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HOMOTOPY CLASSIFICATION

OF MAPS INTO HOMOGENEOUS SPACES

SERGIY KOSHKIN

(communicated by James Stasheff)

Abstract
We give an alternative to Postnikov’s homotopy classifica-

tion of maps from 3-dimensional CW-complexes to homoge-
neous spaces G/H of Lie groups. It describes homotopy classes
in terms of lifts to the group G and is suitable for extending
the notion of homotopy to Sobolev maps. This is required in
applications to variational problems of mathematical physics.

Introduction

A classical theorem of Postnikov [Ps, WJ] gives a homotopy classification of
continuous maps from a 3–dimensional CW–complex M to a connected simply
connected complex X of any dimension. First it gives the primary invariant that

characterizes when M
ψ,ϕ
−→ X are 2–homotopic, i.e. their restrictions to a 2–skeleton

of M are homotopic. When this happens a secondary invariant is defined along with
a condition that makes ψ and ϕ homotopic. Unfortunately, the secondary invariant
is hard to compute because one has to homotop one of the maps into the other on the
2–skeleton. While the primary invariant can be characterized in terms of deRham
cohomology and thus extended to discontinuous (Sobolev) maps, the secondary one
of Postnikov is tied too closely to restrictions and homotopy that do not make sense
without continuity.

In physical applications one is often forced to extend topological notions to
Sobolev maps. This requires rethinking characterizations of homotopy classes in a
way that makes such extension possible. One way is to interpret homotopy classes as
connected components in the space of continuous maps. A natural generalization is
to study components in spaces of Sobolev maps [HL, Wh]. However, in applications
to mathematical physics a more hands on approach is usually taken. One identifies
invariants that characterize homotopy classes and then extends them to Sobolev
maps. This approach is taken in recent works on the Faddeev model [AK2, LY]
with maps into S2 = SU(2)/U(1). The present work was motivated by considering
its generalization, the Faddeev-Niemi model [FN] with targets SU(N)/T , T the
maximal torus. In this paper we give an alternative description only for homotopy
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classes of continuous maps. The extension to Sobolev maps and applications will be
published elsewhere [K].

We consider continuous maps from 3–dimensional CW–complexes to compact
simply connected homogeneous spaces of Lie groups. In exchange for loss in gener-
ality one gets a much more explicit description of the secondary invariant and its
deRham presentation. It sheds new light on the primary invariant as well.

A smooth manifold is called a homogenous space under an action of a Lie group G
if the action is transitive. Any homogenous space X can be identified with the coset
space G/H , where H is the isotropy subgroup of a point. Up to a diffeomorphism,
different pairs G,H may produce the same space X . Throughout this paper X
will always denote G/H where G is compact, connected and simply connected and

H ⊂ G is connected. This can be done without loss of generality by switching to
a maximal compact subgroup, universal cover and/or identity component of G as
appropriate [BtD, Mg]. Under this assumtion, we prove that ψ and ϕ are 2-

homotopic if and only if there exists a continuous lift M
u
−→ G such that ψ = uϕ

(Theorem 2), where uϕ refers to the action of G on X . This easily generalizes if we
allow u to be a Sobolev map but the real advantage is that the secondary invariant
for ψ,ϕ becomes the primary one for u .

It is convenient to introduce the basic class of a space F . Suppose π0(F ) =
... = πn−1(F ) = 0 then by the Hurewicz theorem Hn(F,Z) ' πn(F ). The ba-

sic class bF ∈ Hn(F, πn(F )) is the cohomology class that maps every homology
class in Hn(F,Z) into its image in πn(F ) under the Hurewicz isomorphism (bF
is called the fundamental class of F by Steenrod). It follows essentially from the
Eilenberg classification theorem [St] that ψ∗bF is the primary invariant for homo-

topy. Namely, two maps M
ψ,ϕ
−→ F are n -homotopic, i.e. their restrictions to the

n -skeleton are homotopic iff ψ∗bF = ϕ∗bF .
Let bG ∈ H

3(F, π3(G)) be the basic class of G then the secondary invariant is
u∗bG . However, ψ,ϕ being homotopic is not quite equivalent to its vanishing. The
problem is that u in ψ = uϕ is not unique. Potentially, there are maps M

w
−→ G

with wϕ = ϕ but w∗bG 6= 0. One has to factor out the subgroup generated by
such maps

Oϕ := {w∗bG | wϕ = ϕ} ⊂ H3(M,π3(G)).

Despite its appearence, this subgroup depends only on the 2-homotopy class of ϕ
(Lemma 5). Our main results (Theorems 2 and 3) can be summarized as follows.

Theorem. Let X = G/H be a compact simply connected homogeneous space and

M a 3-dimensional CW–complex. Then two maps M
ψ,ϕ
−→ X are homotopic if and

only if there exists a map M
u
−→ G such that ψ = uϕ and u∗bG ∈ Oϕ . Within

the 2-homotopy class of ϕ , the homotopy classes are in one-to-one correspondence
with H3(M,π3(G))/Oϕ .

