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Abstract

The objective of this paper is to obtain an upper bound to the second Hankel determinant
|a2a4−a23| for starlike and convex functions of order α (0 ≤ α < 1), also for the inverse function
of f , belonging to the class of convex functions of order α, using Toeplitz determinants.
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1 Introduction

Let A denote the class of functions f of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A, consisting of univalent functions.
In 1976, Noonan and Thomas [15] defined the qth Hankel determinant of f for q ≥ 1 and n ≥ 1 as

Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

. (1.2)

This determinant has been considered by several authors in the literature. For example, Noor [16]
determined the rate of growth of Hq(n) as n → ∞ for the functions in S with bounded boundary.
Ehrenborg [5] studied the Hankel determinant of exponential polynomials. The Hankel transform
of an integer sequence and some of its properties were discussed by Layman in [11]. One can
easily observe that the Fekete-Szegö functional is H2(1). Fekete-Szegö then further generalized the
estimate |a3−µa2

2| with µ real and f ∈ S. Ali [3] found sharp bounds on the first four coefficients and
sharp estimate for the Fekete-Szegö functional |γ3−tγ2

2 |, where t is real, for the inverse function of f
defined as f−1(w) = w+

∑∞
n=2 γnw

n to the class of strongly starlike functions of order α(0 < α ≤ 1)

denoted by S̃T (α). For our discussion in this paper, we consider the Hankel determinant in the
case of q = 2 and n = 2, known as the second Hankel determinant

a2 a3

a3 a4
= |a2a4 − a2

3|. (1.3)
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Janteng, Halim and Darus [10] have considered the functional|a2a4 − a2
3| and found a sharp bound

for the function f in the subclass RT of S, consisting of functions whose derivative has a positive real
part studied by Mac Gregor [12]. In their work, they have shown that if f ∈ RT then |a2a4−a2

3| ≤ 4
9 .

These authors [9] also obtained the second Hankel determinant and sharp bounds for the familiar
subclasses of S, namely, starlike and convex functions denoted by ST and CV and shown that
|a2a4 − a2

3| ≤ 1 and |a2a4 − a2
3| ≤ 1

8 respectively. Mishra and Gochhayat [13] have obtained the
sharp bound to the non- linear functional |a2a4 − a2

3| for the class of analytic functions denoted by

Rλ(α, ρ)(0 ≤ ρ ≤ 1, 0 ≤ λ < 1, |α| < π
2 ), defined as Re

{
eiα

Ωλz f(z)
z

}
> ρ cosα, using the fractional

differential operator denoted by Ωλz , defined by Owa and Srivastava [17]. These authors have shown

that, if f ∈ Rλ(α, ρ) then |a2a4 − a2
3| ≤

{
(1−ρ)2(2−λ)2(3−λ)2cos2α

9

}
. Similarly, the same coefficient

inequality was calculated for certain subclasses of analytic functions by many authors ([14], [4], [1]).
Motivated by the above mentioned results obtained by different authors in this direction, in this

paper, we obtain an upper bound to the functional |a2a4 − a2
3| for the function f belonging to the

classes starlike and convex functions of order α, denoted by ST (α) and CV (α), defined as follows.
Definition 1.1. Let f be given by (1.1). Then f ∈ ST (α) (0 ≤ α ≤ 1), if and only if

Re

{
zf ′(z)

f(z)

}
≥ α, ∀z ∈ E. (1.4)

It is observed that for α = 0, we obtain ST (0) = ST . It follows that ST (α) ⊂ ST , for (0 ≤ α < 1),
ST (1) = z and ST (α) ⊆ ST (β), for α ≥ β. Robertson [19] obtained that if f ∈ ST (α) (0 ≤ α ≤ 1),
then

|an| ≤

[
1

(n− 1)!

n∏
k=2

(k − 2α)

]
, for n = 2, 3, ... (1.5)

The inequality in (1.5) is sharp for the function sα(z) =
{

z
(1−z)2(1−α)

}
, for every integer n ≥ 2.

