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Abstract

Motivated by the general problem of extending the classical theory of holomorphic
functions of a complex variable to the case of quaternion functions, we give a notion
of an H-derivative for functions of one quaternion variable. We show that the
elementary quaternion functions introduced by Hamilton as well as the quaternion
logarithm function possess such a derivative. We conclude by establishing rules for
calculating H-derivatives.
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1 Introduction

The importance of the theory of holomorphic (analytic) functions of one complex vari-
able suggests looking for a similar theory for functions of three and more real variables.
Considering the case of four variables, where the quaternion algebra H should replace
the field C of complex numbers, is, of course, especially natural.

Let us recall that the quaternion algebra was introduced by W.R. Hamilton in 1843
(see, e.g., [5, 1]), and that, according to Frobenius’ theorem (see, e.g., [15]), every finite-
dimensional (associative) division algebra over the field R of real numbers is isomorphic
either to R, or to C, or to H.

In a sense, there are three well-known methods for constructing the theory of holomor-
phic functions of one complex variable: the derivative method, the polynomial method
and the gradient method. In the case of quaternion functions, none of them leads to a
satisfactory quaternionic analogue of the notion of a holomorphic function.

Derivative method

This method is based on the use of the limit definition of a derivative. In the case of
quaternion functions, such an approach yields at least two notions of the quaternion
derivative of a quaternion function f(z). The point is that, as quaternions do not com-
mute, there are two different possibilities for regarding the ratio W: one could
replace it either by [f(z + h) — f(2)]h~! or by h=1[f(z + h) — f(z)]. This leads to the
notion of a right-hand derivative

A(z) = im [z + b) = f()n!

Thbilisi Mathematical Journal 5(1) (2012), pp. 1-15.
Thilisi Centre for Mathematical Sciences & College Publications.

Received by the editors: 03 May 2011; 27 March 2012.
Accepted for publication: 02 April 2012.



2 Omar Dzagnidze

and to the notion of a left-hand derivative

B(z) = lim h™'[f(2 + h) — f(2)],
h—0
provided that the corresponding one-sided limit exists. Actually, both of these notions
are too restricted. It turns out [17, 24, 4, 22, 12, 20] that only the functions ¢(z) = az+b
possess the right-hand derivative, and only the functions ¥ (z) = za + b possess the left-
hand derivative, while only the functions x(z) = rz + b possess both left- and right-hand
derivatives, and they are equal. Here a and b are quaternions, while r is a real number.

Polynomial method
Let us consider a polynomial P(z,y) = > Ay, nz™y™ of two real variables z, y with
m,n

complex coefficients A, , = @mn + iBm.n. Replacing x with %(E + z), and replacing y
with % i(Z—z), we obtain the polynomial P*(z,Z) of the complex variables z = z+iy and
zZ =z —iy. In order that P*(z,%) be a polynomial of only the variable z, it is necessary
and sufficient that P*(z,%) satisfies the well-known Cauchy—Riemann condition. This
condition is precisely what is needed for distinguishing the class of polynomials of the
variable z.

An analogous approach to the polynomials of the variables zg, z1, x2, x3 with
quaternion coefficients is too general to give a desired result [29]. Indeed, the Haus-

dorff formulas z¢y = %(z — 41201 — dg9ziy — i32i3), T1 = i(z — 41201 + daziy + i3213),
Ty = i(z + 41201 — dgzig + i3zi3) and x3 = i(z + 41201 + i9zig — i3ziz) [13] allow

us to express the real coordinates xj of the quaternion z = xg + 2141 + T2i2 + x3i3 in
terms of z itself, without using the conjugate quaternion z = xg — x1i1 — X2l — T3i3.
(Note that along with the Hausdorff formulas, we also have the formulas o = £ (Z + 2),
T = %(ilz —zi1), X = %(ig?— zip) and x3 = %(ig? — zi3), but unlike the complex case,
they are not essential.) Hence the functions which can be represented by quaternionic
power series are just those which can be represented by power series in four real variables.

