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Abstract

Characterization theorems for several properties possessed by the mean value insurance pre-
mium calculation principle are presented. Demonstrated theorems cover cases of additivity,
consistency, iterativity, and scale invariance properties. Results are formulated in a form of
necessary and sufficient conditions for attainment of the properties imposed on the auxiliary
function with the help of which the mean value premium calculation principle is defined. We
show also that for the mean value principle subjected to pricing of only strictly positive risks
the class of the auxiliary functions producing scale invariant premiums is larger than in the
general case.
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1 Introduction

Let us consider a random variable X representing the size of insurance compensation related to a
particular insurance pact. Premium to be paid for the risk X will be denoted as π[X].

In majority of the cases the random variable X is assumed to be a non-negative one, i.e., it
takes value zero if the contract will not produce a claim and will be equal to the claim size if there
will be a claim. In some case, however, negative values of the variable X are also allowed; such
negative values are often interpreted as compensations which have to be paid by the customer to
the insurance company, for example, as penalties for violation of the contract conditions.

Let us now define several insurance premium calculation principles which we would like to
investigate.

Mean value premium for the risk X, which in the article will be denoted as πm.v.[X], based on
function v(x) ∈ C2(R) such that v′(x) > 0 and v′′(x) ≥ 0 for x ∈ R, is defined as the solution to
the equation

v(πm.v.[X]) = E[v(X)]. (1.1)

Argumentation for the just defined method of pricing is slightly hidden in Jensen inequality

v(E[X]) ≤ E[v(X)],

i.e., obtained in such a way premium will be not smaller than the expected size of the insurance
compensation.

Sometimes the mean value premium calculation principle is applied to some special classes of
risks: as an example of such a class one can mention the class of all non-negative risks; alternatively
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one could mention the class of all non-negative risks bounded from above by some fixed real value,
etc. In such cases domain of the function v(x) could be a subset of R such that the equation (1.1)
will preserve its correct mathematical meaning for all risks from the mentioned class, moreover,
monotonicity and convexity properties of the function v(x) should also be preserved.

Net premium for the risk X, which in the article will be denoted as πnet[X], is defined as the
expected value of the losses associated with the risk X, i.e.,

πnet[X] = E[X].

Exponential premium for the risk X, dependent on a parameter β, which in the article will be
denoted as πexp(β)[X], is defined in the following way

πexp(β)[X] =
1

β
log
(
E[eβX ]

)
, for β > 0.

We will say that a premium calculation principle π[X] possesses:
additivity property if for any two independent risks X1 and X2 the following identity holds

π[X1 +X2] = π[X1] + π[X2]; (1.2)

consistency property if for any risk X and any real constant c (if a pricing method is defined only
for the non-negative risks then the constant c can be claimed to be non-negative in order to avoid
situations when X + c < 0, i.e., situations when the value π[X + c] is undefined) holds identity

π[X + c] = π[X] + c; (1.3)

iterativity property if for any two risks X and Y holds identity

π[π[X|Y ]] = π[X]; (1.4)

scale invariance property if for any risk X and any positive real constant Θ the following identity
holds

π[ΘX] = Θπ[X]. (1.5)

The article is devoted to investigation of the necessary and sufficient conditions, imposed on
the auxiliary function v(·), of attainment of the mentioned desirable properties by the mean value
insurance premium principle as well as obtaining of corresponding characterization theorems.

More information about the defined methods of pricing of insurance contracts as well as the
properties that can be possessed by an insurance premium calculation principles can be found, for
example, in Asmussen and Albrecher (2010), Boland (2007), Bowers et al (1997), Bühlmann (1970),
Dickson (2005), Gerber (1979), De Vylder et al (1984), De Vylder et al (1986), Kaas et al (2008),
Kremer (1999), Rolski et al (1998), Straub (1988).

We would like to emphasize that the research related to theorems of characterization type for
the properties possessed by certain insurance premium calculation principles was initiated by the
Swiss mathematician Hans-Ulrich Gerber, see Gerber (1979).

Observe that the mean value premium calculation principle is invariant with respect to the linear
transformations of the function v(x), i.e., the principle based on a function v(x) and the principle
based on the function v̄(x) := l1v(x) + l2, for l1 > 0, will produce the same premiums. Here the
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condition l1 > 0 is imposed because otherwise the assumption of positivity of the first derivative of
the scaled auxiliary function v̄(x) will vanish.