Definition 1.2. Let f be given by (1.1). Then f ∈ CV (α) (0 ≤ α ≤ 1), if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
≥ α, ∀z ∈ E. (1.6)

Choosing α = 0, we get CV (0) = CV . It is observed that the sets ST (α) and CV (α) become
smaller as the value of α increases [6]. Further, from the Definitions 1.1 and 1.2, we observe that,
there exists an Alexander type Theorem [2], which relates the classes ST (α) and CV (α), stated as
follows.

f ∈ CV (α)⇔ zf ′ ∈ ST (α).

We first state some preliminary Lemmas required for proving our results.

2 Preliminary Results

Let P denote the class of functions p analytic in E, for which Re{p(z)} > 0,

p(z) = (1 + c1z + c2z
2 + c3z

3 + ...) =

[
1 +

∞∑
n=1

cnz
n

]
,∀z ∈ E. (2.1)
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Lemma 2.1. ([18]) If p ∈ P, then |ck| ≤ 2, for each k ≥ 1.
Lemma 2.2. ([7]) The power series for p given in (2.1) converges in the unit disc E to a function
in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. These are strictly positive except for p(z) =
∑m
k=1 ρkp0(exp(itk)z),

ρk > 0, tk real and tk 6= tj , for k 6= j; in this case Dn > 0 for n < (m− 1) and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition is due to Caratheodory and Toeplitz can be found in [7].
We may assume without restriction that c1 > 0. On using Lemma 2.2, for n = 2 and n = 3
respectively, we get

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re{c21c2} − 2 | c2 |2 − 4c21] ≥ 0,

which is equivalent to

2c2 = {c21 + x(4− c21)}, for some x, |x| ≤ 1. (2.2)

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2 ≤ 2(4− c21)2 − 2|(2c2 − c21)|2. (2.3)

From the relations (2.2) and (2.3), after simplifying, we get

4c3 = {c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z}
for some real value of z, with |z| ≤ 1. (2.4)

3 Main Results

Theorem 3.1. If f(z) ∈ ST (α) (0 ≤ α ≤ 1
2 ), then

|a2a4 − a2
3| ≤ (1− α)2.

Proof. Since f(z) = z +
∑∞
n=2 anz

n ∈ ST (α) , from the Definition 1.1, there exists an analytic
function p ∈ P in the unit disc E with p(0) = 1 and Re{p(z)} > 0 such that{

zf ′(z)− αf(z)

(1− α)f(z)

}
⇔ {zf ′(z)− αf(z)} = {(1− α)f(z)p(z)} . (3.1)
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Replacing f(z), f ′(z) and p(z) with their equivalent series expressions in (3.1), we have[
z

{
1 +

∞∑
n=2

nanz
n−1

}
− α

{
z +

∞∑
n=2

anz
n

}]

= (1− α)

[{
z +

∞∑
n=2

anz
n

}
×

{
1 +

∞∑
n=1

cnz
n

}]
.

Upon simplification, we obtain

[a2z + 2a3z
2 + 3a4z

3 + ...] = (1 − α)[c1z + (c2 + c1a2)z2 + (c3 + c2a2 + c1a3)z3 + ...] (3.2)

Equating the coefficients of like powers of z, z2 and z3 respectively in (3.2), after simplifying, we
get

[a2 = (1− α)c1; a3 =
(1− α)

2

{
c2 + (1− α)c21

}
;

a4 =
(1− α)

6

{
2c3 + 3(1− α)c1c2 + (1− α)2c31

}
] (3.3)

Substituting the values of a2, a3 and a4 from (3.3) in the second Hankel determinant |a2a4− a2
3|

for the function f ∈ ST (α), we have

|a2a4 − a2
3| =

∣∣∣∣(1− α)c1 ×
(1− α)

6

{
2c3 + 3(1− α)c1c2 + (1− α)2c31

}
− (1− α)2

4

{
c2 + (1− α)c21

}2
∣∣∣∣ .

