A criterion for c-capability of pairs of groups

Azam Hokmabadi ${ }^{1}$, Azam Pourmirzaei ${ }^{2}$, Saeed Kayvanfar ${ }^{2,3, *}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Payame Noor University, Iran
${ }^{2}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran
${ }^{3}$ Department of Mathematics, California State University Northridge, Northridge, CA 91330, USA
*Corresponding author
E-mail: ahokmabadi@pnu.ac.ir, az_po3@yahoo.com, skayvanf@math.um.ac.ir, skayvanf@yahoo.com

Abstract

The notion of capability for pairs of groups was defined by Ellis in 1996. In this paper, we extend the theory of c-capability for pairs of groups and introduce a criterion, denoted by $Z_{c}^{*}(G, N)$, for c-capability of a pair (G, N) of groups. We also study the behavior of $Z_{c}^{*}(G, N)$ with respect to direct products of groups.

2000 Mathematics Subject Classification. 20F14. 20F28.
Keywords. c-capability, pair of groups.

1 Introduction and Motivation

In 1940, P. Hall [6] remarked that characterization of groups which are the central quotient groups of other groups, is important in classifying groups of prime-power order. This kind of groups was named capable by Hall and Senior [5]. So a group G is called capable if there exists a group E such that $G \cong E / Z(E)$. Capability of groups was first studied by R. Baer [1] who determined all capable groups which are direct sums of cyclic groups. In 1996, Ellis [4] extended the theory of capability in an interesting way to a theory for pairs of groups. By a pair of groups we mean a group G and a normal subgroup N and this is denoted by (G, N). He also introduced the exterior G-center subgroup of $N, Z_{G}^{\wedge}(N)$, for any pair (G, N) and proved that the pair (G, N) is capable if and only if $Z_{G}(N)=1$. The capability of pairs of groups has been also studied more by the authors in [8].
On the other hand, in 1997 Burns and Ellis [3] introduced the notion of c-capability of groups. A group G is said to be c-capable if there exists a group E such that $G \cong E / Z_{c}(E)$. They also introduced the subgroup $Z_{c}^{*}(G)$ with the property that G is c-capable if and only if $Z_{c}^{*}(G)=1$. In this paper following Burns and Ellis [3] and Ellis [4], we extend the theory of c-capability for pairs of groups . We also introduce a subgroup of N, shown by $Z_{c}^{*}(G, N)$, that can be used as a criterion for c-capability of a pair (G, N) of groups. The properties of $Z_{c}^{*}(G, N)$ and its behavior with respect to the products of groups will also be studied. Finally, a set of examples of c-capable pairs shall be given. In other words, the paper actually generalizes the works $[3,4,8]$ somehow.

Tbilisi Mathematical Journal 5(1) (2012), pp. 31-38.
Tbilisi Centre for Mathematical Sciences \& College Publications.
Received by the editors: 3 May 2011; 11 May 2012.
Accepted for publication: 28 May 2012.

2 Main Results

Let M and G be two arbitrary groups and $\alpha_{1}: G \rightarrow \operatorname{Aut}(M)$ be a group homomorphism whose image contains $\operatorname{Inn}(M)$. Then G acts on M by $m^{g}=\alpha_{1}(g)(m)$, for all $g \in$ $G, m \in M$. The G-commutator subgroup of M is defined the subgroup $[M, G]$ generated by all the G-commutators $[m, g]=m^{-1} m^{g}$, where m^{g} is the action of g on m, for all $g \in G, m \in M$ and the G-center of M is defined to be the subgroup

$$
Z(M, G)=\left\{m \in M \mid m^{g}=m, \forall g \in G\right\}
$$

Existence of the homomorphism α_{1} implies that $Z(M, G) \subseteq Z(M)$. Also it is easy to see that there is a group homomorphism $\alpha_{2}: G \rightarrow \operatorname{Aut}(M / Z(M, G))$ whose image contains $\operatorname{Inn}(M / Z(M, G))$ and hence G acts on $M / Z(M, G)$. Then we can define the normal subgroup $Z_{2}(M, G)$ of M as follows:

$$
\frac{Z_{2}(M, G)}{Z(M, G)}=Z\left(\frac{M}{Z(M, G)}, G\right)
$$

Now by continuing this process, we shall get to the following definition.
Definition 2.1. For $c \geq 1$, we define the c th G-center subgroup of M as follows:

$$
Z_{1}(M, G)=Z(M, G), \quad \frac{Z_{c}(M, G)}{Z_{c-1}(M, G)}=Z\left(\frac{M}{Z_{c-1}(M, G)}, G\right) \quad(c \geq 2)
$$

So we have the upper G-central series of M,

$$
1=Z_{0}(M, G) \leq Z_{1}(M, G) \leq Z_{2}(M, G) \leq \ldots \leq Z_{c}(M, G) \leq \ldots
$$

It is easy to see that for all $c \geq 1$,

$$
Z_{c}(M, G)=\left\{m \in M \mid\left[\cdots\left[\left[m, g_{1}\right], g_{2}\right], \ldots, g_{c}\right]=1, \forall g_{1}, g_{2}, \ldots, g_{c} \in G\right\}
$$

Now using the above definition we define a relative c-central extension of a pair (G, N) of groups.

Definition 2.2. Let (G, N) be a pair of groups. A relative c-central extension of the pair (G, N) is a group homomorphism $\varphi: E \rightarrow G$, together with an action of G on E such that
(i) $\varphi(E)=N$,
(ii) $\varphi\left(e^{g}\right)=g^{-1} \varphi(e) g$, for all $g \in G, e \in E$,
(iii) $e^{\prime \varphi(e)}=e^{-1} e^{\prime} e$, for all $e, e^{\prime} \in E$,
(iv) $\operatorname{ker} \varphi \subseteq Z_{c}(E, G)$.

Note that conditions (ii) and (iii) in Definition 2.2 assert that φ is a crossed module. A pair (G, N) is said to be c-capable, if there exists a relative c-central extension
$\varphi: E \rightarrow G$ with $\operatorname{ker} \varphi=Z_{c}(E, G)$.
Let (G, N) be a c-capable pair of groups. So there exists a relative c-central extension $\varphi: M \rightarrow G$ with $\operatorname{ker} \varphi=Z_{c}(M, G)$. Then it is straightforward to see that $\bar{\varphi}: M / Z(M, G) \rightarrow G$, defined by $\bar{\varphi}(m Z(M, G))=\varphi(m)$, is a relative $(c-1)$-central extension of (G, N) such that $\operatorname{ker} \varphi=Z_{c-1}(M, G)$. Hence the pair (G, N) is ($\left.c-1\right)$-capable. This implies that every c-capable pair is a capable pair. But the converse is not true generally. For instance, let $G=\left\langle x, y, z \mid x=y x^{-1} y^{3}, y=z y^{-1} z^{3}, z=x z^{-1} x^{3}, x^{16}=1\right\rangle$ and put $Q=G / Z^{*}(G, G)$. Then Theorem 1.4 in [3] shows that the pair (Q, Q) is capable but it is not 2-capable.

It is interesting to find a useful way for determining all c-capable pairs of groups. The following definition provides a criterion for characterizing the c-capability of pairs of groups.

Definition 2.3. Let (G, N) be a pair of groups. Then we define the c th precise center of the pair (G, N) to be
$Z_{c}^{*}(G, N)=\bigcap\left\{\varphi\left(Z_{c}(E, G)\right) \mid \varphi: E \rightarrow G\right.$ is a relative $c-$ central extention of $\left.(G, N)\right\}$.
In particular $Z_{c}^{*}(G, G)$ coincides with the subgroup $Z_{c}^{*}(G)$ defined in [3].
The above definition helps us to state a necessary and sufficient condition for the c-capability of a pair of groups. For doing this, we need the following theorem.