When H2(M,Z) = 0 any two maps M
ψ,ϕ
−→ X are 2-homotopic and therefore

related by a lift u . We can always choose ϕ to be the constant map and define the
secondary invariant for a single map ψ . The subgroup Oconst is trivial and homotopy
classes are in one-to-one correspondence with H3(M,π3(G)). When M = S3 and
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X = S2 = SU2/U1 one has π3(G) ' Z and our u∗bG is essentially the Hopf
invariant, cf. [LY]. The class bG has a particularly nice deRham presentation when
the group G is simple. Then always π3(G) ' Z and one can identify it with the class
of the integral form Θ := cG tr(g−1dg ∧ g−1dg ∧ g−1dg). Here cG are normalizing
constants computed in [AK1], for example cSUN

= − 1
96π2N

. The pullback is

u∗Θ = cG tr(u−1du ∧ u−1du ∧ u−1du)

and
∫
M
u∗Θ can be made sense of for Sobolev u .

It is instructive to compare our secondary invariant with Postnikov’s [Ps, WJ].

His definition requires homotoping ψ into a function ψ̃ equal to ϕ on the 2-
skeleton of M and computing the primary difference d(ϕ, ψ̃) ∈ H3(M,π3(X)).
Homotopy occurs when this difference takes value in a subgroup with a complicated
description that involves the Whitehead product [WG] and the Postnikov square
[Nk1, Ps, WJ]. Note that by the homotopy exact sequence

0 = π2(H)
∂
←− π3(G/H)

π∗←− π3(G)
i∗←− π3(H)←− · · · (1)

and π3(X) ' π3(G)/ı∗π3(H). If ı∗π3(H) = 0 as in the case of U1 in SU2 our
invariant can be identified with Postnikov’s.

In Section 1 we solve the relative lifting problem for two maps as a problem in ob-
struction theory. A key role is played by the bundle of shifts that helps characterize
existence of the lift in terms of the primary characteristic class of the quotient bundle
G→ G/H . In Section 2 we show that the primary characteristic class is essentially
the basic class bX and prove our characterization of 2-homotopy classes. Finally,
in Section 3 the secondary invariant is introduced and the homotopy classification
is completed. We also give a deRham interpretation of the secondary invariant.

1. Primary characteristic class and lifting

In this section we will define a cohomology class on G/H that regulates existence

of a relative lift u such that ψ = uϕ for two maps M
ψ,ϕ
−→ G/H . This class is the

primary characteristic class [MS, St] of the bundle G → G/H denoted κ(G). Of
course, κ(G) also depends on H ⊂ G but we follow the usual abuse of notation.
The lift exists iff pullbacks of κ(G) by both maps are the same (Theorem 1). We will
prove this by reducing the lifting problem to a problem in the obstruction theory
[MS, St]. In the next section we will identify κ(G) with the primary obstruction
to homotopy.

Here is the basic idea of the proof. Given two maps M
ϕ,ψ
−−→ X define M

(ϕ,ψ)
−→

X ×X and consider the ratio bundle over M :

Qϕ,ψ := {(m, g) ∈M ×G|ψ(m) = gϕ(m)} (2)

Obviously, sections of this bundle M
σ
−→ Qϕ,ψ ⊂ M × G have the form σ(m) =

(m,u(m)), where ψ = uϕ . In other words, they play the role of non-existent ratios
ψ/ϕ . Hence the problem of finding a lift u is equivalent to constructing a section
of the bundle Qϕ,ψ , which is a standard problem in the obstruction theory.
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First, we have to establish that Qϕ,ψ are indeed fiber bundles. Note that

Qϕ,ψ ' {(m,x, g) ∈M ×X ×G|(ϕ(m), ψ(m) = (x, gx)} (3)

and by definition of pullback Qϕ,ψ ' (ϕ,ψ)∗Q , where Q is the bundle of shifts
defined next. A particular case of this bundle was used in [AS] for similar purposes.

Definition 1 (The bundle of shifts). The bundle of shifts of a homogeneous space
G/H = X is the fiber bundle Q over X ×X given by:

X ×G
α
−→ X ×X.

(x, g) 7−→ (x, gx)
(4)

Thus, it suffices to prove that Q itself is a fiber bundle. We will do more and
identify the principal bundle it is associated to. It turns out to be the Cartesian

double G × G
π×π
−→ X × X of the quotient bundle G

π
−→ X = G/H . This is a

principal bundle with the structure group H ×H .

Lemma 1. Let G be a compact Lie group, H ⊂ G a closed subgroup and G
π
−→

X = G/H the corresponding quotient bundle. Then the bundle of shifts Q
α
−→ X×X

is a fiber bundle associated to G×G
π×π
−→ X ×X .

Proof. Recall that given a principal bundle P over X and a space F where the
structure group T acts on the left by µ , one can form a set of equivalence classes

P ×µ F := {[p, f ] ∈ P × F |(p, f) ∼ (pt, µ(t−1)f)}. (5)

Then [p, f ] 7→ π(p) is a bundle projection that turns P ×µ F into a fiber bundle
over X associated to P by µ [Hus, MS].