Gradient method

Loomann [19] and Menchoff [23] proved that any complex-valued continuous function
that satisfies the Cauchy—Riemann condition in a complex domain, is holomorphic in the
same domain® [28]. Thus, in order to extend the theory of holomorphic functions to the
quaternionic setting, one of the possible ways is to try to find a quaternionic analogue
of the Cauchy-Riemann equations. In 1935, Fueter?[8] proposed such a quaternionic
analogue by introducing two quaternion gradient operators

a" 0 0]

Z = i A iy =i
0z Oz + Oxy 1+ 0o 2% O3 3

I Tolstov [31] proved the some result replacing continuity of a function by its boundedness.
2Dr. Rudolf Fueter is the author of the book “Synthetische Zahlentheorie”, Berlin and Leipzig, 1921,
pp. VIII+271.
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and
oo 00
0z o 6x0 181‘1 281‘2 36$3.

He calls a quaternion function f(z) of the quaternion variable z = xg + x141 + X212 + T3i3

right-reqular, provided o

=0. 1.1
P (L.1)
Left-regularity of f is defined in a similar way by requiring that
o f
— =0. 1.2
P (1.2)

f is called regular if it is simultaneously left and right regular. Such quaternion functions
are to be thought of as the appropriate generalization of holomorphic functions to the
quaternionic setting.

Any right or left regular quaternion function is harmonic, i.e. satisfies Laplace’s
equation

Moreover, for any real harmonic function, there is a regular function whose real part is
exactly the given function (see [8]). Thus there are plenty of regular functions.

Although Fueter’s approach is quite powerful and gives rise to a fully formed theory
of regular functions, it has some significant flaws. One such is the fact that even the
functions 1,(z) = z" fail to be regular (they are non-harmonic, since, for example,
A(2%) = —4 and hence cannot be regular). Note that the functions Az" are regular [8].
Another flaw is that the class of regular functions of a quaternion variable do not form
an algebra in the same sense that the holomorphic functions do: for example, regular
functions cannot be multiplied to give further regular functions.

The aim of the paper is to propose a new definition of a derivative for quaternion
functions of one quaternion variable and show that all the elementary functions as well
as the quaternion logarithm function possess such a derivative. We also give rules for
calculating such derivatives. In referee’s opinion our definition should be compared with
the definition introduced in [11].

We conclude Introduction with an incomplete list of references where various appli-
cations of quaternions are discussed [2, 3, 6, 7, 9, 10, 14, 16, 18, 25, 26, 27, 30, 32].

2 The notion of an H-derivative
We begin by the following

Definition 2.1. A quaternion function f(z), z = xo+x1i1 + 2212 +1x3i3, defined on some
neighborhood G C H of a point 2° = xd+2%i1 +xis+123i3, is called H-differentiable at 2°
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if there exist two sequences of quaternions Ag(z°) and By (z°) such that 5" Ay(2°)By(2°)
k

is finite and that the increment f(2°+h) — f(2°) of the function f(z) can be represented
as

FE+h) = F(2°) =D AR(z%) - h Bi(z°) + w (2% h), (2.1)
k
where (20 |
lim, T =0 (2.2)

and z2° + h € G. In this case, the quaternion > Ay(2°)By(2°) is called the H-derivative
k

of the function f at the point 2° and is denoted f'(2°). Thus

F1(2%) =" A(z°)Bi(2%). (2.3)
k

The uniqueness of the H-derivative follows from the fat that the right-hand part of
(2.3), if it exists, is just the partial derivative f, (2°) of f(z) at 2° with respect to its
real variable.

In the sequel, the symbol o(h) denotes any function w(2°, h) satisfying (2.2).

Remark 2.2. Note that the same definition still makes perfectly good sense for any map
between Banach algebras. Moreover, all the proofs of our results remain valid (except for
Proposition 3.4, which still remain true if we take ¢ to be invertible in a neighborhood of
29), since they require only those properties of H which are also possessed by any Banach
algebra.

The following functions introduced by Hamilton

Z2", n=0,1,2,...,

)

2,3
62:1+Z+§+§+"',
22
cosz:1—§+ﬂ—~-~,
. PR
smz:z—§—|—§—~-~

are the basic elementary quaternion functions of one quaternionic variable z.
Let us now show that the basic elementary functions are H-differentiable.