Theorem 2.4. For any pair (G, N) of groups, there exists a relative c-central extension $\varphi: E \rightarrow G$ such that $\varphi\left(Z_{c}(E, G)\right)=Z_{c}^{*}(G, N)$.

Proof. Let $\left\{\varphi_{i}: E_{i} \rightarrow G \mid i \in I\right\}$ be the set of all relative c-central extensions of a pair (G, N). Put

$$
E=\left\{\left\{e_{i}\right\}_{i \in I} \in \prod_{i \in I} E_{i} \mid \exists n \in N \forall i \in I ; \varphi_{i}\left(e_{i}\right)=n\right\} .
$$

Define $\varphi: E \rightarrow G$ by $\varphi\left(\left\{e_{i}\right\}_{i \in I}\right)=n$ such that $\varphi_{i}\left(e_{i}\right)=n$, for all $i \in I$. It is easy to check that φ is a relative c-central extension of the pair (G, N). So $Z_{c}^{*}(G, N) \subseteq \varphi\left(Z_{c}(E, G)\right)$. On the other hand, if $\left\{e_{i}\right\}_{i \in I} \in Z_{c}(E, G)=\prod_{i \in I} Z_{c}\left(E_{i}, G\right)$, then $e_{j} \in Z_{c}\left(E_{j}, G\right)$, for all $j \in I$. This implies that $\varphi\left(\left\{e_{i}\right\}_{i \in I}\right)=\varphi_{j}\left(e_{j}\right) \in \varphi_{j}\left(Z_{c}\left(E_{j}, G\right)\right)$, for all $j \in I$ and so $\varphi\left(\left\{e_{i}\right\}_{i \in I}\right) \in \bigcap_{i \in I} \varphi_{i}\left(Z_{c}\left(E_{i}, G\right)\right)=Z_{c}^{*}(G, N)$. Therefore $\varphi\left(Z_{c}(E, G)\right) \subseteq Z_{c}^{*}(G, N)$ and this completes the proof.

The following important corollary is an immediate consequence of Theorem 2.4.

Corollary 2.5. Let (G, N) be a pair of groups. Then the pair (G, N) is c-capable if and only if $Z_{c}^{*}(G, N)=1$.

The next theorem states another property of the c th precise center subgroup $Z_{c}^{*}(G, N)$.
Theorem 2.6. Let (G, N) be a pair of groups and K be a normal subgroup of G contained in N. Then

$$
\frac{Z_{c}^{*}(G, N) K}{K} \subseteq Z_{c}^{*}\left(\frac{G}{K}, \frac{N}{K}\right)
$$

Proof. By Theorem 2.4, there exists a relative c-central extension $\varphi: M \rightarrow G / K$ of $(G / K, N / K)$ such that $\varphi\left(Z_{c}(M, G / K)\right)=Z_{c}^{*}(G / K, N / K)$. Put $H=\{(m, n) \in$ $M \times N \mid \varphi(m)=n K\}$ with an action of G on H defined by $(m, n)^{g}=\left(m^{g K}, n^{g}\right)$, for all $g \in G, n \in N$ and $m \in M$. Then the group homomorphism $\psi: H \rightarrow G$ defined by $\psi(m, n)=n$, is a relative c-central extension of (G, N). Also $(m, n) \in Z_{c}(H, G)$ implies that $m \in Z_{c}(M, G / K)$. So $\psi\left(Z_{c}(H, G)\right) K / K \subseteq \varphi\left(Z_{c}(M, G / K)\right)$. Hence the result follows.

The following theorem shows that the class of all c-capable pairs is closed under direct products.

