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Abstract

We introduce some compact orbifolds on which there is a certain fi-
nite group action having a simple convex polytope as the orbit space.
We compute the orbifold fundamental group and homology groups
of these orbifolds. We compute the cohomology rings of these orb-
ifolds when the dimension of the orbifold is even. These orbifolds are
intimately related to the notion of small cover.
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1 Introduction

An n-dimensional simple polytope is a convex polytope in Rn where ex-
actly n bounding hyperplanes meet at each vertex. The codimension one
faces of simple polytope are called facets. In this article we introduce some
n-dimensional orbifolds on which there is a natural Zn−1

2 action having a
simple polytope as the orbit space, where Z2 = Z/2Z. We call these orb-
ifolds small orbifolds. The fixed points of Zn−1

2 action on an n-dimensional
small orbifold is homeomorphic to the 1-skeleton of the polytope. The small
orbifolds are closely related to the notion of small cover. A small cover of
dimension n is an n-dimensional smooth manifold endowed with a natural
action of Zn

2 having a simple n-polytope as the orbit space, see [DJ]. The
fixed point set of Zn

2 action on a small cover correspond bijectively to the
set of vertices of polytope.

In section 2 we give the precise definition of small orbifold and give two
examples. We show the smoothness of small orbifold. In section 3 we cal-
culate the orbifold fundamental group of small orbifolds. We show that the
universal orbifold cover of n-dimensional (n > 2) small orbifold is diffeomor-
phic to Rn. Theorem 3.7 shows that the space Z, constructed in Lemma 4.4
of [DJ], is diffeomorphic to Rn if there is an s-characteristic function (defi-
nition 2.1) of simple n-polytope. In section 4 we construct a CW -complex
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structure on small orbifold. We compute the singular homology groups of
small orbifold with integer coefficients. We establish a relation between the
modulo 2 Betti numbers of a small orbifold and the h-vector of the poly-
tope. In section 5 we compute the singular cohomology groups and the
cohomology ring of even dimensional small orbifold. In the last section we
discuss the toric version of small orbifold. All points of the quotient space
are smooth except at finite points. Though the quotient space is not an
orbifold (when n > 2), we compute the singular homology groups of these
spaces.

2 Definition and orbifold structure

Let P be a simple polytope of dimension n. Let F(P ) = {Fi, i = 1, 2, . . . ,m}
be the set of facets of P . Let V (P ) be the set of vertices of P . We denote
the underlying additive group of the vector space Fn−1

2 by Zn−1
2 .

Definition 2.1. A function ϑ : F(P ) → Zn−1
2 is called an s-characteristic

function if the following condition is satisfied. Whenever the facets Fi1 , Fi2 ,
. . . , Fin intersect at a vertex of P , the set

{ϑi1 , ϑi2 , . . . , ϑik−1
, ϑ̂ik , ϑik+1

, . . . , ϑin},

where ϑi := ϑ(Fi), constitutes a basis of Fn−1
2 over F2 for each k, 1 ≤ k ≤ n.

We call the pair (P, ϑ) an s-characteristic pair.

Here the symbol ̂ represents the omission of corresponding entry. We
give examples of s-characteristic function in 2.9 and 2.10. Now we give
the constructive definition of small orbifold using the s-characteristic pair
(P, ϑ).

Let F be a face of the simple polytope P of codimension k ≥ 1. Then

F = Fi1 ∩ Fi2 ∩ . . . ∩ Fik ,

where Fij ∈ F(P ) containing F . LetGF be the subspace of Fn−1
2 spanned by

ϑi1 , ϑi2 , . . . , ϑik . Without any confusion we denote the underlying additive
group of the subspace GF by GF . By the definition of ϑ, Gv = Zn−1

2 for each
v ∈ V (P ). So the s-characteristic function ϑ determines a unique subgroup
of Zn−1