In order to simplify the computations while searching for the conditions of attainment of addi-
tivity and consistency properties, we will first obtain all possible representations in the case when
the examined property is possessed, for the scaled auxiliary function

v̄(x) := l1v(x) + l2 with l1 = 1/v′(0) and l2 = −v(0)/v′(0), (1.6)

and then we will switch back to the original auxiliary function v(x).
Observe that the just defined scaled auxiliary function v̄(x) satisfies the following boundary

conditions
v̄(0) = 0, v̄′(0) = 1, and v̄′′(0) = κ, (1.7)

for some real constant κ ≥ 0.
Several times within the proofs of the theorems we will investigate the behavior of a Bernoulli

risk X which takes values t (here t is a real valued parameter different from zero) and 0 with
probabilities p and 1− p respectively. Being a random function of the parameters p and t the risk
X within the article will be denoted as Xt

p.
In order to avoid some repetitions in the text, we would like to formulate the following two

lemmas.

Lemma 1.1. (a) The mean value premium calculation principle based on the auxiliary function
v(x) = ax+b, for a > 0, is equivalent to the net premium calculation principle. (b) The mean value
premium calculation principle based on the auxiliary function v(x) = αeβx + γ, for min[α, β] > 0,
is equivalent to the exponential premium principle dependent on the parameter β.

Both statements of Lemma 1.1 can be easily verified by direct checking.

Lemma 1.2. The mean value premium calculation principle for the Bernoulli risk Xt
p satisfies the

following identities:

(a) πm.v.[X
t
0] = 0; (b)

∂

∂p
πm.v.[X

t
p]

∣∣∣∣
p=0

=
v(t)− v(0)

v′(0)
;

(c)
∂

∂p
πm.v.[X

t
p]

∣∣∣∣
p=0

= v̄(t); (d)
∂2

(∂p)2
πm.v.[X

t
p]

∣∣∣∣
p=0

= −κ v̄2(t).

Proof. Definition equation (1.1) for the Bernoulli risk Xt
p takes the following form

v(πm.v.[X
t
p]) = pv(t) + (1− p)v(0). (1.8)

Substituting p = 0 into (1.8), obtain

v(πm.v.[X
t
0]) = v(0). (1.9)

Since function v(·) is a strictly increasing function, then from the equation (1.9) it follows (identity
(a) of Lemma 1.2)

πm.v.[X
t
0] = 0. (1.10)
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Let us now calculate partial derivatives with respect to the parameter p from both sides of the
equation (1.8), obtain

v′(πm.v.[X
t
p]) ·

∂

∂p
πm.v.[X

t
p] = v(t)− v(0). (1.11)

Substitution of the value p = 0 into (1.11) yields

v′(πm.v.[X
t
0]) ·

(
∂

∂p
πm.v.[X

t
p]

∣∣∣∣
p=0

)
= v(t)− v(0). (1.12)

Since the function v(·) is a strictly increasing function, then v′(0) > 0. Therefore, taking into
account identity (1.10) we get from (1.12) (identity (b) of Lemma 1.2)

∂

∂p
πm.v.[X

t
p]

∣∣∣∣
p=0

=
v(t)− v(0)

v′(0)
. (1.13)

Equation (1.13) based on the normalized auxiliary function v̄(·) with the use of the boundary
conditions (1.7) implies (identity (c) of Lemma 1.2)

∂

∂p
πm.v.[X

t
p]

∣∣∣∣
p=0

= v̄(t). (1.14)

The next step is to take partial derivatives with respect to the parameter p from both sides of
the equation (1.11), here we get

v′′(πm.v.[X
t
p]) ·

(
∂

∂p
πm.v.[X

t
p]

)2

+ v′(πm.v.[X
t
p]) ·

∂2

(∂p)2
πm.v.[X

t
p] = 0. (1.15)

Equation (1.15), evaluated at the point p = 0, based on the normalized auxiliary function v̄(·) with
the use of the identities (1.10) and (1.14) as well as the boundary conditions (1.7) implies (identity
(d) of Lemma 1.2)

∂2

(∂p)2
πm.v.[X

t
p]

∣∣∣∣
p=0

= −κ v̄2(t). (1.16)

q.e.d.

2 Additivity Property

The following theorem describes the necessary and sufficient conditions imposed on the auxiliary
function v(·) for attainment of the additivity property by the mean value premium calculation
principle.