Theorem 2.7. Let $\left\{\left(G_{i}, N_{i}\right)\right\}_{i \in I}$ be a family of pairs of groups. Then

$$
Z_{c}^{*}\left(\prod_{i \in I} G_{i}, \prod_{i \in I} N_{i}\right) \subseteq \prod_{i \in I} Z_{c}^{*}\left(G_{i}, N_{i}\right) .
$$

Proof. Let $\varphi_{i}: M_{i} \rightarrow G_{i}$ be a relative c-central extension of $\left(G_{i}, N_{i}\right)$ with $\varphi\left(Z_{c}\left(M_{i}, G_{i}\right)\right)=$ $Z_{c}^{*}\left(G_{i}, N_{i}\right)$, for all $i \in I$. Define

$$
\begin{aligned}
\psi: \prod_{i \in I} M_{i} & \rightarrow \prod_{i \in I} G_{i} \\
\left\{m_{i}\right\}_{i \in I} & \mapsto\left\{\varphi_{i}\left(m_{i}\right)\right\}_{i \in I}
\end{aligned}
$$

It is easy to check that ψ is a relative c-central extension of $\left(\prod_{i \in I} G_{i}, \prod_{i \in I} N_{i}\right)$ and $\psi\left(Z_{c}\left(\prod_{i \in I} M_{i}, \prod_{i \in I} G_{i}\right)\right)=\prod_{i \in I} \varphi_{i}\left(Z_{c}\left(M_{i}, G_{i}\right)\right)=\prod_{i \in I} Z_{c}^{*}\left(G_{i}, N_{i}\right)$. So the result follows.

In the above theorem, equality does not hold in general. A counterexample is given by $I=\{1,2\}, G_{1}=G_{2}=\mathbf{Z}_{4}$ and $N_{1}=N_{2}=\mathbf{Z}_{2}$. The pair $\left(G_{1} \times G_{2}, N_{1} \times N_{2}\right)$ is 1-capable whereas $\left(G_{1}, N_{1}\right)$ and $\left(G_{2}, N_{2}\right)$ are not capable (See Theorem 5.4 in [8]). Also we are going to give a condition under which the equality holds. But first we need to state the following lemma which has a straightforward proof.

Lemma 2.8. Let M and G be groups with an action of G on M. Then for all $m, n \in M$ and $g, h \in G$, we have
(i) $[m n, g]=[m, g]^{n}[n, g]$,
(ii) $[m, g h]=[m, h][m, g]^{h}$,
(iii) $\left[m^{-1}, g\right]^{-1}=[m, g]^{m^{-1}}$,
(iv) $\left[m, g^{-1}\right]^{-1}=[m, g]^{g^{-1}}$,
(v) $\left[m, g^{-1}, h\right]^{g}\left[m,\left[g, h^{-1}\right]\right]^{h}\left[\left[m^{-1}, h\right]^{-1}, g\right]^{m}=1$.

Now, the following theorem states a sufficient condition under which the equality in Theorem 2.7 holds.

Theorem 2.9. Let $\left\{\left(G_{i}, N_{i}\right)\right\}_{i \in I}$ be a family of pairs of groups such that $\left(\left|G_{i}\right|,\left|G_{j}\right|\right)=1$, for all $i, j \in I$ with $i \neq j$. Then

$$
Z_{c}^{*}\left(\prod_{i \in I} G_{i}, \prod_{i \in I} N_{i}\right)=\prod_{i \in I} Z_{c}^{*}\left(G_{i}, N_{i}\right) .
$$