Proposition 2.3. (2")' =nz""! forn =0,1,2,..., and for z € H.
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Proof. We first show that the following equality holds for n = 1,2, ...
(z4+h)" = 2" = 2" "h 4+ 2" 2hz + 2" 3h2?
4o zh2" 2 he" T+ o(h) (2.4)
For n =1 it is obvious. Assuming now that it is true for n = k, we find
R L e P 3 [ ) L
=(z4+h) 2"+ 2"+ 22 he 4+ 4 2R T2 4 h2PTL £ o(h)) — 2R
=M L 2Rh 2P e b 22 2R 4 2R 4 o(R)) — 2P
= 2Fh 4 2P he 4 2P 2R b 22T 2R R 4 o(h).

It then follows from (2.3) and (2.4) that
Y =2"1 142" a4 L =
Thus by induction we have proved that (") = nz""! forall n=0,1,2,... Q.E.D.
In order to proceed further, we need the following lemma.
Lemma 2.4. The following equalities and estimates are valid for |h| < 1:

(z+h)2—22  zh+hz

2! =g A
+h)?—2*  2’h+ zhz + h2?
(2 3)' 2z 23'2 G A,
(z+h)r—2*  22h+ 2%hz + zh2? + h2?
4l B 4l +4a,
(z+h)5—2° 2 h+23hz + 22h2? + zhz3 + h2t
5! B 5! + 4s,

and so on, where

1
A2 = §h27 |A2‘ < |h|2, A2 = O(h),
1 2 2 3 23 2 3
Agzg(zh +hzh+h%z+h%), |A3] < 5(|z||h| + |h|”)
3 3
{;|h|2<1+|h|> <L h? 2y for |2 <1,

3 3
Il AP+ [R]) < Fr |2l WP =g for |2l > 15

1
Ar= 4 (2°h% + zhzh 4 zhz + 2h® + h2?h + hzhz + hzh? + h?22

24
+h2zh + B3z + hY)), A4 < a (|2%|h2 + |2| |R)® + Y
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4 4
2P+ B+ B2) < 2 |2 - 2 for |o| <1,
4 4
22122 [B2(L+ B + [ < 2 2P B2 2 for |2 > 1
1
As = = (2°h% + 2%hzh + 2°h%2 + 2203 + zh2?h + zhzhz 4 zhzh?

~
+ 2h22% 4 2h22h + 2h3 2 + 2h* + h2h + hz2?hz + h2?h?

+ hzh2? + hzhzh + hzh32 + hzh® + h223 + h222h + h2zhz
+ h2zh? + 1322 + h3zh + bz + B5),

5

2
[As| < 27 (127 [ + 12 [ + 2] [B[* + [R[")

21RO+ B+ (B2 + RP) < Z R 2y for |2 < 1,
5
< L 2P A2+ [B] + [BI? + |B?)

< %: |Z‘3 ‘h|2 : 1—1|h| for |Z| >1,
and so on,
|A | 37 |h’|2 ' 171‘}1/‘ for |Z| < 17
n n _
20 |2|" 2 R - 1_1‘h| for |z| > 1.
Therefore
o0 n
o |h|? - 171“1 D for |z] <1,
D T
n=3 |hl® - = - T |z|" =2 for |z| > 1
ne

o0 o0
and the series > 2 and Y 27 |2|"72 are converging by virtue of the ratio test [21].
n=3

n=3

Thus, > |An| = o(h) for any fized finite quaternion z.
n=3

Proposition 2.5. We have the equality
(%) =e*.

Proof. The equality
2,3

. z
e—1+z+§+§+-~-
implies that, for any h € H,
z+4h)? =2 +h)? —2° + h)* —2*
R N CE L N CE D
2! 3! 41
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and applying Lemma 2.3 to the right-hand side of this equality, we obtain
1
eFth _ e? :h+—'(zh+hz)

1
+3'( 22h 4 zhz + hz?)

4'( 23h 4+ 2%hz + zh2? + h2?)

+ oo+ olh).

Therefore

3!