2 associated to each face of the polytope P . Note that if k < n then
GF

∼= Zk
2 . The subgroup GF of Zn−1

2 is a direct summand.
Each point p of P belongs to relative interior of a unique face F (p) of

P . Define an equivalence relations ∼ on Zn−1
2 × P by

(t, p) ∼ (s, q) if p = q and s− t ∈ GF (p). (2.1)

Let X(P, ϑ) = (Zn−1
2 ×P )/ ∼ be the quotient space. Whenever there is

no ambiguity we denote X(P, ϑ) by X. Then X is a Zn−1
2 -space with the
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orbit map
π : X → P defined by π([t, p]∼) = p. (2.2)

Let π̂ : Zn−1
2 × P → X be the quotient map. Let Bn be the open ball of

radius 1 in Rn. We construct some smooth orbifold charts in the following
lemmas. In proposition 2.6 we show that union of these charts is an orbifold
atlas.

Lemma 2.2. For each vertex v of P there exists an orbifold chart
(Bn,Z2, φv) of Xv where φv(B

n) is an open subset Xv of X and {Xv :
v ∈ V (P )} cover X.

Proof. Let v ∈ V (P ) and Uv be the open subset of P obtained by deleting
all faces of P not containing v. Let

Xv := π−1(Uv) = (Zn−1
2 × Uv)/ ∼ .

The subset Uv is diffeomorphic as manifold with corners to

Bn
1 = {x = (x1, x2, . . . , xn) ∈ Rn

≥0 : Σ
n

1
xj < 1}. (2.3)

Let fv : Bn
1 → Uv be the diffeomorphism. Let the facets

{x1 = 0} ∩Bn
1 , {x2 = 0} ∩Bn

1 , . . . , {xn = 0} ∩Bn
1

of Bn
1 map to the facets Fi1 , Fi2 , . . . , Fin of Uv respectively under the diffeo-

morphism fv. Then Fi1 ∩Fi2 ∩ . . .∩Fin = v. Define an equivalence relation
∼0 on Zn−1

2 ×Bn
1 by

(t, x) ∼0 (s, y) if x = y and s− t ∈ GF (fv(x)). (2.4)

Let Y0 = (Zn−1
2 × Bn

1 )/ ∼0 be the quotient space with the orbit map
π0 : Y0 → Bn

1 . Let π̂0 : Zn−1
2 × Bn

1 → Y0 be the quotient map. The
diffeomorphism id× fv descends to the following commutative diagram.

Zn−1
2 ×Bn

1
id×fv−−−−→ Zn−1

2 × Uv

π̂0

y π̂v

y
Y0

f̂v−−−−→ Xv

(2.5)

Here π̂v is the map π̂ restricted to Zn−1
2 × Uv. It is easy to observe that

the map f̂v is a bijection. Since the maps π̂v and π̂0 are continuous and the
map id× fv is a diffeomorphism, the map f̂v is a homeomorphism.

Let a ∈ [0, 1) and Ha be the hyperplane {Σn

1
xj = a} in Rn. Then

P0 = H0 ∩ Bn
1 is the origin of Rn and Pa = Ha ∩ Bn

1 is an (n− 1)-simplex
for each a ∈ (0, 1). When a ∈ (0, 1), the facets of Pa are

{Faj := {xj = 0} ∩ Pa; j = 1, 2, . . . , n}.



4 S. Sarkar

The map

ϑa : {Faj : j = 1, . . . , n} → Zn−1
2 defined by ϑa(Faj ) = ϑij (2.6)

satisfies the following condition. If Fa is the intersection of unique l (0 ≤
l ≤ n−1) facets Faj1

, . . . , Fajl
of Pa then the vectors ϑa(Faj1

), . . . , ϑa(Fajl
)

are linearly independent vectors of Fn−1
2 .