Proof. Put $M_{i}=Z_{c}^{*}\left(G_{i}, N_{i}\right)$, for all $i \in I$. Let $\varphi: E \rightarrow G$ be a relative c-central extension of (G, N). It is enough to show that for all $i \in I, \varphi^{-1}\left(M_{i}\right) \subseteq Z_{c}(E, G)$. Suppose $i \in I$ and put $E_{i}=\varphi^{-1}\left(N_{i}\right)$. The homomorphism φ induces a relative c-central extension $\varphi_{i}: E_{i} \rightarrow G_{i}$ of the pair $\left(G_{i}, N_{i}\right)$. It follows that $M_{i} \subseteq \varphi\left(Z_{c}\left(E_{i}, G_{i}\right)\right)$ and hence

$$
\begin{equation*}
\left[\varphi^{-1}\left(M_{i}\right),{ }_{c} G_{i}\right]=1 \tag{1.1}
\end{equation*}
$$

in which $\left[\varphi^{-1}\left(M_{i}\right),{ }_{c} G_{i}\right]$ is $[\cdots[[\varphi^{-1}\left(M_{i}\right), \underbrace{\left.\left.\left.G_{i}\right], G_{i}\right], \ldots, G_{i}\right]}_{c-\text { times }}$. On the other hand, for all $j \in I$, with $j \neq i,\left[G_{i}, G_{j}\right]=1$ and so $\left[E_{i}, G_{j}\right] \subseteq \operatorname{ker} \varphi \subseteq Z_{c}(E, G)$. Thus by Lemma 2.8, for any nonnegative integer k,

$$
\begin{equation*}
\left[\left[E_{i},{ }_{k} G_{i}\right], G_{j}\right] \subseteq\left[\left[E_{i},{ }_{(k-1)} G_{i}, G_{j}\right], G_{i}\right] \subseteq \cdots \subseteq\left[E_{i}, G_{j},{ }_{k} G_{i}\right] . \tag{1.2}
\end{equation*}
$$

Let $m^{*} \in \varphi^{-1}\left(M_{i}\right)$ and $h_{1}^{*}, \cdots, h_{c}^{*}$ be elements of G_{t} 's $(t \in I)$, where there exists an integer $k, 1 \leq k \leq c$, such that $h_{1}^{*}, \cdots, h_{k-1}^{*} \in G_{i}$ and $h_{k}^{*} \in G_{j}$, with $j \neq i$. Then Lemma 2.8 and inequality (2) imply that $\theta: \varphi^{-1}\left(M_{i}\right) \rightarrow\left[\varphi^{-1}\left(M_{i}\right),{ }_{c} G\right]$ defined by $\theta(m)=\left[m, h_{1}^{*}, \cdots, h_{c}^{*}\right]$, for all $m \in \varphi^{-1}\left(M_{i}\right)$, and also $\gamma: G_{j} \rightarrow\left[\varphi^{-1}\left(M_{i}\right),{ }_{c} G\right]$ defined by $\gamma(g)=\left[m^{*}, h_{1}^{*}, \cdots, h_{k-1}^{*}, g, h_{k+1}^{*}, \cdots, h_{c}^{*}\right]$, for all $g \in G_{j}$, are homomorphisms with $\operatorname{ker} \varphi \subseteq \operatorname{ker} \theta$. It follows that the order of $\left[m^{*}, h_{1}^{*}, \cdots, h_{c}^{*}\right]$ divides $\left|\varphi^{-1}\left(M_{i}\right) / \operatorname{ker} \varphi\right|=\left|M_{i}\right|$ and $\left|G_{j}\right|$. Since $\left(\left|M_{i}\right|,\left|G_{j}\right|\right)=1$, then we have $\left[m^{*}, h_{1}^{*}, \cdots, h_{c}^{*}\right]=1$. Using this fact and (1), we have $\left[\varphi^{-1}\left(M_{i}\right),{ }_{c} G\right]=1$. This completes the proof.

Corollary 2.10. Let $\left\{\left(G_{i}, N_{i}\right)\right\}_{i \in I}$ be a family of pairs of groups.
(i) If for all $i \in I,\left(G_{i}, N_{i}\right)$ is a c-capable pair, then the pair $\left(\prod_{i \in I} G_{i}, \prod_{i \in I} N_{i}\right)$ is c capable.
(ii) If for all $i, j \in I$ with $i \neq j$, we have $\left(\left|G_{i}\right|,\left|G_{j}\right|\right)=1$, then all the pairs $\left(G_{i}, N_{i}\right)$ are c-capable if and only if the pair $\left(\prod_{i \in I} G_{i}, \prod_{i \in I} N_{i}\right)$ is c-capable.