Theorem 2.1. The mean value premium calculation principle possesses the additivity property if
and only if v(x) = ax + b, for a > 0, or v(x) = αeβx + γ, for min[α, β] > 0, i.e., only in the cases
when it coincides with either the net premium principle or the exponential premium principle.

Observe that the class of functions v(x) = αeβx + γ, for min[α, β] > 0, contains all functions of
the form v(x) = τx, for some real constant τ > 1.
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Proof. Let us from the beginning prove the sufficiency of the statement. We start from the case of
v(x) = ax+ b, for a > 0. Indeed, in this case, for any two independent risks X1 and X2, from the
equation (1.1) it follows

aπm.v.[X1 +X2] + b = E[a(X1 +X2) + b],

and hence, using statement (a) of Lemma 1.1, we get

πm.v.[X1 +X2] = E[X1] + E[X2] = πm.v.[X1] + πm.v.[X2].

So, as we see, the mean value insurance premium calculation principle possesses the additivity
property in the case of linear function v(x).

Let us now switch to the case of v(x) = αeβx+γ, for min[α, β] > 0. Here for any two independent
risks X1 and X2 from equation (1.1) we get

α exp(β πm.v.[X1 +X2]) + γ = E[α exp(βX1 + βX2) + γ] = αE[eβX1 ]E[eβX2 ] + γ,

and hence, using statement (b) of Lemma 1.1, we get

πm.v.[X1 +X2] =
1

β
log(E[eβ X1 ]) +

1

β
log(E[eβ X2 ]) = πm.v.[X1] + πm.v.[X2].

This means that the mean value insurance premium calculation principle possesses the additivity
property also in the case of exponential function v(x).

Proof of the sufficiency was finished, so we can start to prove the necessity.
In order to show that the mean value premium calculation principle with all other types of

the auxiliary function v(·) will not posses the additivity property let us consider a Bernoulli risk
Y , independent of the risk Xt

p, taking values h (here h is a non-zero real parameter) and 0 with
probabilities q and 1− q respectively. Being a random function of the parameters h and q the risk
Y within the proof of Theorem 2.1 will be denoted as Y hq .

Due to the similarities in the structures of the risks Y hq and Xt
p we can conclude using statements

(a) and (c) of Lemma 1.2 that

πm.v.[Y
h
0 ] = 0, and

∂

∂q
πm.v.[Y

h
q ]

∣∣∣∣
q=0

= v̄(h). (2.1)

It is easy to see that the risk Xt
p + Y hq will take values t+ h, t, h, and 0 with probabilities p q,

p (1− q), (1− p)q, and (1− p)(1− q) respectively.
In the case of the additive mean value premium calculation principle the following identity must

hold
πm.v.[X

t
p + Y hq ] = πm.v.[X

t
p] + πm.v.[Y

h
q ],

hence, the definition equation (1.1) for the risk Xt
p + Y hq based on the scaled auxiliary function

v̄(x), taking into account boundary condition v̄(0) = 0, will have the following form

v̄(πm.v.[X
t
p] + πm.v.[Y

h
q ]) = v̄(t+ h)pq + v̄(t)p(1− q) + v̄(h)(1− p)q. (2.2)
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Let us calculate partial derivatives with respect to the parameter p from both sides of the
equation (2.2)

v̄′(πm.v.[X
t
p] + πm.v.[Y

h
q ]) · ∂

∂p
πm.v.[X

t
p] = v̄(t+ h)q + v̄(t)(1− q)− v̄(h)q. (2.3)

Next step is to take partial derivatives with respect to the parameter q from both sides of the
equation (2.3)

v̄′′(πm.v.[X
t
p] + πm.v.[Y

h
q ]) · ∂

∂p
πm.v.[X

t
p] ·

∂

∂q
πm.v.[Y

h
q ] = v̄(t+ h)− v̄(t)− v̄(h). (2.4)

Substituting p = q = 0 into equation (2.4) and using identities (1.10), (1.14), and (2.1), as well
as boundary condition v̄′′(0) = κ, we finally get an equation which the scaled auxiliary function
v̄(·) has to satisfy for the mean value premium calculation principle to be additive, namely,

κ v̄(t)v̄(h) = v̄(t+ h)− v̄(t)− v̄(h). (2.5)

Solving the equation (2.5) let us consider separately the cases of κ = 0 and κ > 0.
In the case of κ = 0 the equation (2.5) will be simplified to the following

v̄(t+ h) = v̄(t) + v̄(h). (2.6)

Taking partial derivatives with respect to the parameter h from both sides of the equation (2.6),
obtain

v̄′(t+ h) = v̄′(h). (2.7)

Since the function v̄(·) is assumed to be twice differentiable, then the function v̄′(·) must be con-
tinuous. Therefore, must exist the limit of v̄′(h) as h tends to zero and it has to be equal to v̄′(0).
Taking limits as h tends to zero from both sides of (2.7), and using boundary condition v̄′(0) = 1,
obtain

v̄′(t) = 1. (2.8)

Parameter t was taken from R \ {0}, however, due to continuity (since the function v̄(·) is
twice differentiable) of the function v̄′(·), equation (2.8) can be rewritten in terms of the original
parameter x ∈ R.