We will construct an explicit isomorphism between Q and the following associ-
ated bundle. The group T := H ×H acts on F := H on the left by

(H ×H)×H
µ
−→ H

((λ1, λ2), h) 7−→ λ2hλ
−1
1

Set E1 := ((G×G)×µ H
π
−→ X), E2 := Q and consider the following map

E1
F
−→ E2

[g1, g2, h] 7−→ (g1H, g2hg
−1
1 )

To begin with F is well defined:

g1λ1H, g2λ2, λ
−1
2 hλ1) 7−→ (g1, λ1H, g2hg

−1
1 ) = (g1H, g2hg

−1
1 ).

The inverse is given by (x, g)
F−1

7−→ [g1, gg1, 1], where g1H = x . If g1λ is chosen
instead with λ ∈ H then [g1λ, gg1λ, λ

−11λ] = [g1, gg1, 1] so F−1 is well-defined. It
is easy to see that it is indeed the inverse to F .
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We claim that both diagrams commute

E1
F

- E2, E2
F−1

- E1

X
�

απ
-

X
�

πα
-

(6)

For instance,

(α ◦ F)([g1, g2, h]) = α(g1H, g2Hg
−1
1 ) = (g1H, g2hH) = (g1H, g2H) = π([g1, g2, h]).

Therefore the bundle of shifts Q = E2 is indeed a fiber bundle and F is a bundle
isomorphism. 2

For obstruction theory we follow terminology and notation of Steenrod [St]. We
say that n is the lowest homotopy non-trivial dimension of F if πk(F ) = 0 for

1 6 k 6 n − 1 but πn(F ) 6= 0. Assume that in a fiber bundle F
ı
↪→ E

π
−→ B

the base B is a CW –complex and the fiber F is homotopy simple up to this
dimension, i.e. π1(F ) acts trivially on πk(F ) for 1 6 k 6 n . This means that
there is no obstruction to constructing a section up to dimension n and we may
assume that B(n) σ

−→ E is already constructed, here B(n) is the n -skeleton of B .
Let ∆ ⊂ B be an (n + 1) cell of B which we may assume to be contractible or
even a simplex. Choosing a local trivialization we get a map fσ : ∂∆ −→ F that
defines an element of πn(F ). It turns out that this element does not depend on a
choice of trivialization and cσ(∆) := [fσ] ∈ πn(F ) is a πn(F )-valued cochain and
in fact a cocycle. Its cohomology class cσ ∈ H

n+1(B, πn(F )) is called the primary
obstruction to extending σ . This cohomology class does not even depend on a choice
of σ on the n -skeleton of B and is an invariant of the bundle E

π
−→ B itself.

Definition 2 (Primary characteristic class). The invariant κ(E) := cσ is called
the primary characteristic class of E .

The characteristic class is natural with respect to the pullback of bundles:

κ(ϕ∗E) = ϕ∗
κ(E)

and the Eilenberg extension theorem claims that a section σ can be altered on B(n)

so as to be extendable to B(n+1) if and only if cσ = 0. This completely solves the
sectioning problem when πk(F ) = 0 for n+1 6 k < dimB , i.e. there are no further
obstructions: a section exists if and only if κ(E) = 0.

In our case the bundle in question is H
ı
↪→ Qϕ,ψ

π
−→ M . The fiber is a Lie

group so it is homotopy simple in all dimensions. The first non-trivial dimension
is n = 1 as H is connected and κ(Qϕ,ψ) ∈ H2(M,π1(H)). Since π2(H) = 0 for
all finite-dimensional Lie groups and dimM = 3 there are no further obstructions
and a section exists if and only if κ(Qϕ,ψ) = 0. Thus, we want to compute this
characteristic class. By naturality κ(Qϕ,ψ) = κ((ϕ,ψ)∗Q) = (ϕ,ψ)∗κ(Q) and we
need to compute κ for the bundle of shifts.
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By Lemma 1 Q is isomorphic to the associated bundle Ê := P̂ ×µ̂ H with

P̂ = G×G and the action

(H ×H)×H
µ̂
−→ H

((λ1, λ2), h) 7−→ λ2hλ
−1
1

The form of the action suggests that we can ’decompose’ Ê into a combination of
two simpler bundles E and E′ , namely

E := P ×µ H with µ(λ)h := λh

and its dual

E′ := P ×µ′ H with µ′(λ)h := hλ−1

(in our case P = G and one can multiply on both sides). We will not explain
precisely what the decomposition means in this case but it should be clear from the
proof of Lemma 2(ii). Note that E is bundle isomorphic to P itself by p 7→ [p, 1]
so we write κ(P ) for κ(E).

Lemma 2. Let P
π
−→ X be a principal bundle with the structure group H . Define

P̂ := (P ×P −→ X×X) , E , E′ , Ê as above and let π1 , π2 denote the projections
from X ×X to the first and the second components. Then

(i) κ(P ) = κ(E) = −κ(E′) .