The authors [8] gave a description of $Z_{1}^{*}(G, N)$ in terms of a free presentation of G and applied it to obtain a number of interesting results. So it might be useful to find a relationship between $Z_{c}^{*}(G, N)$ and a free presentation of G. Let (G, N) be a pair of groups. Suppose that $G \cong F / R$ is a free presentation of G and S is the preimage of N in F. First, let us define

$$
\gamma_{c+1}^{*}(G, N)=\frac{\left[S,{ }_{c} F\right]}{\left[R,{ }_{c} F\right]}
$$

where $\left[S,{ }_{c} F\right]$ denotes $[S, \underbrace{F, F, \cdots, F}_{c-\text { times }}]$ as a left normed commutator $(c \geqslant 1)$. It is easy to see that this definition is independent of the free presentation for G. Also we need to recall that the c-nilpotent multiplier of G is defined to be

$$
M^{(c)}(G)=\frac{R \cap \gamma_{c+1}(F)}{\left[R,{ }_{c} F\right]}
$$

This multiplier is also an abelian group and independent of the chosen free presentation. In order to make a relation between the subgroup $Z_{c}^{*}(G, N)$ and a free presentation of G, a straightforward way is to show that the natural homomorphism $\sigma: S /\left[R,{ }_{c} F\right] \rightarrow G$ is a relative c-central extension. But the problem which arises here is that the natural action on $S /\left[R,{ }_{c} F\right]$ is not well defined generally. Hence we are forced to add an extra condition. Therefore, we suppose that G is a group with a free presentation

$$
1 \rightarrow R \rightarrow F \xrightarrow{\pi} G \rightarrow 1
$$

and a normal subgroup $N \cong S / R$ such that $[R, S] \subseteq\left[R,{ }_{c} F\right]$ (Corollary 2.13 gives an example of a pair (G, N) which satisfies in this condition). Then the action of G on $S /\left[R,{ }_{c} F\right]$, defined by $\left(s\left[R,{ }_{c} F\right]\right)^{g}=s^{f}\left[R,{ }_{c} F\right]$ with $\pi(f)=g$, is well defined. So the group homomorphism

$$
\begin{aligned}
\sigma: \frac{S}{\left[R,{ }_{c} F\right]} & \rightarrow G \\
s\left[R,{ }_{c} F\right] & \mapsto \pi(s)
\end{aligned}
$$

is a relative c-central extension of the pair (G, N). Therefore

$$
Z_{c}^{*}(G, N) \subseteq \sigma\left(Z_{c}\left(S /\left[R,{ }_{c} F\right], G\right)\right)
$$

This inequality yields the following interesting results.
Theorem 2.11. With the above assumption, if $K \subseteq Z_{c}^{*}(G, N)$ then
(i) the natural homomorphism $M^{(c)}(G) \rightarrow M^{(c)}(G / K)$ is injective,
(ii) $K \subseteq Z_{c}^{*}(G) \cap N$,
(iii) $\gamma_{c+1}^{*}(G, N) \cong \gamma_{c+1}^{*}(G / K, N / K)$.

