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Abstract

The aim of this work is to study a class of general strongly mixed variational inequalities.
A new iterative algorithm for approximate solvability of general strongly mixed variational
inequality is suggested. A convergence result for the iterative sequence generated by the new
algorithm is also established.
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1 Introduction and Preliminaries

Variational inequality theory was introduced by Stampacchia [14] in early sixties. It has emerged
as an interesting branch of applicable mathematics. This theory has been generalized and extended
in many directions using novel and innovative techniques. A useful and important generalization
of variational inequality is the general mixed variational inequality. It is well know that the varia-
tional inequality problems are equivalent to fixed point problem. This equivalent formulation plays
an important role in the development of numerical methods for solving variational inequalities. In
particular, the solution of variational inequalities can be computed using the iterative methods.

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖·‖,
respectively. Let ϕ : H → R ∪ {+∞} be a proper convex lower semi-continuous function. Let
T, g : H → H be nonlinear operators. Consider the problem of finding x∗ ∈ H such that

〈T (x∗)−A(x∗), g(y∗)− g(x∗)〉+ ϕ(g(y∗))− ϕ(g(x∗)) ≥ 0 , ∀ y∗ ∈ H , (1.1)

where A is a nonlinear continuous mapping on H. Some special cases of problem (1.1) :

(1) If A ≡ 0, then the problem (1.1) reduces to the general mixed variational inequality problem
considered in [2, 10, 11, 12].

(2) If g be an identity mappings on H, then the problem (1.1) reduces to a class of variational
inequality studied by [15].

(3) If A ≡ 0 and g is an identity mappings on H, then the problem (1.1) reduces to the mixed
variational inequality or variational inequality of second kind see [1, 4, 8, 9].

For a multivalued operator T : H → H, we denote by

D(T ) = {u ∈ H : T (u) 6= ∅} ,
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the domain of T ,

R(T ) =
⋃
u∈H

T (u) ,

the range of T ,

Graph(T ) = {(u, u∗) ∈ H ×H : u ∈ D(T ) and u∗ ∈ T (u)} ,

the graph of T .

Definition 1.1. T is called monotone if and only if for each u ∈ D(T ), v ∈ D(T ) and u∗ ∈ T (u),
v∗ ∈ T (v), we have

〈v∗ − u∗, v − u〉 ≥ 0 .

T is maximal monotone if it is monotone and its graph is not properly contained in the graph of
any other monotone operator.

T−1 is the operator defined by

v ∈ T−1(u)⇔ u ∈ T (v) .

Definition 1.2 (See [3]). For a maximal monotone operator T , the resolvent operator associated
with T , for any σ > 0, is defined as

JT (u) = (I + σT )−1(u) , ∀u ∈ H .

It is known that a monotone operator is maximal if and only if its resolvent operator is
defined everywhere. Furthermore, the resolvent operator is single-valued and nonexpansive i.e.
‖JT (x)− JT (y)‖ ≤ ‖x− y‖ , ∀x, y ∈ H. In particular, it is well known that the subdifferential ∂ϕ
of ϕ is a maximal monotone operator; see [7].

Lemma 1.3. [3] For a given z ∈ H , u ∈ H satisfies the inequality

〈u− z, x− u〉+ λϕ(x)− λϕ(u) ≥ 0 , ∀x ∈ H

if and only if u = Jϕ(z), where Jϕ = (I + λ∂ϕ)
−1

is the resolvent operator and λ > 0 is a constant.

Following result will transform variational inequality problem (1.1) in to a fixed point problem.

Lemma 1.4. Let H be a real Hilbert space, T,A, g : H → H be any mappings. Then the following
statements are equivalent.

(i) An element x∗ ∈ H is a solution of (1.1).

(ii) An element x∗ ∈ H is a fixed point of the mapping Fρ : H → H defined by

Fρ(x) = x− g(x) + Jϕ (g(x)− ρ(T (x)−A(x))) , for x ∈ H , (1.2)

where ρ > 0 is an arbitrary constant and Jϕ := (I + ρ∂ϕ)−1 is resolvent operator, I stands
for the identity operator on H.
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Proof. Inequality (1.1) can be written as : find x∗ ∈ H such that

〈ρ(T (x∗)−A(x∗)) + g(x∗)− g(x∗), g(y∗)− g(x∗)〉+ ρϕ(g(y∗))− ρϕ(g(x∗)) ≥ 0 , (1.3)

for all y∗ ∈ H , ρ > 0 .