(ii) κ(Ê) = π∗
2κ(P ) − π∗

1κ(P ) , if in addition Hk(X,Z) = 0 for 0 6 k 6 n ,
where n is the lowest homotopy non-trivial dimension of H .

Proof. (i) Note that if σ(x) = [p, h] gives a section of E then σ′(x) = [p, h−1] gives

a section of E′ . Also if ∆
S∆−→ P |∆ is a local section of P then

∆× F
Φ|∆
−→ (P ×µ F )|∆

(x, f) 7−→ [S∆(x), f ]

(π(p), µ(λ−1)f)←−[ [p, f ], with S∆(π(p)) = pλ,

is a local trivialization of the associated bundle.

We choose a section S∆ of P and denote Φ∆ , Φ′
∆ the corresponding trivializa-

tions of E , E′ . Also if σ is the chosen section of E on B(n) then the σ′ is the one
we choose for E′ . By definition,

fσ′(x) = π2 ◦ Φ−1
∆ ◦ σ

′(x) = π2 ◦ Φ−1
∆ ([p, h−1]), π(p) = x

= (π(p), µ′(λ−1)h−1), S∆(π(p)) = S∆(x) = pλ

= h−1(λ−1)−1 = (λ−1h)−1 = (µ(λ−1)h)−1

= (π2 ◦ Φ−1
∆ ([p, h])−1) = (π2 ◦ Φ−1

∆ ◦ σ(x))−1 = fσ(x)
−1.

In other words, cσ′(∆) = [f−1
σ ] . But in πn(H) one has [o−1] = −[o] [Dy] for any

o and κ(E′) = cσ′ = −cσ = −κ(E).

(ii) Under our assumptions the Künneth formula and the universal coefficients



Journal of Homotopy and Related Structures, vol. 4(1), 2009 337

theorem imply that

Hn+1(X ×X,πn(H)) ' Hn+1(X,πn(H))⊕Hn+1(X,πn(H)),

ω 7−→ (ı∗1ω, ı
∗
2ω)

π∗
1ω

∗ + π∗
2ω2 ←−[ (ω1, ω2),

where x
ı17−→ (x, x0), x

ı27−→ (x0, x) for some fixed point x0 ∈ X . Let p0 ∈ P be any
point with π(p0) = x0 , then

ı∗1Ê = {(x, [p, p0, h]) ∈ X × Ê| (x, x0) = (π(p), π(p0))}

' {(x, [p, h]) ∈ X × E| π(p) = x} ' E′

since p0 is fixed and µ̂ reduces to µ′ on the first component. Analogously, ı∗2Ê ' E .
Therefore from naturality and (i)

κ(Ê) = π∗
1 ı

∗
1κ(Ê) + π∗

2 ı
∗
2κ(Ê) = π∗

1κ(ı∗1Ê) + π∗
2κ(ı∗2Ê)

= π∗
1κ(E′) + π∗

2κ(E) = π∗
2κ(P )− π∗

1κ(P )

2

Now we are ready for the main result of this section.

Theorem 1. Let X = G/H be a simply connected homogeneous space, M be a 3-

dimensional CW –complex and M
ψ,ϕ
−−→ X be continuous maps. Then a continuous

M
u
−→ G with ψ = uϕ exists if and only if

ψ∗
κ(G) = ϕ∗

κ(G),

where κ(G) is the primary characteristic class of the quotient bundle G→ X .

Proof. In our case P is the quotient bundle G −→ X and we write κ(G) for
its primary characteristic class. It is easy to compute κ(Qϕ,ψ) now since Qϕ,ψ =

(ϕ,ψ)∗Q and Q = Ê for the quotient bundle G −→ X :

κ(Qϕ,ψ) = κ((ϕ,ψ)∗Q) = (ϕ,ψ)∗κ(Q)) by naturality

= (ϕ,ψ)∗(π∗
2κ(G)− π∗

1κ(G)) by Lemma 2

= (π2 ◦ (ϕ,ψ))∗κ(G)− (π1 ◦ (ϕ,ψ))∗κ(G)

= ψ∗
κ(G)− ϕ∗

κ(G).

2

In fact the conditions of Lemma 2 are satisfied with n = 1 if H is connected
and X is simply connected (simple connectedness of G is not necessary). Hence
Theorem 1 can be applied directly to Un homogeneous spaces without reducing
them to SUn ones as long as the subgroup H ⊂ Un is already connected.

2. Characterization of 2-homotopy classes

In the previous section we reduced the lifting problem to equality of pullbacks of
the primary characteristic class. By obstruction theory the primary obstruction to
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homotopy is described in the same fashion. It turns out that this is not a coincidence
and the primary characteristic class of G → G/H is essentially the same as the
basic class of G/H . As a consequence, a lift u in ψ = uϕ exists iff ψ and ϕ are
2-homotopic (Theorem 2).