Hence ϑa is a characteristic function of a small cover over the polytope
Pa. Since Pa is an (n−1)-simplex, the small cover corresponding to the char-
acteristic pair (Pa, ϑa) is equivariantly diffeomorphic to the real projective
space RPn−1, see [DJ]. Here we consider RPn−1 as the identification space

{Bn−1
/{x = −x} : x ∈ ∂B

n−1}. So at each point (a, 0, . . . , 0) ∈ Bn
1 − {0}

we get an equivariant homeomorphism

(Zn−1
2 × Pa)/ ∼0

∼= RPn−1, (2.7)

which sends the fixed point [t, a]∼0 to the origin of B
n−1

. It is clear from the
definition of the equivalence relation ∼0 that at (0, . . . , 0) ∈ Bn

1 , (Z
n−1
2 ×

P0)/ ∼0 is a point. Hence Y0 is equivariantly homeomorphic to the open
cone

(RPn−1 × [0, 1))/RPn−1 × {0}

on real projective space RPn−1. Consider the following map

Sn−1 × [0, 1) → Bn define by ((x1, x2, . . . , xn), r) → (rx1, rx2, . . . , rxn).

This map induces a homeomorphism f : Bn → (Sn−1 × [0, 1))/Sn−1 × {0}.
The covering map Sn−1 → RPn−1 induces a projection map

φ0 : (Sn−1 × [0, 1))/Sn−1 × {0} → (RPn−1 × [0, 1))/RPn−1 × {0}.

Observe that this projection map φ0 is nothing but the orbit map q of the
antipodal action of Z2 on Bn. In other words the following diagram is
commutative.

Bn f−−−−→ (Sn−1 × [0, 1))/Sn−1 × {0}

q

y φ0

y
Bn/Z2

f̂−−−−→ (RPn−1 × [0, 1))/RPn−1 × {0}

(2.8)

Since the map φ0 is induced from the antipodal action on Sn−1 the com-
mutativity of the diagram ensure that the map f̂ is a homeomorphism. Let
φv be the composition of the following maps.

Bn q−→ Bn/Z2
f̂−→ (RPn−1 × [0, 1))/RPn−1 × {0}

∼=−→Y0
f̂v−→ Xv. (2.9)
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Hence (Bn,Z2, φv) is an orbifold chart of Xv corresponding to the vertex v
of the polytope P and {Xv : v ∈ V (P )} is an open cover of X. �

Let F be a codimension-k (0 < k < n) face of P . Let

UF =
∩
Uv,

where the intersection is over all vertices v of F . Let XF := π−1(UF ).
Fix a vertex v of F . Consider the diffeomorphism fv : Bn

1 → Uv. Observe
that UF can be obtained from Uv by deleting unique n−k facets of Uv. Let
Fl1 , . . . , Fln−k

be the facets of Uv such that

UF = Uv − {Fl1 ∪ . . . ∪ Fln−k
},

where {l1, . . . , ln−k} ⊂ {1, 2, . . . , n}. Let Bn
F = f−1

v (UF ). Let {xl1 = 0},
. . . , {xln−k

= 0} be the coordinate hyperplanes in Rn such that

fv({xl1 = 0} ∩Bn
1 ) = Fl1 , . . . , fv({xln−k

= 0} ∩Bn
1 ) = Fln−k

.

So Bn
F = Bn

1 − {{xl1 = 0} ∪ . . . ∪ {xln−k
= 0}}. Then f̂v(π−1

0 (BF )) = XF .
Let a ∈ (0, 1) and P ′

a = Pa−{xl1 = 0}. Since (Pa, ϑa) is a characteristic
pair, there exist an equivariant homeomorphism from (Zn−1

2 × P ′
a)/ ∼0

to Bn−1 such that (Zn−1
2 × Faj )/ ∼0 maps to a coordinate hyperplane

Hj := {xij = 0} ∩ Bn−1, for j ∈ {{1, 2, . . . , n} − l1}. Clearly Hi ̸= Hj for
i ̸= j.