Combining equation (2.8) with the boundary condition v̄(0) = 0 we finally get one of the
admissible representations for the scaled auxiliary function v̄(x), namely,

v̄(x) = x. (2.9)

Using the admissible representation (2.9) as well as the transformation identity (1.6) we obtain
an equation which the original auxiliary function v(x) has to satisfy for the mean value premium
calculation principle to be additive, namely,

v(x) = v′(0)x+ v(0). (2.10)

From the equation (2.10) it follows that the function v(x) must be a function of the form

v(x) = ax+ b
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for some constants a and b. The monotonicity condition v′(0) > 0 gives us additional restriction
on the parameter a: parameter a must be a strictly positive constant.

Let us now consider the case of κ > 0. Taking repeatedly partial derivatives with respect to t
and then with respect to h from both sides of the equation (2.5), we get an equation

v̄′′(t+ h) = κ v̄′(t)v̄′(h). (2.11)

Switching to the limit as h tends to zero from both sides of the equation (2.11), and using boundary
condition v̄′(0) = 1, obtain

v̄′′(t) = κ v̄′(t). (2.12)

From the equation (2.12), using the boundary conditions v̄(0) = 0 and v̄′(0) = 1, we get the
admissible representation for the scaled auxiliary function v̄(·) in the case of v̄′′(0) > 0. Values of
the parameter t was taken from R \ {0}, however, due to continuity, we can write the function v̄(·)
in terms of the original parameter x ∈ R

v̄(x) =
eκx − 1

κ
. (2.13)

Taking into account that v̄′′(0) = κ, using representation (2.13), and the transformation identity
(1.6), we finally get corresponding admissible representation for the original auxiliary function v(x),
or more precisely,

v(x) =
v′(0)

v̄′′(0)
ev̄

′′(0)x − v′(0)

v̄′′(0)
+ v(0). (2.14)

From the representation (2.14) it follows that in the case of v̄′′(0) > 0 the function v(x) must be a
function of the form

v(x) = αeβx + γ

for some real constants α, β, and γ. Moreover, the monotonicity and the convexity conditions
v′(0) > 0 and v̄′′(0) > 0 imply additional restrictions on the parameters α and β, namely, both of
them must be strictly positive constants, or equivalently, min[α, β] > 0.

This completes the proof of Theorem 2.1. q.e.d.

Remark 2.1. Applying a simple contradiction technique, the proof of Theorem 2.1 could be easily
used for showing (we skip this in order to avoid trivialities in the text) that the case of v(x) = ax+b,
for a > 0, is the only case when the mean value premium principle entirely coincides with the net
premium principle and that the case of v(x) = αeβx + γ, for min[α, β] > 0, is the only case when
the mean value premium principle entirely coincides with the exponential premium principle.

Remark 2.2. Observe that the statement of necessity of Theorem 2.1 follows also from the statement
of Theorem 3.1 combined with holding of the property of no unjustified risk loading which is clearly
possessed by the mean value premium calculation principle.

3 Consistency Property

The following theorem describes the necessary and sufficient conditions imposed on the auxiliary
function v(x) under which the consistency property is possessed by the mean value insurance
premium calculation principle.
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Theorem 3.1. The mean value premium calculation principle possesses the consistency property
if and only if v(x) = ax+ b, for a > 0, or v(x) = αeβx + γ, for min[α, β] > 0, i.e., only in the cases
when it coincides with either the net premium principle or the exponential premium principle.

Proof. Let us from the beginning prove the sufficiency of the statement. We start from the linear
function v(v), namely, v(x) = ax+ b, for a > 0. Here for any risk X and any real constant c from
the equation (1.1) we get

a πm.v.[X + c] + b = E[a(X + c) + b],

and hence, using statement (a) of Lemma 1.1, we get

πm.v.[X + c] = E[X] + c = πm.v.[X] + c,

i.e., the mean value premium calculation principle possesses the consistency property in the case of
linear auxiliary function v(x).