As before we follow terminology and notation of Steenrod [St]. Let B be a CW –

complex and B
ψ,ϕ
−→ F be two maps homotopic on B(n−1) by Φ. If ∆ ⊂ B(n) is an

n -cell then ∂(∆× I) ' Sn and we can set

dΦ(ϕ,ψ)(∆) := [Φ(∂(∆× I))] ∈ πn(F )

This defines a πn(F )–valued cochain on B called the difference cochain. It turns
out to be a cocycle and its cohomology class

d(ϕ,ψ) := dΦ(ϕ,ψ)

does not depend on a choice of homotopy on B(n−1) . Obviously d(ϕ,ψ)
∈ Hn(B, πn(F )). The homotopy Φ can be extended from B(n−2) to B(n) (it may
have to be altered on B(n−1) ) if and only if d(ϕ,ψ) = 0. The difference is natural
d(ϕ ◦ f, ψ ◦ f) = f∗d(ϕ,ψ) and additive d(ϕ, χ) = d(ϕ,ψ) + d(ψ, χ). Since ϕ is
always homotopic to itself d(ϕ,ϕ) = 0 and additivity implies d(ψ,ϕ) = −d(ϕ,ψ).

Now let n be the lowest homotopy non-trivial dimension of F and F be ho-
motopy simple up to this dimension. Then any two maps into F are homotopic
on B(n−1) and d(ϕ,ψ) is defined for any pair. It is called the primary difference
between ϕ and ψ [St].

Theorem (Eilenberg classification theorem). If the primary difference is the only
obstruction to homotopy i.e. πk(F ) = 0 for n + 1 6 k 6 dimB , then ϕ,ψ are
homotopic if and only if d(ϕ,ψ) = 0 . Moreover, for any ω ∈ Hn(B, πn(F )) and a

given B
ϕ
−→ F there is B

ψ
−→ F such that d(ϕ,ψ) = ω .

In other words, under the conditions of the theorem, maps are classified up to
homotopy by their primary differences with a fixed map ϕ , and there is a one-to-one
correspondence between homotopy classes and Hn(B, πn(F )). In our case B = M ,
F = X , n = 2 since X is simply connected and q = 1 since generally speaking

π3(X) 6= 0. So M
ψ,ϕ
−→ X are 2-homotopic if and only if d(ϕ,ψ) = 0. We will

reexpress this condition first in terms of the basic class and then of the primary
characteristic class.

For any connected space F there are two special self-maps, the identity idF
and the constant map ptF (x) = x0 ∈ F . The primary difference d(idF , ptF ) only
depends on F itself since all constant maps into a connected space are homotopic
to each other. Note that d(idF ,ptF ) ∈ Hn(F, πn(F )) and one can show [St] that

d(idF ,ptF ) = bF

Now let M
ψ,ϕ
−→ X be any continuous maps and M

ptM,X

−→ X be a constant map.
Then by naturality and additivity

d(ϕ,ψ) = ϕ∗d(idX ,ptX)− ψ∗d(idX ,ptX) = ϕ∗bX − ψ
∗bX . (7)
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In general, κ(G) ∈ H2(X,π1(H)) and bX ∈ H2(X,π2(X)) but from (11) we
have π1(H) ' π2(X) under the connecting homomorphism ∂ . This suggests that
κ(G) = ±∂ ◦bX . To prove the equality we need to use the transgression [MT, St].

Definition 3 (Transgression). Let F
ı
↪→ E

π
−→ B be a fiber bundle and A an

Abelian group. An element α ∈ Hn(F,A) is called transgressive if there are cochains
ξ ∈ Cn(E,A) and η ∈ Cn+1(B,A) such that ı∗ξ = α and δξ = π∗η , where the bar
denotes the corresponding cohomology class and δ is the cohomology differential.
When α is transgressive, classes τ#α := η ∈ Hn+1(B,A) are called its (cohomol-
ogy) transgressions.

Our definition follows Steenrod, but the reader is cautioned that there is another
tradition in differential geometry, where the transgression goes the opposite way.
There is also an analogous notion of transgression τ# in homology and the two are
dual to each other, i.e. when α and a are transgressive τ#α(a) = α(τ#a). Unlike
the connecting homomorphism ∂ which is everywhere defined and unambiguous,
both transgressions τ#, τ# in general map from a subgroup to a quotient of the
corresponding (co)homology groups. The homology transgression in a sense imitates
the non-existent connecting homomorphism in homology. In particular, spherical
classes in Hn+1(B,Z) are always transgressive and the diagram

πn+1(B)
∂
- πn(F )

Hn+1(B,Z)

HB

? τ#
- Hn(F,Z)

HF

?

(8)

commutes. Here HB , HF are Hurewicz homomorphisms and it is understood that
HF (∂(z)) is just one of the transgressions of HB(z). Commutativity can be estab-
lished by inspecting the definitions of τ# and ∂ (see [Hu]).