Let P ′′
a = P ′

a − {{xl2 = 0} ∪ . . . ∪ {xln−k
= 0}}. Then

(Zn−1
2 × P ′′

a )/ ∼0
∼= Bn−1 − {Hl2 ∪ . . . ∪Hln−k

} and Bn
F
∼= (0, 1)× P ′′

a .

So π−1
0 (Bn

F ) = (Zn−1
2 ×Bn

F )/ ∼0 is homeomorphic to

(0, 1)× {(Zn−1
2 × P ′′

a )/ ∼0} ∼= (0, 1)× {Bn−1 − {H ′
l2 ∪ . . . ∪H

′
ln−k

}}.

By our assumption

(0, 1)× {Bn−1 − {Hl2 ∪ . . . ∪Hln−k
}} ↪→ (RPn−1 × [0, 1))/RPn−1 × {0}.

So there exist two open subsets DF , D
′
F of Bn such that D′

F = −DF and
the following restrictions are homeomorphism.

1. φ0 ◦ f |DF : DF → (0, 1)× {Bn−1 − {Hl2 ∪ . . . ∪Hln−k
}}.

2. φ0 ◦ f |D′
F
: D′

F → (0, 1)× {Bn−1 − {Hl2 ∪ . . . ∪Hln−k
}}.

Hence the restriction φv|DF : DF → XF is homeomorphism. Clearly

DF
∼= {{Bn ∩ {xn > 0}} − ∪(n−k−1)

j=1,xlj
̸=xn

{xlj = 0}}. (2.10)
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Lemma 2.3. Let E(P ) be the set of edges of the polytope P . Then for
each e ∈ E(P ) and v ∈ V (e) there exist an orbifold chart (De, {0}, φev ) on
Xe.

Proof. An edge e of P is a codimension-(n − 1) face. Then the set De is
homeomorphic to an open ball in Rn. Let φev := φv|De

: De → Xe be the
restriction of the map φv to the domain De, where v ∈ V (e). So φev is a
homeomorphism. �

Lemma 2.4. Let F be a codimension-k (0 < k < n − 1) face of P . Then
for each (i, v) ∈ {1, 2, . . . , 2(n− k− 1)}×V (F ) there exist an orbifold chart
(BF (i), {0}, φFv(i)) on the image of φFv(i) in XF .

Proof. The set DF is disjoint union of open sets {BF (i) : i = 1, . . . , 2(n −
k− 1)} in Rn. Here all BF (i) are homeomorphic to an open ball in Rn. Let

φFv(i) := φv|BF (i)
: BF (i) → XF (2.11)

be the restriction of the map φv to the domain BF (i), where v ∈ V (F ). So
φFv(i) is an injection. �

Lemma 2.5. Let P 0 be the interior of P and XP = π−1(P 0). Then
for each (j, v) ∈ {1, 2, . . . , 2(n − 1)} × V (P ) there exist an orbifold chart
(Bj , {0}, φPv(j)) on the image of φPv(j) in XP .

Proof. The set

DP := {{Bn ∩ {xn > 0}} − ∪n−1
j=1 {xj = 0}} (2.12)

is homeomorphic to XP under the restriction of φv on DP . The set DP is a
disjoint union of connected open sets {Bj : j = 1, . . . , 2(n−1)} in Rn where
each Bj is homeomorphic to the open ball Bn. Let

φPv(j) := φv|Bj : Bj → XP (2.13)

be the restriction of the map φv to the domain Bj . So φPv(j) is an injection.
�

Proposition 2.6. The space X has a smooth orbifold structure.