Let us now switch to the case of v(x) = αeβx + γ, for min[α, β] > 0. Here again for any risk X
and any real constant c from the equation (1.1) obtain

α eβ πm.v.[X+c] + γ = E[α eβ(X+c) + γ] = α · E[eβX ] · eβc + γ,

and hence, using statement (b) of Lemma 1.1, we get

πm.v.[X + c] =
1

β
log(E[eβX ]) + c = πm.v.[X] + c,

i.e., the mean value premium calculation principle possesses the consistency property also in the
case of exponential auxiliary function v(x).

Proof of the sufficiency was finished, so we can start to prove the necessity.
In the case of consistent mean value premium calculation principle for any risk X must hold

identity
πm.v.[X + c] = πm.v.[X] + c, for c ∈ R,

therefore, definition equation (1.1) based on the scaled auxiliary function v̄(x) which produces
consistent mean value principle, for the risk Xt

p + c will have the following form

v̄(πm.v.[X
t
p] + c) = v̄(t+ c) · p+ v̄(c) · (1− p). (3.1)

Let us now calculate partial derivatives with respect to the parameter p from both sides of the
equation (3.1)

v̄′(πm.v.[X
t
p] + c) · ∂

∂p
πm.v.[X

t
p] = v̄(t+ c)− v̄(c). (3.2)

The next step is to take partial derivatives with respect to the parameter p once more, this time
from both sides of the equation (3.2), here we get

v̄′′(πm.v.[X
t
p] + c) ·

(
∂

∂p
πm.v.[X

t
p]

)2

+ v̄′(πm.v.[X
t
p] + c) · ∂2

(∂p)2
πm.v.[X

t
p] = 0 (3.3)
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Substituting value p = 0 into the equation (3.3) and using the identities (1.10) and (1.14), obtain

v̄′′(c) · v̄2(t) + v̄′(c) · ∂2

(∂p)2
πm.v.[X

t
p]

∣∣∣∣
p=0

= 0. (3.4)

Since the function v̄(x) is a strictly increasing function (and hence v̄′(x) always takes strictly
positive values) then without of loss of generality the equation (3.4) can be rewritten in the following
equivalent form

∂2

(∂p)2
πm.v.[X

t
p]

∣∣∣∣
p=0

= − v̄
′′(c) · v̄2(t)

v̄′(c)
. (3.5)

Observe that the identity (d) of Lemma 1.2 and the equation (3.5) have equal left hand sides;
this means that their right hand sides also have to be equal. In this way we get an equation

−κ v̄2(t) = − v̄
′′(c) · v̄2(t)

v̄′(c)
, (3.6)

which after cancelation of the −v̄2(t) multiplier will be simplified to the following

v̄′′(c) = κv̄′(c), for all c ∈ R. (3.7)

Equation (3.7) is an equation which the scaled auxiliary function v̄(·) has to satisfy for the mean
value premium calculation principle to be consistent. We will solve the equation separately for the
cases of κ = 0 and κ > 0.

In the case of κ = 0 equation (3.7) will be simplified to the following

v̄′′(c) = 0. (3.8)

From the equation (3.8) taking into account boundary conditions v̄(0) = 0 and v̄′(0) = 1 we get

v̄(x) = x. (3.9)

Combining representation (3.9) with the transformation identity (1.6) we get relation containing
corresponding original auxiliary function v(x)

v(x) = v′(0)x+ v(0),

therefore in the case of κ = 0 the function v(x) must be a function of the form

v(x) = ax+ b

for some real constants a and b. Assumption of positivity of first derivative of the function v(x)
gives us additional restriction on the parameter a: parameter a must be a strictly positive constant.

Let us now consider the case of κ > 0. From the equation (3.7), using boundary condition
v̄′(0) = 1, obtain (since c ∈ R then we can switch directly to the original parameter x)

v̄′(x) = eκx. (3.10)
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Using the representation (3.10) as well as the boundary condition v̄(0) = 0 we get the second
admissible representation for the scaled auxiliary function v̄(·) in the case when the mean value
premium principle is consistent, namely,

v̄(x) =
eκx − 1

κ
, for x ∈ R. (3.11)

Taking into account that v̄′′(0) = κ, using the representation (3.11) and the transformation iden-
tity (1.6), we finally get corresponding admissible representation for the original auxiliary function
v(x)

v(x) =
v′(0)

v̄′′(0)
ev̄

′′(0)x − v′(0)

v̄′′(0)
+ v(0). (3.12)

From the representation (3.12) it follows that in the case of v̄′′(0) > 0 the function v(x) must
be a function of the form

v(x) = αeβx + γ

for some real constants α, β, and γ. Moreover the monotonicity and the convexity conditions
v′(0) > 0 and v̄′′(0) > 0 imply additional restrictions on the parameters α and β, namely, both of
them must be strictly positive constants, or equivalently, min[α, β] > 0.