We can rewrite (1.3) as

〈g(x∗)− (g(x∗)− ρ(T (x∗)−A(x∗))) , g(y∗)− g(x∗)〉+ ρϕ(g(y∗))− ρϕ(g(x∗)) ≥ 0 . (1.4)

Applying Lemma 1.3 for λ = ρ in inequality (1.4) gives

g(x∗) = Jϕ (g(x∗)− ρ (T (x∗)−A(x∗))) ,

i.e.,
Fρ(x

∗) = x∗ = x∗ − g(x∗) + Jϕ (g(x∗)− ρ (T (x∗)−A(x∗))) ,

the required result. q.e.d.

Lemma 1.4 implies that the problem (1.1) is equivalent to the fixed point problem (1.2). This
alternative equivalent formulation is very useful from the numerical point of view. Using the fixed
point formulation (1.2), we suggest and analyze the following iterative methods for solving the
variational inequality problem (1.1).

Algorithm 1. For a given x0 ∈ H, find xn+1 by the iterative scheme

xn+1 = xn − g(xn) + Jϕ [g(xn)− ρ (T (xn)−A(xn))] , n = 0, 1, 2, . . .

which is called explicit iterative method.

For a positive step size t ∈ [0, 1], we can write (1.2) in the following form:

x∗ = t (x∗ − x∗) + x∗ − g(x∗) + Jϕ (g(x∗)− ρ(T (x∗)−A(x∗))) ,

or,

x∗ =
t

1 + t
x∗ +

1

1 + t
[x− g(x∗) + Jϕ (g(x∗)− ρ(T (x∗)−A(x∗)))] .

We use this equivalent fixed point formulation to suggest the following iterative method for solving
(1.1).

Algorithm 2. For a given x0 ∈ H, find xn+1 by the iterative scheme

xn+1 = (1− αn)xn + αn [xn − g(xn) + Jϕ [g(xn)− ρ (T (xn)−A(xn))]] ,

n = 0, 1, 2, . . . , where {αn} is a sequence in [0, 1] such that
∑∞
n=0 αn =∞.

Now, we define a more general predictor-corrector iterative method for approximate solvability
of variational inequality problem (1.1).

Algorithm 3. For a given x0 ∈ H, find xn+1 by the iterative scheme

yn = (1− βn)xn + βn [xn − g(xn) + Jϕ [g(xn)− ρ(T (xn)−A(xn))]]

xn+1 = (1− αn)xn + αn [xn − g(xn) + Jϕ [g(yn)− ρ(T (yn)−A(yn))]] ,
(1.5)

n = 0, 1, 2, . . . , where {αn}, {βn} are sequences in [0, 1], such that
∑∞
n=0 αn =∞.
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2 main result

We now study the approximate solvability of the problem (1.1) using Algorithm 3. We first recall
some definitions:

Definition 2.1. An operator T : H → H with respect to an arbitrary operator g is said to be :

(i) (g, ϕ)−strongly monotone, if for each x ∈ H, there exists a constant ϕ > 0 such that

〈T (x)− T (y), g(x)− g(y)〉 ≥ ϕ ‖g(x)− g(y)‖2

holds, for all y ∈ H;

(ii) (g, ψ)−Lipschitz continuous, if for each x ∈ H, there exists a constant ψ > 0 such that

‖T (x)− T (y)‖ ≤ ψ ‖g(x)− g(y)‖

holds, for all y ∈ H.

Definition 2.2. A mapping g : H → H is said to be δ−cocoercive [6], if for all x, y ∈ H, there
exists a constant δ > 0, such that

〈g(x)− g(y), x− y〉 ≥ δ ‖g(x)− g(y)‖2 .

This implies that
‖x− y‖ ≥ δ ‖g(x)− g(y)‖ ,

i.e., every δ−cocoercive mapping T is 1
δ −Lipschitz continuous.

Our main result is as follows:

Theorem 2.3. Let ϕ : H → R ∪ {+∞} be a proper convex lower semi-continuous function,
g : H → H be a δ−cocoercive mapping, T : H → H be a (g, ψ) strongly monotone, (g, ϕ1)-
Lipschitz continuous mapping and A : H → H be a (g, ϕ2)-Lipschitz continuous mapping. If

d := ψ2 − 1
2

(
ϕ2

1 + ϕ2
2

)
> 0, δ ≥ 1 and ρ ∈

(
ψ−
√
d

ϕ2
1+ϕ2

2
, ψ+

√
d

ϕ2
1+ϕ2

2

)
, then the sequence {xn} generated by

Algorithm 3 converges to a solution x∗ of (1.1).

