Multipliers and convolution spaces for the Hankel space and its dual on the half space [0,+ ∞ [ x ℝnC. Baccar
We define the Hankel space ℍμ([0,+
∞ [ x ℝn); μ≥
-½, and its dual ℍ'μ([0,+
∞ [ x ℝn). First, we characterize the space Mμ([0,+
∞ [ x ℝn) of multipliers of the space ℍμ([0,+
∞ [ x ℝn).
Next, we define a subspace 𝕆'μ([0,+
∞ [ x ℝn) of the dual
ℍ'μ([0,+
∞ [ x ℝn)
which permits to define and study a convolution product
⃰ on
ℍ'μ([0,+
∞ [ x ℝn) and we give nice properties.
Tbilisi Mathematical Journal, Vol. 9(1) (2016), pp. 197-220 |