After simplifying, we get

|a2a4 − a2
3| =

(1− α)2

12
×
∣∣4c1c3 − 3c22 − (1− α)2c41

∣∣ . (3.4)

Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from Lemma 2.2 in the
right hand side of (3.4), we have∣∣4c1c3 − 3c22 − (1− α)2c41

∣∣ =∣∣∣∣4c1 × 1

4
{c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z}

−3× 1

4
{c21 + x(4− c21)}2 − (1− α)2c41

∣∣∣∣
Using the facts that |z| < 1 and |xa + yb| ≤ |x||a| + |y||b|, where x, y, a and b are real numbers,
after simplifying, we get

4
∣∣4c1c3 − 3c22 − (1− α)2c41

∣∣ ≤ |(−4α2 + 8α− 3)c41 + 8c1(4− c21)+

2c21(4− c21)|x| − (c1 + 2)(c1 + 6)(4− c21)|x|2|. (3.5)
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Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1− a)(c1− b), where a, b ≥ 0 in the right hand
side of (3.5), upon simplification, we obtain

4
∣∣4c1c3 − 3c22 − (1− α)2c41

∣∣ ≤ |(−4α2 + 8α− 3)c41 + 8c1(4− c21)+

2c21(4− c21)|x| − (c1 − 2)(c1 − 6)(4− c21)|x|2| (3.6)

Choosing c1 = c ∈ [0, 2], applying Triangle inequality and replacing | x | by µ in the right hand
side of (3.6), we get

4
∣∣4c1c3 − 3c22 − (1− α)2c41

∣∣ ≤ [(4α2 − 8α+ 3)c4 + 8c(4− c2)+

2c2(4− c2)µ+ (c− 2)(c− 6)(4− c2)µ2] = F (c, µ)(say), with 0 ≤ µ = |x| ≤ 1. (3.7)

Where

F (c, µ) = [(4α2 − 8α + 3)c4 + 8c(4 − c2) + 2c2(4 − c2)µ + (c − 2)(c − 6)(4 − c2)µ2]. (3.8)

We next maximize the function F (c, µ) on the closed square [0, 2]× [0, 1]. Differentiating F (c, µ) in
(3.8) partially with respect to µ, we get

∂F

∂µ
= 2

[
c2 + (c− 2)(c− 6)µ

]
× (4− c2). (3.9)

For 0 < µ < 1, for fixed c with 0 < c < 2, from (3.9), we observe that ∂F
∂µ > 0. Consequently,

F (c, µ) is an increasing function of µ and hence it cannot have a maximum value at any point in
the interior of the closed square [0, 2]× [0, 1].
Moreover, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c)(say). (3.10)

From the relations (3.8) and (3.10), upon simplification, we obtain

G(c) =
{

4α(α− 2)c4 + 48
}
. (3.11)

G′(c) =
{

16α(α− 2)c3
}
. (3.12)

From the expression (3.12), we observe that G′(c) ≤ 0 for all values of
0 ≤ c ≤ 2 and 0 ≤ α ≤ 1

2 . Therefore, G(c) is a monotonically decreasing function of c in the
interval [0, 2] so that its maximum value occurs at c = 0. From (3.11), we obtain

max
0≤c≤2

G(0) = 48. (3.13)

From the expressions (3.7) and (3.13), after simplifying, we get∣∣4c1c3 − 3c22 − (1− α)2c41
∣∣ ≤ 12. (3.14)

From the expressions (3.4) and (3.14), upon simplification, we obtain

|a2a4 − a2
3| ≤ (1− α)2. (3.15)
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This completes the proof of our Theorem 3.1.
Remark. For the choice of α = 0, we get ST (0) = ST , for which, from (3.15), we get |a2a4−a2

3| ≤ 1.
This inequality is sharp and coincides with that of Janteng, Halim and Darus [9].
Theorem 3.2. If f(z) ∈ CV (α) (0 ≤ α ≤ 1), then

|a2a4 − a2
3| ≤

[
(1− α)2(17α2 − 36α+ 36)

144(α2 − 2α+ 2)

]
.

Proof. Since f(z) = z +
∑∞
n=2 anz

n ∈ CV (α) , from the Definition 1.2, there exists an analytic
function p ∈ P in the unit disc E with p(0) = 1 and Re{p(z)} > 0 such that{

{f ′(z) + zf ′′(z)} − αf ′(z)
(1− α)f ′(z)

}
= p(z)

⇔ {(1− α)f ′(z) + zf ′′(z)} = {(1− α)f ′(z)p(z)} . (3.16)

Replacing f ′(z), f ′′(z) and p(z) with their equivalent series expressions in (3.16), we have[
(1− α)

{
1 +

∞∑
n=2

nanz
n−1

}
+ z

{ ∞∑
n=2

n(n− 1)anz
n−2

}]

=

[
(1− α)

{
1 +

∞∑
n=2

nanz
n−1

}
×

{
1 +

∞∑
n=1

cnz
n

}]
.