Proof. For u ∈ H, set hu = Tu−Au. Let x∗ ∈ H be a solution of (1.1), by Lemma 1.4, we have

x∗ = x∗ − g(x∗) + Jϕ (g(x∗)− ρ(T (x∗)−A(x∗))) = x∗ − g(x∗) + Jϕ (g(x∗)− ρh(x∗)) .

Using (1.5), we have

‖xn+1 − x∗‖ = ‖(1− αn)(xn − x∗) + αn [xn − g(xn) + Jϕ (g(yn)− ρh(yn))− x∗]‖
≤ (1− αn) ‖xn − x∗‖+ αn ‖xn − x∗ − (g(xn)− g(x∗))‖

+ αn ‖Jϕ (g(yn)− ρh(yn))− Jϕ (g(x∗)− ρh(x∗))‖
≤ (1− αn) ‖xn − x∗‖+ αn ‖xn − x∗ − (g(xn)− g(x∗))‖

+ αn ‖g(yn)− g(x∗)− ρ (h(yn)− h(x∗))‖ . (2.1)
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Now

‖g(yn)− g(x∗)− ρ (h(yn)− h(x∗))‖2

= ‖g(yn)− g(x∗)− ρ (T (yn)− T (x∗)) + ρ(A(yn)−A(x∗))‖2

≤ 2 ‖g(yn)− g(x∗)− ρ (T (yn)− T (x∗))‖2 + 2ρ2 ‖A(yn)−A(x∗)‖2

≤ 2 ‖g(yn)− g(x∗)− ρ (T (yn)− T (x∗))‖2 + 2ρ2ϕ2
2 ‖g(yn)− g(x∗)‖2 . (2.2)

Also,

‖g(yn)− g(x∗)− ρ (T (yn)− T (x∗))‖2

= ‖g(yn)− g(x∗)‖2 − 2ρ 〈T (yn)− T (x∗), g(yn)− g(x∗)〉

+ ρ2 ‖T (yn)− T (x∗)‖2

≤ ‖g(yn)− g(x∗)‖2 − 2ρψ ‖g(yn)− g(x∗)‖2 + ρ2ϕ2
1 ‖g(yn)− g(x∗)‖2

=
(
1− 2ρψ + ρ2ϕ2

1

)
‖g(yn)− g(x∗)‖2 . (2.3)

Substituting (2.3) into (2.2), we get

‖g(yn)− g(x∗)− ρ (h(yn)− h(x∗))‖2

≤ 2
(
1− 2ρψ + ρ2(ϕ2

1 + ϕ2
2)
)
‖g(yn)− g(x∗)‖2 . (2.4)

Since g is δ−cocoercive, we have

‖xn − x∗ − (g(xn)− g(x∗))‖2

= ‖xn − x∗‖2 − 2 〈g(xn)− g(x∗), xn − x∗〉+ ‖g(xn)− g(x∗)‖2

≤ ‖xn − x∗‖2 − 2δ ‖g(xn)− g(x∗)‖2 + ‖g(xn)− g(x∗)‖2

= ‖xn − x∗‖2 + (1− 2δ) ‖g(xn)− g(x∗)‖2

≤
(

1 +
1− 2δ

δ2

)
‖xn − x∗‖2

=

(
δ − 1

δ

)2

‖xn − x∗‖2 . (2.5)

Substituting (2.4) and (2.5) into (2.1), we get

‖xn+1 − x∗‖ ≤ (1− αn) ‖xn − x∗‖+ αn

(
δ − 1

δ

)
‖xn − x∗‖+ αn

θ

δ
‖yn − x∗‖ , (2.6)

where θ =
√

2 (1− 2ρψ + ρ2(ϕ2
1 + ϕ2

2)) < 1 by assumption.
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Again by Algorithm 3, we have

‖yn − x∗‖ = ‖(1− βn)xn + βn [xn − g(xn) + Jϕ (g(xn)− ρh(xn))]− x∗‖
≤ (1− βn) ‖xn − x∗‖+ βn ‖xn − x∗ − (g(xn)− g(x∗))‖

+ βn ‖Jϕ (g(xn)− ρh(xn))− Jϕ (g(x∗)− ρh(x∗))‖
≤ (1− βn) ‖xn − x∗‖+ βn ‖xn − x∗ − (g(xn)− g(x∗))‖