There is a case when the transgression is unambiguous. When Hi(B,A) = 0
for 0 < i < k and Hj(F,A) = 0 for 0 < j < l a result of J.-P. Serre says that

Hm(F,A)
τ#

−→ Hm+1(B,A) is well-defined and one has the Serre exact sequence
[MT]:

0−→H1(B,A)
π∗

−→H1(E,A)
ı∗

−→H1(F,A)
τ#

−→H2(B,A)
π∗

−→ ...
ı∗

−→Hk+l−1(F,A).
(9)

An analogous statement is also true for the homology transgression. Conditions
of the Serre exact sequence are satisfied in particular if n , n + 1 are the lowest
homotopy non-trivial dimensions for F and B respectively and k = n+ 1, l = n .
Under these assumtions the primary characteristic class is related straightforwardly
to the basic class of the base.

Lemma 3. Let F
ı
↪→ E

π
−→ B be a fiber bundle with the fiber F being homotopy

simple up to dimension n and let n , n + 1 be the lowest homotopy non-trivial
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dimensions of F and B respectively. Then

κ(E) = −∂ ◦ bB , (10)

where πn+1(B)
∂
−→ πn(F ) is the connecting homomorphism (cf. [Nk2]).

Proof. By the universal coefficients theorem:

0−→Ext(Hn(B,Z), πn(F ))−→Hn+1(B, πn(F ))−→Hom(Hn+1(B,Z), πn(F ))−→0

is exact and since n+1 is the lowest homotopy non-trivial dimension of B the group
Hn(B,Z) = 0 and the Ext term vanishes. Hence the elements of Hn+1(B, πn(F ))
are completely determined by their pairing with integral homology classes. By the

Serre exact sequences both transgressions Hn(F, πn(F ))
τ#

−→ Hn+1(B, πn(F )) and

Hn+1(B,Z)
τ#
−→ Hn(F,Z) are unambiguous and the Whitehead transgression theo-

rem [St] (see also [BH], Appendix 1) gives κ(E) = −τ#bF . Using also the duality
of transgressions and (8)

κ(E)(a) = −τ#bF (a) = −bF (τ#a) = −H−1
F (τ#a) = −∂(H−1

B (a))

= −∂(bB(a)) = −∂ ◦ bB(a).

Since a ∈ Hn+1(B,Z) is arbitrary (all elements are spherical by the Hurewicz
theorem and hence transgressive) we get (10). 2

Recall that the basic class regulates 2-homotopy and the primary characteristic
class regulates existence of a lift between two maps into G/H . We now establish
the desired equivalence.

Theorem 2. Let X = G/H be a compact simply connected homogeneous space
and M a 3-dimensional CW –complex. Then three conditions are equivalent for

continuous M
ψ,ϕ
−→ X :

(i) ϕ , ψ are 2-homotopic, i.e. homotopic on the 2-skeleton of M ;

(ii) ψ∗bX = ϕ∗bX ∈ H
2(M,π2(X)) , where bX is the basic class of X ;

(iii) There exists a continuous M
u
−→ G such that ψ = uϕ , where uϕ refers to

the action of G on X .

Proof. Equivalence of the first two conditions is just a particular case of the Eilen-
berg classification theorem. To prove (iii) we apply Lemma 3 to the bundle H ↪→
G −→ X = G/H with n = 1 since H is connected and get κ(G) = −∂ ◦ bX ∈
H2(X,π1(H)). Since π2(G) = 0 for any finite-dimensional Lie group we have from
the homotopy exact sequence

0 = π1(G)←− π1(H)
∂
←− π2(G/H)←− π2(G) = 0 (11)

that the connecting homomorphism is an isomorphism. Since it also commutes with
pullbacks ψ∗bX = ϕ∗bX if and only if ψ∗

κ(G) = ϕ∗
κ(G). Application of Theo-

rem 1 now concludes the proof. 2
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3. Secondary invariant and homotopy classes

By the Eilenberg classification theorem, maps M → X are 2–homotopic if and
only if they have the same pullbacks of the basic class bX . This pullback ϕ∗bX
is the primary invariant of a map ϕ . If π3(X) = 0 then the 2-homotopy class
is already the homotopy class (recall that we only consider a 3–dimensional M ).
Otherwise, secondary invariants have to be specified. Unlike the primary invariants,
classical secondary invariants are not defined constructively [MT]. From Theorem 2
we know that even 2-homotopy of ψ and ϕ implies that ψ = uϕ . In this section
we derive an explicit characterization for such u in terms of u∗bG , where bG is the
basic class of G . In other words, we are using u∗bG as a secondary invariant of a pair
ψ,ϕ while for the lift u it is a primary invariant and is defined straightforwardly.

We start with a simple observation that follows directly from the homotopy lifting
property in the bundle of shifts.

Lemma 4. Let G be a compact connected Lie group, H ⊂ G a closed subgroup,

X = G/H and M a CW –complex. Then two continuous maps M
ϕ,ψ
−−→ X are

homotopic if and only if there exists a nullhomotopic M
u0−→ G such that ψ = u0ϕ .

Given an arbitrary map M
u
−→ G maps ϕ , uϕ are homotopic if and only if u =

u0w , where u0 is nullhomotopic and wϕ = ϕ .