Upon simplification, we obtain

[2a2z + 6a3z
2 + 12a4z

3 + ...]

= (1− α)[c1z + (c2 + 2c1a2)z2 + (c3 + 2c2a2 + 3c1a3)z3 + ...]. (3.17)

Equating the coefficients of like powers of z, z2 and z3 respectively in (3.17), after simplifying, we
get

[a2 =
(1− α)

2
c1; a3 =

(1− α)

6

{
c2 + (1− α)c21

}
;

a4 =
(1− α)

24

{
2c3 + 3(1− α)c1c2 + (1− α)2c31

}
] (3.18)

Substituting the values of a2, a3 and a4 from (3.18) in the second Hankel functional |a2a4 − a2
3|

for the function f ∈ CV (α), upon simplification, we obtain

|a2a4 − a2
3| =

(1− α)2

144
×
∣∣6c1c3 − 4c22 + (1− α)c21c2 − (1− α)2c41

∣∣ . (3.19)

Applying the same procedure as described in Theorem 3.1, we get

2
∣∣6c1c3 − 4c22 + (1− α)c21c2 − (1− α)2c41

∣∣ ≤ |(3α− 2α2)c41

+ 6c1(4− c21) + (3− α)c21(4− c21)|x| − (c1 + 2)(c1 + 4)(4− c21)|x|2|. (3.20)
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Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1− a)(c1− b), where a, b ≥ 0 in the right hand
side of (3.20), upon simplification, we obtain

2
∣∣6c1c3 − 4c22 + (1− α)c21c2 − (1− α)2c41

∣∣ ≤ |(3α− 2α2)c41

+ 6c1(4− c21) + (3− α)c21(4− c21)|x| − (c1 − 2)(c1 − 4)(4− c21)|x|2|. (3.21)

Applying the same procedure as described in Theorem 3.1, we obtain

2
∣∣6c1c3 − 4c22 + (1− α)c21c2 − (1− α)2c41

∣∣ ≤ [(3α− 2α2)c4

+ 6c(4− c2) + (3− α)c2(4− c2)µ+ (c− 2)(c− 4)(4− c2)µ2]

= F (c, µ)(say), with 0 ≤ µ = |x| ≤ 1.

(3.22)

Where

F (c, µ) = [(3α − 2α2)c4 + 6c(4 − c2) + (3 − α)c2(4 − c2)µ + (c − 2)(c − 4)(4 − c2)µ2]. (3.23)

We next maximize the function F (c, µ) on the closed square [0, 2]× [0, 1]. Differentiating F (c, µ) in
(3.23) partially with respect to µ, we get

∂F

∂µ
=
[
(3− α)c2 + 2(c− 2)(c− 4)µ

]
× (4− c2). (3.24)

For 0 < µ < 1, for fixed c with 0 < c < 2 and for (0 ≤ α ≤ 1) , from (3.24), we observe that ∂F
∂µ > 0.

Consequently, F (c, µ) is an increasing function of µ and hence it cannot have a maximum value at
any point in the interior of the closed square [0, 2]× [0, 1].
Moreover, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c)(say). (3.25)

In view of the expression (3.25), replacing µ by 1 in (3.23), after simplifying, we get

G(c) = 2
{
−(α2 − 2α+ 2)c4 + 2(2− α)c2 + 16

}
. (3.26)

G′(c) = 2
{
−4(α2 − 2α+ 2)c3 + 4(2− α)c

}
. (3.27)

G′′(c) = 2
{
−12(α2 − 2α+ 2)c2 + 4(2− α)

}
. (3.28)

For Optimum value of G(c), consider G′(c) = 0. From (3.27), we get

−8c
{

(α2 − 2α+ 2)c2 − (2− α)
}

= 0. (3.29)

We now discuss the following Cases.
Case 1) If c = 0, then, from (3.28), we obtain

G′′(c) = {8(2− α)} > 0, for 0 ≤ α < 1.
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From the second derivative test, G(c) has minimum value at c = 0.
Case 2) If c 6= 0, then, from (3.29), we get

c2 =

{
(2− α)

(α2 − 2α+ 2)

}
. (3.30)

Using the value of c2 given in (3.30) in (3.28), after simplifying, we obtain

G′′(c) = −{16(2− α)} < 0, for 0 ≤ α < 1.