+ βn ‖g(xn)− g(x∗)− ρ (h(xn)− h(x∗))‖ . (2.7)

Now,

‖g(xn)− g(x∗)− ρ (h(xn)− h(x∗))‖2

= ‖g(xn)− g(x∗)− ρ (T (xn)− T (x∗)) + ρ (A(xn)−A(x∗))‖2

≤ 2 ‖g(xn)− g(x∗)− ρ (T (xn)− T (x∗))‖2 + 2ρ2 ‖A(xn)−A(x∗)‖2

≤ 2 ‖g(xn)− g(x∗)− ρ (T (xn)− T (x∗))‖2 + 2ρ2ϕ2
2 ‖g(xn)− g(x∗)‖2 . (2.8)

Also,

‖g(xn)− g(x∗)− ρ (T (xn)− T (x∗))‖2

= ‖g(xn)− g(x∗)‖2 − 2ρ 〈T (xn)− T (x∗), g(xn)− g(x∗)〉

+ ρ2 ‖T (xn)− T (x∗)‖2

≤
(
1− 2ρψ + ρ2ϕ2

1

)
‖g(xn)− g(x∗)‖2 . (2.9)

Substituting (2.9) into (2.8), we have

‖g(xn)− g(x∗)− ρ (h(xn)− h(x∗))‖2

≤ 2
(
1− 2ρψ + ρ2(ϕ2

1 + ϕ2
2)
)
‖g(xn)− g(x∗)‖2

≤
2
(
1− 2ρψ + ρ2(ϕ2

1 + ϕ2
2)
)

δ2
‖xn − x∗‖2 . (2.10)

Substituting (2.5) and (2.10) into (2.7), we get

‖yn − x∗‖ ≤ (1− βn) ‖xn − x∗‖+ βn

(
δ − 1

δ

)
‖xn − x∗‖

+ βn
θ

δ
‖xn − x∗‖

=

(
1− βn

δ
+
βnθ

δ

)
‖xn − x∗‖

≤ ‖xn − x∗‖ . (2.11)

Again, substituting (2.11) into (2.6), we have

‖xn+1 − x∗‖ ≤
(

1− αn
δ

(1− θ)
)
‖xn − x∗‖ ,

taking limit n→∞ we get that the sequence {xn} converges strongly to x∗.
This completes the proof. q.e.d.



Approximate solvability of general strongly mixed variational inequalities 19

Remark 1. Theorem 2.3 extend and improve main result of [5].

If K is closed convex set in H and ϕ(x) = δK(x), for all x ∈ K, where δK is the indicator
function of K defined by

δK(x) =

{
0, if x ∈ K ;

+∞, otherwise ,

then the problem (1.1) reduces to the following general strongly variational inequality problem:
Consider the problem of finding x∗ ∈ K, g(x∗) ∈ K such that

〈T (x∗)−A(x∗), g(y∗)− g(x∗)〉 ≥ 0 , ∀ y∗ ∈ K . (2.12)

It is well known that, if ϕ(·) is the indicator function of K in H, then Jϕ = PK , the projection
operator of H onto the closed convex set K, and consequently, the following result can be obtain
from Theorem 2.3.

Corollary 2.4. Let H be a real Hilbert space, K a nonempty closed convex subset of H. Let
g : H → H be a δ−cocoercive mapping, T : K → H be a (g, ψ) strongly monotone and (g, ϕ1)-
Lipschitz continuous mapping and A : K → H be (g, ϕ2)-Lipschitz continuous mapping. Let
x0 ∈ K, construct a sequence {xn} in K by

g(yn) = (1− βn)g(xn) + βnPK [g(xn)− ρ(T (xn)−A(xn))]

g(xn+1) = (1− αn)g(xn) + αnPK [g(yn)− ρ(T (yn)−A(yn))] , n = 0, 1, 2, . . . ,

where {αn}, {βn} are sequences in [0, 1] for all n ≥ 0 such that
∑∞
n=0 αn = ∞. If d := ψ2 −

1
2

(
ϕ2

1 + ϕ2
2

)
> 0, δ ≥ 1 and ρ ∈

(
ψ−
√
d

ϕ2
1+ϕ2

2
, ψ+

√
d

ϕ2
1+ϕ2

2

)
, then the sequence {xn} converges strongly to a

solution x∗ of (2.12).

Remark 2. Corollary 2.4 extend and improve results of [13], [15].
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