Proof. Let M
1
−→ G denote the constant map that maps every point into the identity

of G . If ut0 is a homotopy that translates u0 into 1 then ψt := ut0ϕ translates u0ϕ
into ϕ and Φ(m, t) := (ϕ(m), ψt(m)) translates (ϕ,ϕ) into (ϕ,ψ). The former
admits a lift (ϕ, 1) into Q , indeed α ◦ (ϕ, 1) = (ϕ,ϕ). Since Q is a fiber bundle by
Lemma 1 the homotopy lifting property implies that the following diagram can be
completed as indicated:

M × {0}
(ϕ, 1)

- X ×G

M × I
?

∩

Φ
-

....
....
....
....
....
....
....
....
.

Φ̃

-

X ×X

α

?

By the upper triangle Φ̃2(m, 0) = 1 and by the lower one Φ̃1(m, t) = Φ1(m, t) =

ϕ(m), Φ̃2(m, t)Φ̃1(m, t) = Φ̃2(m, t)ϕ(m) = ψt(m). Set u0(m) := Φ̃2(m, 1) then

u0ϕ = ψ and Φ̃2(·, t) is a homotopy that translates the constant map 1 into u0 as
required.

For the second claim note that u = u0w implies uϕ = u0wϕ = u0ϕ and is
homotopic to ϕ . Conversely, if uϕ is homotopic to ϕ then by the first claim there
is also a second nullhomotopic u0 such that uϕ = u0ϕ . It suffices to set w := u−1

0 u .
2

Let (M,G) denote the space of continuous maps M → G and (M,G)ϕ the
space of maps M → X that have the form uϕ for u ∈ (M,G). Lemma 4 suggets
that the following maps play a special role.
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Definition 4 (Stabilizer). Given a map M
ϕ
−→ X we call

Stabϕ := {w ∈ (M,G)|wϕ = ϕ}

the stabilizer of ϕ .

We have a natural inclusion Stabϕ
ı
↪→ (M,G). Denote

[M,G] := π0((M,G)),

[(M,G)ϕ] := π0((M,G)ϕ).

Note that [M,G] is the set of homotopy classes of continuous maps M −→ G and
by Theorem 2 [(M,G)ϕ] is the set of homotopy classes of continuous maps into
X = G/H , which are 2–homotopic to ϕ .

If G is compact simply connected π1(G) = π2(G) = 0 and it follows from the
Eilenberg classification theorem that

[M,G] ' H3(M,π3(G))

[u] 7−→ u∗bG (12)

is a group isomorphism. Under this isomorphism the subgroup ı∗π0(Stabϕ) =
π0(ı(Stabϕ)) is mapped into a subgroup of H3(M,π3(G)) that we denote Oϕ ,
i.e

Oϕ := {w∗bG | w ∈ Stabϕ} ⊂ H
3(M,π3(G)). (13)

Although the definition (13) uses the map ϕ explicitly, we will show

Lemma 5. Oϕ only depends on the 2-homotopy class of ϕ or equivalently on
ϕ∗bX and not on ϕ itself.

Proof. If ψ is 2–homotopic to ϕ, there is M
u
−→ G with ψ = uϕ by Theorem 2.

Hence

Stabψ = {w|wψ = ψ} = {w|wuϕ = uϕ} = {w|u−1wu ∈ Stabϕ} = u(Stabϕ)u−1

Let π1, π2 be the natural projections from G × G to the first and the second
factor and G × G

m
−→ G be the multiplication map. Then it follows from the

Hopf-Samelson theorem [Dy, WG] that

m∗bG = π∗
1bG + π∗

2bG. (14)

This implies that given two maps M
u,v
−→ G we have

(u · v)∗bG = (m ◦ (u, v))∗bG = (u, v)∗(π∗
1bG + π∗

2bG) = u∗bG + v∗bG

Using this formula we derive from definition (13)

Oψ = {w∗bG|w ∈ Stabψ} = {(uw′u−1)∗bG|w
′ ∈ Stabϕ}

= {u∗bG + (w′)∗bG − u
∗bG|w

′ ∈ Stabϕ} = Oϕ

2

Hence Oϕ = Oϕ∗bX
and since every κ ∈ H2(M,π2(X)) is representable by a ϕ

one can talk about Oκ .
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Theorem 3. Let X = G/H be a compact simply connected homogeneous space and

M a 3-dimensional CW –complex. Two continuous maps M
ψ,ϕ
−→ X are homotopic

if and only if ψ = uϕ and u∗bG ∈ Oϕ for some M
u
−→ G . Moreover

[(M,G)ϕ] ' H3(M,π3(G))/Oϕ (' means bijection). (15)

Proof. By definition of the isomorphism (12) having u∗bG ∈ Oϕ is equivalent to
[u] ∈ ı∗π0(Stabϕ) or u homotopic to w ∈ Stabϕ . But then uw−1 is nullhomotopic
and ψ = (uw−1)wϕ is homotopic to ϕ by Lemma 4.

To prove the bijection consider the map

(M,G)
Π
−→ (M,G)ϕ

u 7→ uϕ.