By the second derivative test, G(c) has maximum value at c, where c2 given in (3.30). Using the
value of c2 given by (3.30) in (3.26), upon simplification, we obtain

max
0≤c≤2

G(c) = 2

[
(17α2 − 36α+ 36)

(α2 − 2α+ 2)

]
. (3.31)

Considering, the maximum value of G(c) at c, where c2 is given by (3.30) , from (3.22) and (3.31),
after simplifying, we get

∣∣6c1c3 − 4c22 + (1− α)c21c2 − (1− α)2c41
∣∣ ≤ [ (17α2 − 36α+ 36)

(α2 − 2α+ 2)

]
. (3.32)

From the expressions (3.19) and (3.32), we obtain

|a2a4 − a2
3| ≤

[
(1− α)2(17α2 − 36α+ 36)

144(α2 − 2α+ 2)

]
. (3.33)

This completes the proof of our Theorem 3.2.
Remark. Choosing α = 0, we have CV (0) = CV , for which, from (3.33), we get |a2a4 − a2

3| ≤ 1
8 .

This inequality is sharp and coincides with that of Janteng, Halim and Darus [9].
Theorem 3.3. If f(z) = z +

∑∞
n=2 anz

n ∈ CV (α)(0 ≤ α < 2
5 ) and

f−1(w) = w +
∑∞
n=2 tnw

n near w = 0, is the inverse function of f , then

|t2t4 − t23| ≤
[

(57α2 − 84α+ 36)

288

]
.

Proof. Sincef(z) = z+
∑∞
n=2 anz

n ∈ CV (α), from the definition of inverse function of f , we have

w = f
{
f−1(w)

}
. (3.34)

Using the expression for f(z), the relation (3.34) is equivalent to

w = f
{
f−1(w)

}
=

[
f−1(w) +

∞∑
n=2

an
{
f−1(w)

}n]
=
[{
f−1(w)

}
+ a2

{
f−1(w)

}2
+ a3

{
f−1(w)

}3
+ ...

]
. (3.35)
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Using the expression for f−1(w) in (3.35), we have

w =
{

(w + t2w
2 + t3w

3 + ...) + a2(w + t2w
2 + t3w

3 + ...)2+

a3(w + t2w
2 + t3w

3 + ...)3 + a4(w + t2w
2 + t3w

3 + ...)4 + ...
}
.

Upon simplification, we obtain{
(t2 + a2)w2 + (t3 + 2a2t2 + a3)w3 + (t4 + 2a2t3 + a2t

2
2 + 3a3t2 + a4)w4 + ...

}
= 0. (3.36)

Equating the coefficients of like powers of w2, w3 and w4 on both sides of (3.36) respectively, we
have
{(t2 + a2) = 0;(t3 + 2a2t2 + a3) = 0;(t4 + 2a2t3 + a2t

2
2 + 3a3t2 + a4) = 0}.

After simplifying, we get

{t2 = −a2; t3 =
{
−a3 + 2a2

2

}
; t4 =

{
−a4 + 5a2a3 +−5a2

2

}
. (3.37)

Using the values of a2, a3 and a4 in (3.18) along with (3.37), upon simplification, we obtain

{t2 = − (1− α)c1
2

; t3 = − (1− α)

6

{
c2 − 2(1− α)c21

}
;

t4 = − (1− α)

24

{
2c3 − 7(1− α)c1c2 + 6(1− α)2c31

}
} (3.38)

Substituting the values of t2, t3 and t4 from (3.38) in the second Hankel functional |t2t4− t23| for
the inverse function f ∈ CV (α), after simplifying, we get

|t2t4 − t23| =
(1− α)2

144
× |6c1c3 − 5(1 − α)c21c2 − 4c22 + 2(1 − α)2c41|. (3.39)

Substituting the values of c2 and c3 from (2.2) and(2.4) respectively from Lemma 2.2 in the
right hand side of (3.39), using the same procedure as described in Theorem 3.1, upon simplification,
we obtain