Proof. Let

U={(Bn,Z2,φv)}∪{(De,{0},φev )}∪{(BF (i),{0},φFv(i))}∪{(Bj ,{0},φPv(j))}
(2.14)

where v ∈ V (P ), e ∈ E(P ), F run over the faces of codimension k (0 < k <
n− 1), i = 1, . . . , 2(n− k− 1) and j = 1, . . . , 2(n− 1). From the description
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of orbifold charts in the previous lemmas, corresponding to each faces and
interior of the polytope, it is clear that U is an orbifold atlas on X. Clearly
the inclusions De ↪→ Bn, BF (i) ↪→ Bn and Bj ↪→ Bn induce the following
smooth embeddings respectively:

(De, {0}, φev ) ↪→ (Bn,Z2, φv), (BF (i), {0}, φFv(i)) ↪→ (Bn,Z2, φv)

and (Bj , {0}, φPv(j)) ↪→ (Bn,Z2, φv).

Thus X (P, ϑ) := (X,U) is a smooth orbifold. �

We denote X (P, ϑ) by X whenever there is no confusion.

Definition 2.7. We call the smooth orbifold X (P, ϑ) small orbifold asso-
ciated to the s-characteristic pair (P, ϑ).

Remark 2.8. 1. The small orbifold X (P, ϑ) is reduced, that is, the
group in each chart has an effective action. Singular set of the orbifold
X (P, ϑ) is

ΣX (P, ϑ) = {[t, v]∼ ∈ X : v ∈ V (P )}.

We call an element of ΣX (P, ϑ) an orbifold point of X.

2. We can not define an s-characteristic function for an arbitrary poly-
tope. For example, the 3-simplex in R3 does not admit an s-characte-
ristic function.

3. The small orbifold X is compact and connected.

Example 2.9. Let P 2 be a simple 2-polytope in R2. Define

ϑ : F(P 2) → Z2 by ϑ(F ) = 1,∀F ∈ F(P 2). (2.15)

So ϑ is the s-characteristic function of P 2. The resulting quotient space
X(P 2, ϑ) is homeomorphic to the sphere S2. These are the only cases
where the identification space is a topological manifold. The reason is the
following. Let P be a simple n-polytope (n > 2) and πP : X(P, ϑ) → P be
the orbit map. Then πP (Uv) is homeomorphic to the open cone on RPn−1

for any vertex v of P . Since n > 2, X(P, ϑ) is not a manifold.

Example 2.10. Let I3 = {(x, y, z) ∈ R3 : 0 ≤ x, y, z ≤ 1} be the standard
cube in R3. Let v1, . . . , v8 be the vertices of I3, see figure 1. So the facets
of I3 are the following squares

F1 = v1v2v3v4, F2 = v1v2v6v5, F3 = v1v5v8v4,

F4 = v2v6v3v7, F5 = v4v3v7v8, F6 = v5v6v7v8.
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(1, 1)

(1, 0) (0, 1)

(1, 1)

(1, 0)

(0, 1)

v3v4

v6

v7

v1 v2

v5

v8

Figure 1. An s-characteristic function of I3.

Define ϑ : F(I3) → Z2
2 by

ϑ(F1) = ϑ(F6) = (1, 0), ϑ(F2) = ϑ(F5) = (0, 1), ϑ(F3) = ϑ(F4) = (1, 1).

Hence ϑ is an s-characteristic function of I3. Then

GF1 = GF6 = {(0, 0), (1, 0)}, GF2 = GF5 = {(0, 0), (0, 1)},
GF3 = GF4 = {(0, 0), (1, 1)}.

For other proper face F of I3, GF = Z2
2. Hence X (I3, ϑ) is a 3-dimensional

small orbifold. Observe that X(I3, ϑ) is just the standard 3 torus divided
by the involution x 7→ x−1. That is, X(I3, ϑ) is a quotient of a small cover
by an action of Z2.

Remark 2.11. The small orbifolds are closely related to the notion of
small cover. Actually some, but not all, small orbifolds are quotients of a
small cover by the action of Z2. If f : M → P is an n-dimensional small
cover such that the orbit space of a subgroup Z2(P )(∼= Z2) of Zn

2 is a small
orbifold, then Z2(P )-action on the invariant subset f−1(Uv) is nothing but
the antipodal action for any vertex v of P .