(242 2-+ O +-22-+ ha?
21 3 3w

2 2
e Th — ¢ (L+ +2 4. )h

+.--+o(h) (25)

and hence

Z 2’2 23

3!
2’2 2’3
+2 +§+—+m
2’2 233
AR TR
2’3

o

2 3
_1+27+3§+4E+.”

4.7 22 28 .

+ﬁ+*+§+~--—e .

Q.E.D.

Proposition 2.6. The equality
(sinz) = cosz

s valid.
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Proof.
sin(z + h) —sinz
B (z+h)®  (2+h)d 22 2P
= (et h) = gt T A g g
B (z4+h)? =23 (2+h)5—25
=h- 3! * 5! o
1
=h-— 30 (2°h + zhz + hz?)
1
+ = (2*h + 23hz + 22h2? + 2h2® 4+ h2t) + -+ 4 o(h).
Therefore

2?2 2t
sin(z + h) —sinz = h + (——|— )h

315!
z 28 22 A
Hence
) 1 22 A z 28 22 A
Gz =1l-gtgt={gts) stat
_1 22t 22 A 2
TR TR TR TR
22 A
=1 5—1—5— - =CoSz
Q.E.D.
Similarly, one has
Proposition 2.7. The equality
(cosz) = —sinz

1s valid.

3 Rules for calculating H-derivatives
The rules for calculating H-derivatives are identical to those derived in a standard calculus

course.

Proposition 3.1. Let f and ¢ be two functions defined on a neighborhood of 2° € H. If
both f and ¢ are H-differentiable at 2°, then
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1. both cf and fc are H-differentiable at 2° for all c € H and (cf)'(2°) = cf'(2") and
(fe)' (2°) = f'(")e;

2. f+ ¢ is H-differentiable at 2° and (f + )" (2°) = f'(2°) + ¢'(2°);

3. fop is H-differentiable at 2° and (fo) (2°) = £/ (29)p(2°) + f(2)¢(2°).

Proof. The proof of 1. is obvious.
Since f and ¢ are H-differentiable at 2°, there are representations

F0+h) = f(2°) =Y AxhBy +o(h),
k
©(2" + 1) — p(2°) = > CphDy + o(h).
k
Then

(f+ @) +h) = (F+9)(2°) = [f(2° + h) = F(2")] + [p(2° + h) — ()]
= AghBi+ Y CyhDy + o(h),
k k

and hence

(f+9)( ZAkBk +ZCka ¢’ (29).

This proves 2.
Next, since

FE° 4+ h)p(z° + h) = f(2)p(2°) =
= [f(2" + 1) = F(O)e(2® + h) + f(2°)[p(° + h) = o(2")]

:[ZAkth—i—o ]@z +h)+ f(z {chthﬁ-O(h)}
k
= [Z AphBy, + o(h)] : [4,0(20) + Y CphDy + o(h)}
k
+ (2 {chth + (h)]

= (ZAkth) p(2°) + £(2°) Y CkhDy + o(h),
k k
it follows that

)= (T Ao+ ) D OD = FG)ple0) + ),
k

proving 3. Q.E.D.
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The following two corollaries are immediate.

Corollary 3.2. If f1, fa,..., fn are H-differentiable functions at a point 2°, then their
product fifs - fn is also H-differentiable at 2° and we have:

(fifar fa) (%) = fL(2°) f2(20) - fu(2%) + F1(20) f5(20) f3(2°) - fu(20)+
o fu(Z0) e a1 (O) (20,

Corollary 3.3. If a function f is H-differentiable at a point 2°, then f" is also H-
differentiable at 2° for alln =1,2,... and we have:

(f) (%) = fEOTHEE) + FEOFEO 720 4+ D).