Proof. Let T be the preimage of K in F. Then $K \subseteq Z_{c}^{*}(G, N)$ implies that $\sigma\left(T /\left[R,{ }_{c} F\right]\right) \subseteq$ $\sigma\left(Z_{c}\left(S /\left[R,{ }_{c} F\right], G\right)\right)$. It follows that $\left[T,{ }_{c} F\right] /\left[R,{ }_{c} F\right]=1$. On the other hand $\left[T,{ }_{c} F\right] /\left[R,{ }_{c} F\right]$ is the kernel of the natural homomorphism $M^{(c)}(G) \rightarrow M^{(c)}(G / K)$ and also the natural homomorphism $\left[S,{ }_{c} F\right] /\left[R,{ }_{c} F\right] \rightarrow\left[S,{ }_{c} F\right] /\left[T,{ }_{c} F\right]$. So (i) and (iii) hold. By [3, Lemma 2.1] $K \subseteq Z_{c}^{*}(G)$ if and only if the natural homomorphism $M^{(c)}(G) \rightarrow M^{(c)}(G / K)$ is injective. Hence (ii) follows by (i).

The following corollary is an immediate consequence of Theorem 2.11.
Corollary 2.12. With the previous assumption, if $Z_{c}^{*}(G, N)=N$, then $\gamma_{c+1}^{*}(G, N)=1$.
Finally, Theorem 2.11 helps us to provide a set of examples of c-capable groups. But for this, we need to recall the definition of nth nilpotent product for cyclic groups. Thus, let $\left\{G_{i}\right\}_{i \in I}$ be a family of cyclic groups. Then the nth nilpotent product of the family $\left\{G_{i}\right\}_{i \in I}$ is defined to be the group $\prod_{i \in I}^{*} G_{i}=\prod_{i \in I}^{*} G_{i} / \gamma_{n+1}\left(\prod_{i \in I}^{*} G_{i}\right)$, where $\prod_{i \in I}^{*} G_{i}$ is the free product of the family $\left\{G_{i}\right\}_{i \in I}$.

Corollary 2.13. Let $\left\{F_{i}\right\}_{i \in I}$ be a family of infinite cyclic groups. Put $G=\prod_{i \in I}^{c+n} F_{i}$ and $N=\gamma_{c+k}(G)$, for $0<k \leq n$. Then the pair (G, N) is c-capable.

Proof. The result easily follows for $i=1$. Assume that $i \geq 2$. The groups G and N have free presentations $G \cong F / R$ and $N \cong S / R$, where $F=\prod_{i \in I}^{*} F_{i}, R=\gamma_{c+n+1}(F)$ and $S=\gamma_{c+k}(F)$. So the condition $[R, S] \subseteq\left[R,{ }_{c} F\right]$ holds for the pair (G, N) and $Z_{c}^{*}(G, N) \subseteq Z_{c}^{*}(G) \cap N$, by Theorem 2.11. On the other hand, using [7, Theorem 3.8] we have $Z_{c}^{*}(G)=1$, for $i \geq 2$. Hence the result follows by Corollary 2.5.

Acknowledgement

The third named author wishes to thank the Department of Mathematics, California State University Northridge, USA, where part of this work was done.

References

[1] R. Baer. Groups with preassigned central and central quotient group. Trans. Amer. Math. Soc., 44 (1938), 387-412.
[2] F.R. Beyl, U. Felgner, P. Schmid. On groups occurring as a center factor groups. J. Algebra, 61 (1979), 161-177.
[3] J. Burns, G. Ellis. On the nilpotent multipliers of a group. Math. Z., 226 (1997), 405-428.
[4] G. Ellis. Capability, homology, and central series of a pair of groups. J. Algebra, 179 (1996), 31-46.
[5] M. Hall, Jr., J.K. Senior. The groups of order $2^{n}(n \leq 6)$. Macmillan Co., New York, 1964.
[6] P. Hall. The classification of prime power groups. J. Reine Angew. Math., 182 (1940), 130-141.
[7] A. Hokmabadi, F. Mohammadzadeh, S. Kayvanfar . Polynilpotent capability of some nilpotent products of cyclic groups. J. of Advanced Research in Pure Mathematics, to appear.
[8] A. Pourmirzaei, A. Hokmabadi, S. Kayvanfar. Capability of a pair of groups. Bulletin of the Malaysian Mathematical Sciences Society, 35 (1) (2012), 205-213.