2|6c1c3 − 5(1− α)c21c2 − 4c22 + 2(1− α)2c41| ≤ | − (3α− 4α2)c41

+ 6c1(4− c21) + (3− 5α)c21(4− c21)|x| − (c1 + 2)(c1 + 4)(4− c21)|x|2|. (3.40)

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1− a)(c1− b), where a, b ≥ 0 in the right hand
side of (3.40), applying the same procedure as described in Theorem 3.1, after simplifying, we get

2|6c1c3 − 5(1− α)c21c2 − 4c22 + 2(1− α)2c41| ≤
[
(3α− 4α2)c4+

6c(4− c2) + (3− 5α)c2(4− c2)µ− (c− 2)(c− 4)(4− c2)µ2
]

= F (c, µ)(say), with 0 ≤ µ = |x| ≤ 1. (3.41)

Where

F (c, µ) =
[
(3α− 4α2)c4 + 6c(4− c2)+ (3− 5α)c2(4− c2)µ+ (c− 2)(c− 4)(4− c2)µ2

]
. (3.42)
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We next maximize the function F (c, µ) on the closed square [0, 2]× [0, 1]. Differentiating F (c, µ) in
(3.42) partially with respect to µ, we obtain

∂F

∂µ
=
[
(3− 5α)c2 + 2(c− 2)(c− 4)µ

]
× (4− c2). (3.43)

For 0 < µ < 1, for fixed c with 0 < c < 2 and for 0 ≤ α ≤ 1), from (3.43), we observe that ∂F
∂µ > 0.

Consequently, F (c, µ) is an increasing function of c and hence it cannot have a maximum value at
any point in the interior of the closed square [0, 2]× [0, 1]. Moreover, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c)(say). (3.44)

Replacing µ by 1 in (3.42), after simplifying, we get

G(c) =
{
−4(1− α)2c4 + 4(2− 5α)c2 + 32

}
. (3.45)

G′(c) =
{
−16(1− α)2c3 + 8(2− 5α)c

}
. (3.46)

G′′(c) =
{
−48(1− α)2c2 + 8(2− 5α)

}
. (3.47)

For maximum or minimum value of G(c), consider G′(c) = 0. From (3.46), we get

−8c
{

2(1− α)2c2 − (2− 5α)
}

= 0. (3.48)

We now discuss the following Cases.
Case 1) If c = 0, then, from (3.47), we obtain

G′′(c) = {8(2− 5α)} > 0, for 0 ≤ α < 2

5
.

From the second derivative test, G(c) has minimum value at c = 0.
Case 2) If c 6= 0, then, from (3.48), we get

c2 =

{
(2− 5α)

2(1− α)2

}
. (3.49)

Using the value of c2 given in (3.49) in (3.47), after simplifying, we obtain

G′′(c) = −{16(2− 5α)} < 0, for 0 ≤ α < 2

5
.

By the second derivative test, G(c) has maximum value at c, where c2 given in (3.49). Using the
value of c2 given by (3.49) in (3.45), upon simplification, we obtain

max
0≤c≤2

G(c) =

[
(57α2 − 84α+ 36)

(1− α)2

]
. (3.50)

Considering, the maximum value of G(c) at c, where c2 is given by (3.49), from (3.41) and (3.50),
after simplifying, we get

|6c1c3 − 5(1 − α)c21c2 − 4c22 + 2(1 − α)2c41| ≤
[

(57α2 − 84α+ 36)

2(1− α)2

]
. (3.51)
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From the expressions (3.39) and (3.51), upon simplification, we obtain

|t2t4 − t23| ≤
[

(57α2 − 84α+ 36)

288

]
. (3.52)

This completes the proof of our Theorem 3.3.
Remark.1 Choosing α = 0, we get CV (0) = CV , class of convex functions, for which, from (3.52),
we get |t2t4 − t23| ≤ 1

8 .
Remark.2 For the function f ∈ CV , we have |a2a4 − a2

3| ≤ 1
8 and

|t2t4 − t23| ≤ 1
8 . From these two results, we conclude that the upper bound to the second Hankel

determinant of a convex function and its inverse is the same.
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