too. Theorem is proved. O
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