Proposition 3.4. If a function ¢ is H-differentiable at a point 2° and if ¢ # 0 in a
neighborhood of 2°, then? é is also H-differentiable at z° and we have:

() 1=y e

Proof. We first observe that for any two nonzero quaternions ¢; and ¢o, the following
equality

G -Gt =g e (@ - et -6 - )t

holds. Indeed, using that ¢; ! is the inverse of ¢; and a5 1 is the inverse of ¢a, we obtain

G- (a-ee' —a'(a-ee' =
=(1—q ') (e —1) — (6 'a — ey !
= (@' -a Y ae' -1 (6 'ae —e)
—(n'an' -6 o' +a ) (6 lae —a),

as needed.
Putting (2% 4+ h) and ¢(2%) in the equality, we obtain

1 _ 1
p(20+h) (20
. 1 1 ZO _ ZO 1 . ZO o ZO 1

3For each quaternion ¢ # 0, there is a (unique) quaternion %, called the inverse of ¢, for which

q- % =1= % -q. The inverse of ¢ is sometimes denoted by the symbol ¢~ 1.
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We now calculate

Ll ey D
SOTH 9@ ) P T el gy
1 1 1
_ ,@(120) {Z ChDy + o(h)} —wéo) +o(h)
1 1
=5y (22O gy ot

Hence

Q.E.D.
Corollary 3.5. For z # 0 we have:
(™) =mz™t, om=—1,-2,....
Proof. Putting n = —m and using Propositions 2.3 and 3.4, we obtain
1y’ 1 1 1 1
(z™) = (2") = (2™ il nz"1 P =l — pml
Q.E.D.

Corollary 3.6. For an arbitrary constant ¢, we have:

IR 1
<c—z) :(c—z)27 27

Corollary 3.7. If quaternionic functions f and ¢ are H-differentiable at a point 2° and
© # 0 in a neighborhood of z°, then the functions f - % and é - f are also H-differentiable

at 29 and we have:

(72) =769 s~ 1

and
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Proposition 3.8. Let a function f(z) be defined on some neighborhood of a point 2° € H

and let a function F(w) be defined on some neighborhood of the point w® = f(2°). Assume

that f is H-differentiable at z° and that F is H-differentiable at w°. If F'(w°) = Y Ay By,
k

then the composite F f is H-differentiable at z° and we have:
(Ff) (z°) =) Arf'(°) B
k
Proof. Let z be in the neighborhood of z°. Put w = f(z). Then
F(w) = F(w°) =Y Ap(w — w°) By, +wy (w°, w),
k
F(2) = F(2°) = Ci(z = 2)D; + w20, 2),
J
and using these presentations, we calculate
F(f(2) = F(f(z°) = Y Ar(f(2) = FE") By + wn(f(z°), f(2))
k
= S (D04 = 0D; ) Bt ol +en (£, 1)
k J

= > ACy(z = 2°)D; By + o(h) +wi (f(2°), f(2)).
E o J

But since

wi(f(2°), F)] _ lwr(F (), FI | 12— 2°

|2 = 20 o =] Jw —u]

-0, z—2°

we have
(Ff) (") = AC;D;By = ZAk<chDj>Bk
k j k 1
- ZAjkf’(zO)Bk. ]
k
Q.E.D.

Specializing the proposition to the case where F(w) = w™ and applying (2.4) we get

Corollary 3.9. If a function f is H-differentiable, then

(fn)/:fnfl_f/+fn72_f/.f+fn73.f/'f2_|__.__|_f/_fn71.
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4 The H-derivative of the quaternion logarithm function
A quaternion w is called the logarithm of a finite quaternion z # 0 if z = e, in which
case we write w = In z.

In order to define the H-derivative w’ = (In z)’, we first note that the H-derivative of
the left-hand side of the identity z = ™ exits and is 1 by Proposition 2.3. Applying
now Proposition 3.8 to the right-hand side and taking into account (2.5), we get

w  w? , w o w? ,
1:(1+21+?,|+"'>'w+<2|+3 +4 +- )w cw (4.1)

w w2 ’ 2
+ 3|+ oyt )l

Thus, the H-derivative w’ = (In z) satisfies Equality (4.1).

Remark 4.1. If ww’ and w'w were equal, then we could write w-w’,w?-w’,... instead

of w - w,w’ - w?, ..., and then Equality (4.1) would take the form

w2 ’ w2 ,

U)2 w?’ w4
+<+++...>.w’+...

3! 4l 5!
w? w? l w l In z ’ /
= 1+w+?+§+--- cw' =e" w =e"* - (Inz) =z (lnz).

So, we would obtain the classical formula
1
1 / —_ —
(n2) =,

that is well known in the case of a complex variable z.
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