We will show that this is a fibration following an idea from [AS]. By definition we
need to complete the diagram as indicated for A arbitrary and I := [0, 1]

A× {0}
F0
- (M,G)

A× I
?

∩

f
-

....
....
....
....
....
....
....
..-

(M,G)ϕ

Π

?

(16)

Set F 0(m,a) := F0(a)(m) and f(m,a, t) := f(a, t)(m). Recall from Lemma 1 that
the bundle of shifts (4) is a fiber bundle and therefore a fibration so the following
diagram can be completed as indicated:

(M ×A)× 0
(F 0, ϕ)

- G×X

(M ×A)× I
?

∩

(f, ϕ)
-

.....
.....

.....
.....

.....
.....

.....
...

Φ

-

X ×X

α

?

Inspecting the definitions of F 0 , f one concludes that the original diagram can be
completed as well using Φ.

If vϕ = uϕ then w := u−1v ∈ Stabϕ and the fiber of this fibration is exactly
Stabϕ . Using the homotopy exact sequence of the fibration

π0(Stabϕ)
ı∗−→ π0((M,G))

π∗−→ π0((M,G)ϕ) −→ 0.

one gets

[(M,G)ϕ] '
[M,G]

ı∗π0(Stabϕ)
(' means bijection).

Under the isomorphism (12) this becomes (15). 2

For applications it is convenient to reinterpret the secondary invariant in terms
of the deRham cohomology. Let us start with the group H3(G, π3(G)). Recall that
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we assume that G is compact connected and simply connected. By the universal
coefficients theorem the following sequence is exact:

0 −→ Tor(H2(G,Z), π3(G)) −→ H3(G, π3(G)) −→ H3(G,Z)⊗ π3(G) −→ 0.

Since G is a simply connected Lie group H2(G,Z) = 0 and the torsion term vanishes
so

H3(G, π3(G)) ' H3(G,Z)⊗ π3(G).

Since G is also compact it is a direct product of simple components G = G1×· · ·×
GN and therefore

π3(G) ' π3(G1)⊕ · · · ⊕ π3(GN ).

The sum on the right ' Z
N because π3(Γ) ' Z for any simple Lie group Γ [BtD].

Thus

H3(G, π3(G)) ' H3(G,Z)⊗ Z
N

Assume additionally that M is a closed connected 3–manifold. Both third coho-
mology groups H3(G,Z), H3(M,Z) are free Abelian, the first one by the Hurewicz
theorem and the second by Poincare duality. This means that not only are elements
of H3(G,Z) ⊗ Z

N completely represented by integral classes in H3(G,R) ⊗ R
N

but also that their pullbacks are completely characterized as integral classes in
H3(M,R)⊗R

N . But real cohomology classes from H3(G,R)⊗R
N are represented

by R
N –valued differential 3–forms by the deRham theorem [GHV, MS].

Let Θ be a differential form that represents bG . Being R
N –valued it is a collec-

tion Θ = (Θ1, . . . ,ΘN ) of N scalar 3–forms and the pullback

u∗Θ := (u∗Θ1, . . . , u
∗ΘN )

is defined as a vector–valued 3–form. We can go one step further. Assuming M is
orientable H3(M,Z) ' Z and again by the universal coefficients:

H3(M,π3(G)) ' H3(M,Z)⊗ π3(G) ' H3(M,Z)⊗ Z
N ' Z

N .

The last isomorphism is given by evaluation of cohomology classes on the fundamen-
tal class of M or in terms of differential forms, by integration over M [GHV, MS].
Thus we get a combined isomorphism

H3(M,π3(G))
∼
−→ Z

N

u∗bG 7−→

∫

M

u∗Θ := (

∫

M

u∗Θ1, . . . ,

∫

M

u∗ΘN ). (17)

Under this isomorphism the subgroup Oϕ ⊂ H3(M,π3(G)) is transformed into a
subgroup of Z

N and we denote its image by the same symbol, explicitly

Oϕ := {

∫

M

w∗Θ | w ∈ Stabϕ} ⊂ Z
N . (18)

If G is a simple group then H3(M,π3(G)) ' Z and we have explicitly

Θ = cG tr(g−1dg ∧ g−1dg ∧ g−1dg),
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where cG are numerical coefficients computed in [AK1] for every simple group.
Thus

u∗Θ = cG tr(u−1du ∧ u−1du ∧ u−1du). (19)

In general,

Θk = cGk
tr(pr

gk
(g−1dg) ∧ pr

gk
(g−1dg) ∧ pr

gk
(g−1dg)),

where gk are the Lie algebras of Gk . Theorem 3 can be restated as

Corollary 1. In conditions of Theorem 3 let M be a closed connected 3–manifold.

Then two continuous maps M
ψ,ϕ
−→ X are homotopic if and only if ψ = uϕ and∫

M

u∗Θ ∈ Oϕ for some M
u
−→ G .

If M is not orientable then H3(M,Z) = 0 and the secondary invariant is always
0.
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