Observation 1. Let F be a codimension-k (0 < k < n−1) face of P . Then
F is a simple polytope of dimension n − k. Let F(F ) = {F ′

j1
, . . . , F ′

jl
} be

the set of facets of F . So there exist unique facets Fj1 , . . . , Fjl of P such
that

Fj1 ∩ F = F ′
j1 , . . . , Fjl ∩ F = F ′

jl
.

Fix an isomorphism b from the quotient field Fn−1
2 /GF to Fn−1−k

2 . Define
a function

ϑ′ : F(F ) → Zn−1−k
2 by ϑ′(F ′

ji) = b(ϑ(Fji) +GF ).
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Observe that the function ϑ′ is an s-characteristic function of F . Let
∼′ be the restriction of ∼ on Zn−1−k

2 × F . So X (F, ϑ′) is an (n − k)-
dimensional smooth small orbifold associated to the s-characteristic pair
(F, ϑ′). The orbifold X (F, ϑ′) is a suborbifold of X (P, ϑ) and the underly-
ing space X(F, ϑ′) = π−1(F ). We have shown that for each edge e of P ,
the set Xe is homeomorphic to the open ball Bn. Let e′ be an edge of F
and U ′

e′ = Ue′ ∩ F . Hence

We′ = (Zn−1−k
2 × U ′

e′)/ ∼′= (Zn−1
2 × U ′

e′)/ ∼

is homeomorphic to the open ball Bn−k.

3 Orbifold fundamental group

Orbifold cover and orbifold fundamental group was introduced by Thurston
in [Th]. In this section we compute the universal orbifold cover and orbifold
fundamental group of an n-dimensional (n ≥ 3) small orbifold X over P ⊂
Rn.

Definition 3.1. A covering orbifold or orbifold cover of an n-dimensional
orbifold Z is a smooth map of orbifolds g : Y → Z whose associated con-
tinuous map g : Y → Z between underlying spaces satisfies the following
condition.

Each point z ∈ Z has a neighborhood U ∼= V/Γ with V homeomorphic
to a connected open set in Rn, for which each component Wi of g−1(U)
is homeomorphic to V/Γi for some subgroup Γi ⊂ Γ such that the natural
map gi : V/Γi → V/Γ corresponds to the restriction of g on Wi.

Definition 3.2. Given an orbifold cover g : Y → Z a diffeomorphism
h : Y → Y is called a deck transformation if g ◦ h = g.

Definition 3.3. An orbifold cover g : Y → Z is called a universal orbifold
cover of Z if given any orbifold cover g1 : W → Z, there exists an orbifold
cover g2 : Y → W such that g = g1 ◦ g2.

Every orbifold has a universal orbifold cover which is unique up to dif-
feomorphism, see [Th]. The corresponding group of deck transformations is
called the orbifold fundamental group of Z and denoted by πorb

1 (Z).
The set of smooth points

M := X − ΣX

of small orbifold X is an n-dimensional manifold. For each v ∈ V (P ) we
have

Xv − [0, v]∼ ∼= RPn−1 × I0.
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The sphere Sn−1 is the double sheeted universal cover of RPn−1. So the
universal cover of Xv − [0, v]∼ is Sn−1 × I0 ∼= Bn − 0. Let e be an edge
containing the vertex v of P . Define e := e ∩ Uv.

Identifying the faces containing the edge e of Uv according to the equiv-
alence relation ∼ we get the quotient space Xe(Uv, ϑ) homeomorphic to

Bn
e := {(x1, x2, . . . , xn) ∈ Bn : xn ≥ 0}.

The set Xv is obtained from Xe(Uv, ϑ) by identifying the antipodal points
of the boundary of Xe(Uv, ϑ) around the fixed point [a, v]∼. Identifying
two copies of Xe(Uv, ϑ) along their boundary via the antipodal map on the
boundary we get a space homeomorphic to Bn.