This completes the proof of Theorem 3.1. q.e.d.

4 Iterativity Property

In contrast to the insurer equivalent utility premium calculation principle which possesses the
iterativity property only in the cases of exponential and linear insurer’s utility functions, the mean
value premium calculation principle possesses the iterativity property for arbitrary choice of the
admissible auxiliary function v(x). We believe that this observation deserves to be formulated in a
form of theorem.

Theorem 4.1. The mean value premium calculation principle possesses the iterativity property
for arbitrary choice of the auxiliary function v(x) ∈ C2(R) such that v′(x) > 0 and v′′(x) ≥ 0 for
x ∈ R.

Proof. Here for any two risks X and Y and any admissible auxiliary function v(x) we get

πm.v.[πm.v.[X|Y ]] = v−1(E[v(πm.v.[X|Y ])])

= v−1(E[v(v−1(E[v(X)|Y ]))])

= v−1(E[E[v(X)|Y ]])

= v−1(E[v(X)]) = πm.v.[X].

Hence the statement of Theorem 4.1 indeed holds. q.e.d.

5 Scale Invariance Property

The following theorem describes the necessary and sufficient conditions of attainment of the scale
invariance property by the mean value insurance premium calculation principle.

Theorem 5.1. The mean value premium calculation principle possesses the scale invariance prop-
erty if and only if v(x) = ax + b, for a > 0, i.e., only in the case when it coincides with the net
premium principle.
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Proof. Let us from the beginning prove the sufficiency of the statement. From the equation (1.1)
for any risk X and any Θ > 0 in the case of v(x) = ax+ b, for a > 0, it follows

aπm.v.[ΘX] + b = E[aΘX + b] = aΘE[X] + b,

so, using statement (a) of Lemma 1.1, we get

πm.v.[ΘX] = ΘE[X] = Θπm.v.[X],

and we see that the scale invariance property holds in this particular case. This completes the proof
of the sufficiency. Let us now check the necessity.

Note that, by the definition, the scale invariance property for a particular premium calculation
principle holds if the equation (1.5) holds for any Θ > 0 and any admissible risk X.

For any Θ > 0 the definition equation (1.1) for the risk ΘXt
p in the case of the scale invariant

mean value principle will have the following form

v(Θπm.v.[X
t
p]) = pv(Θt) + (1− p)v(0). (5.1)

Taking partial derivatives with respect to parameter p from both sides of equation (5.1), obtain

v′(Θπm.v.[X
t
p]) ·Θ ·

∂

∂p
πm.v.[X

t
p] = v(Θt)− v(0). (5.2)

Substituting p = 0 into (5.2), using the identity (a) of the Lemma 1.2 as well as the inequality
v′(0) > 0, we get a representation for partial derivative of the premium with respect to the parameter
p at the point p = 0, namely,

∂

∂p
πm.v.[X

t
p]

∣∣∣∣
p=0

=
v(Θt)− v(0)

v′(0) ·Θ
. (5.3)

Observe that the identity (b) of Lemma 1.2 and the equation (5.3) have equal left hand sides,
this means that their right hand sides also have to be equal. In this way we finally get an equation
which the auxiliary function v(·) has to satisfy for the mean value premium principle to be scale
invariant, namely,

v(Θt)− v(0) = Θ · (v(t)− v(0)). (5.4)

Calculating partial derivatives with respect to the parameter t from both sides of the equation (5.4),
obtain

v′(Θt) = v′(t). (5.5)

Fixing the parameter t in the equation (5.5) to a positive value and varying values of the parameter
Θ we will make v′(Θt) a function of changing variable defined on R+ while the value v′(t) will be
fixed to a constant. By doing this we will see that the function v′(x) will take for all x > 0 one
and the same value, let us denote this value by a1. In a very similar way we can conclude that the
function v′(x) will take for all x < 0 one and the same value, let us denote this value by a2. Since
the function v(x) was twice differentiable, then the function v′(x) must be continuous, this yields

a1 = a2 = v′(0) =: a,
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and hence
v′(x) = a, for x ∈ R.

Integrating function v′(x), obtain

v(x) = ax+ b, for a constant b,

Initial assumption of positivity of first derivative of the function v(x) gives us additional restriction
on the parameter a: parameter a must be a strictly positive constant. This completes the proof of
Theorem 5.1. q.e.d.

As was already mentioned, in the case when the mean value premium principle is applied to a
special class of risks, it is enough to define the function v(x) on a subset A ⊂ R with preservation of
the monotonicity and the convexity properties, i.e., v(x) must be such that v′(x) > 0 and v′′(x) ≥ 0
for all x ∈ A, and, moreover, the definition equation (1.1) must preserve its correct mathematical
meaning for all risks from the mentioned class.

It is interesting to see that in the case of subjecting of the mean value premium principle
to pricing of only strictly positive risks the class of the functions v(x) producing scale invariant
premiums is larger than in the general case. We believe that this observation deserves to be
formulated in a form of theorem.

Theorem 5.2. The mean value premium calculation principle subjected to consideration of only
strictly positive risks possesses the scale invariance property if and only if v(x) = axκ+ b, for a > 0
and κ ≥ 1, defined for x ∈ (0, +∞).

Observe that for the function v(x) = axκ + b with a > 0 and κ > 1 the monotonicity condition
v′(x) > 0 violates at the point x = 0, therefore, the statement of Theorem 5.2 does not contradict
the statement of Theorem 5.1.

Proof. Since in the case of strictly positive risk X we get E[X] > 0, then, combining Jensen
inequality

v(E[X]) ≤ E[v(X)]

with definition equation (1.1), we see that the mean value premium calculation principle will be
well-defined if the function v(x) will be defined just for x ∈ (0, +∞) with preservation of the
monotonicity and the convexity assumptions, i.e., the function v(x) must be defined on (0, +∞)
such that v′(x) > 0 and v′′(x) ≥ 0 for all x ∈ (0, +∞).

Let us from the beginning prove the sufficiency of the statement. Indeed in the case of v(x) =
axκ + b, with a > 0 and κ ≥ 1, for any strictly positive risk X the definition equation (1.1) will
have the following form

a(πm.v.[X])κ + b = E[aXκ + b] = aE[Xκ] + b,

therefore, in the considered case
πm.v.[X] = (E[Xκ])1/κ.

On the other hand, for the same function v(x), the same risk X, and any Θ > 0, from the equation
(1.1) it follows

a(πm.v.[ΘX])κ + b = E[a(ΘX)κ + b] = aΘκE[Xκ] + b
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so, here we get
πm.v.[ΘX] = Θ(E[Xκ])1/κ = Θπm.v.[X],

and as we see, the mean value premium calculation principle subjected to consideration of only
strictly positive risks possesses the scale invariance property in the case of v(x) = axκ+ b, for a > 0
and κ ≥ 1, defined for x ∈ (0, +∞).

Let us now switch to the statement of necessity. In order to show that the mean value premium
calculation principle subjected to consideration of only strictly positive risks with all other types
of the auxiliary function v(x) will not possess the scale invariance property, we will consider a
Bernoulli risk X taking values ε > 0 and 1 with probabilities p and 1 − p respectively. Being a
random function of the parameters ε and p, the risk X within the proof of Theorem 5.2 will be
denoted as Xε

p .
For the described risk Xε

p definition equation (1.1) will have the following form

v(πm.v.[X
ε
p ]) = pv(ε) + (1− p)v(1). (5.6)

From the equation (5.6) it follows

v(πm.v.[X
ε
0 ]) = 0 · v(ε) + 1 · v(1),

moreover, since v(x) is a strictly increasing function, then

πm.v.[X
ε
0 ] = 1. (5.7)

Calculating partial derivatives with respect to the parameter p from both sides of the equation
(5.6), obtain

v′(πm.v.[X
ε
p ]) · ∂

∂p
πm.v.[X

ε
p ] = v(ε)− v(1). (5.8)

Substituting p = 0 into the equation (5.8), obtain

v′(πm.v.[X
ε
0 ]) · ∂

∂p
πm.v.[X

ε
p ]

∣∣∣∣
p=0

= v(ε)− v(1). (5.9)

Using identity (5.7), equation (5.9) can be rewritten as

v′(1) · ∂
∂p
πm.v.[X

ε
p ]

∣∣∣∣
p=0

= v(ε)− v(1). (5.10)

Let us now calculate partial derivatives with respect to the parameter p from both sides of the
equation (5.8)

v′′(πm.v.[X
ε
p ]) ·

(
∂

∂p
πm.v.[X

ε
p ]

)2

+ v′(πm.v.[X
ε
p ]) · ∂2

(∂p)2
πm.v.[X

ε
p ] = 0. (5.11)

Substituting p = 0 into the equation (5.11), and using identity (5.7), obtain

v′′(1) ·

(
∂

∂p
πm.v.[X

ε
p ]

∣∣∣∣
p=0

)2

+ v′(1) ·

(
∂2

(∂p)2
πm.v.[X

ε
p ]

∣∣∣∣
p=0

)
= 0. (5.12)
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Taking ε small enough, namely ε < 1, and taking into account strict monotonicity of the function
v(x), without of loss of generality, using (5.10), we may conclude that

∂

∂p
πm.v.[X

ε
p ]

∣∣∣∣
p=0

6= 0, (5.13)

and hence, the equation (5.12) can be rewritten as

v′′(1)

v′(1)
= −

(
∂2

(∂p)2
πm.v.[X

ε
p ]

∣∣∣∣
p=0

)/(
∂

∂p
πm.v.[X

ε
p ]

∣∣∣∣
p=0

)2

. (5.14)

For any Θ > 0, the definition equation (1.1) for the risk ΘXε
p will take the following form

v(πm.v.[ΘX
ε
p ]) = pv(Θε) + (1− p)v(Θ). (5.15)

In the case of the scale invariant mean value premium principle the equation (5.15) can be rewritten
as

v(Θπm.v.[X
ε
p ]) = pv(Θε) + (1− p)v(Θ). (5.16)

Calculating the second partial derivatives with respect to the parameter p from both sides of
the equation (5.16), obtain

v′′(Θπm.v.[X
ε
p ]) ·Θ2 ·

(
∂

∂p
πm.v.[X

ε
p ]

)2

+ v′(Θπm.v.[X
ε
p ]) ·Θ · ∂2

(∂p)2
πm.v.[X

ε
p ] = 0. (5.17)

Substituting the value p = 0 into the equation (5.17), canceling Θ factor, and using the identity
(5.7), we get

v′′(Θ) ·Θ ·

(
∂

∂p
πm.v.[X

ε
p ]

∣∣∣∣
p=0

)2

+ v′(Θ) · ∂2

(∂p)2
πm.v.[X

ε
p ]

∣∣∣∣
p=0

= 0. (5.18)

Since v′(Θ) > 0, then using the relation (5.13), the equation (5.18) can be rewritten in the
following way

v′′(Θ) ·Θ
v′(Θ)

= −

(
∂2

(∂p)2
πm.v.[X

ε
p ]

∣∣∣∣
p=0

)/(
∂

∂p
πm.v.[X

ε
p ]

∣∣∣∣
p=0

)2

. (5.19)

Observe that the equations (5.14) and (5.19) have equal right hand sides, this means that their
left hand sides also have to be equal, in this way we finally get an equation which the auxiliary
function v(x) has to satisfy in the case of the scale invariant mean value premium calculation
principle subjected to consideration of only strictly positive risks, namely,

v′′(Θ) ·Θ
v′(Θ)

=
v′′(1)

v′(1)
, for all Θ > 0. (5.20)

Assigning v′′(1)/v′(1) =: κ (since v′′(1) ≥ 0 and v′(1) > 0 then κ ≥ 0) and making substitution
z(Θ) := v′(Θ) equation (5.20) can be rewritten in the following equivalent form dz

z = κ dΘ
Θ ,
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therefore log(z(Θ)) = κ log(Θ) + log(C1), for some constant C1 > 0, and the function z(Θ) itself
will have the following form z(Θ) = C1Θκ . Switching back to the function v′(·), and switching to
the original parameter x ∈ (0, +∞), obtain v′(x) = C1x

κ . Taking antiderivative, we get

v(x) =
C1

κ + 1
xκ+1 + C2,

therefore, the function v(x) must be a function of the form

v(x) = axκ + b, for some real constants a, b, and κ.

Moreover, since C1 > 0 and κ ≥ 0 then a > 0, and since κ ≥ 0 then κ ≥ 1.
This completes the proof of Theorem 5.2. q.e.d.
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