Doing these identification associated to the orbifold points we obtain
that the universal cover of M is homeomorphic to Rn −N for some infinite
subset N of Zn where N depends on the polytope P in Rn. Let

ζ : Rn −N →M (3.1)

be the universal covering map.
The chart maps φv : Bn → Xv are uniformly continuous and P is an

n-polytope in Rn. So for each x ∈ N there exists a neighborhood Vx ⊂ Rn

of x such that the restriction of the universal covering map ζ on Vx − x is
uniformly continuous. Hence the map ζ has a unique extension, say ζ̂, on
their metric completion. The metric completion of Rn −N and M are Rn

and X respectively. The map ζ̂ sends N onto V (P ).

We show the map ζ̂ is an orbifold covering. Let ϱ : Z → X be an orbifold
cover. Then the restriction ϱ : Z − ΣZ → M is an honest cover. Hence
there exist a covering map ζϱ : Rn − N → Z − ΣZ so that the following
diagram is commutative.

Rn −N
ζϱ−−−−→ Z − ΣZ

ζ

y ϱ

y
M

id−−−−→ M

(3.2)

Since the map ζ is locally uniformly continuous and the maps ζϱ, ϱ are
continuous, all the maps in the diagram 3.2 can be extended to their metric
completion. That is we get a commutative diagram of orbifold coverings.

Rn ζ̂ϱ−−−−→ Z

ζ̂

y ϱ̂

y
X id−−−−→ X

(3.3)



Some small orbifolds over polytopes 11

Hence ζ̂ : Rn → X is an orbifold universal cover of X . Clearly the map ζ̂ is
a smooth map.

Theorem 3.4. The universal orbifold cover of an n-dimensional small orb-
ifold is diffeomorphic to Rn.

x

−x

y

−y

v5

v8

v6

v7

v6

v7

v3v4

v2v1v2

v3

v3

v2

v3

v2
v1

v4

Figure 2. Identification of faces containing the edge v5v8 of I3.

Example 3.5. Recall the small orbifold X(I3, ϑ) of example 2.10. The set
of smooth points

M(I3, ϑ) := X(I3, ϑ)− ΣX (I3, ϑ)

is a 3-dimensional manifold. The universal cover of M(I3, ϑ) is homeomor-
phic to R3 − Z3. To show this we need to observe how the faces of Z2

2 × I3

are identified by the equivalence relation ∼ (see equation 2.1) on Z2
2 × I3.

For each v ∈ V (I3)

Xv(I
3, ϑ)− [a, v]∼ ∼= RP2 × I0.

The sphere S2 is the double sheeted universal cover of RP2. So the universal
cover of Xv(I

3, ϑ)− [a, v]∼ is S2 × I0 ∼= B3 − 0. Hence the identification of
faces around each vertex of I3 tells us that the universal cover of M(I3, ϑ)
is R3 − Z3. We illustrate the identification of faces by the figure 2, where
x ∼ −x on the upper face and y ∼ −y on the lower face in that figure.

Now we use the following observation from [ALR] to compute the orb-
ifold fundamental group of X .
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Observation 2. Suppose that u : Ŷ → Y is an orbifold universal cover.
Then the restriction u : Ŷ − ΣŶ → Y − ΣY is an honest cover with G =
πorb
1 (Y) as the orbifold covering group, where ΣY is the singular subset of

Y. Therefore Y = Ŷ/G.

Let {β1, β2, . . . , βm} be the standard basis of Zm
2 . Define a map β :

F(P ) → Zm
2 by β(Fj) = βj . For each face F = Fj1 ∩ Fj2 ∩ . . . ∩ Fjl , let HF

be the subgroup of Zm
2 generated by βj1 , βj2 , . . . , βjl . Define an equivalence

relation ∼β on Zm
2 × P by

(s, p) ∼β (t, q) if and only if p = q and t− s ∈ HF

where F ⊂ P is the unique face whose relative interior contains p. So
the quotient space N(P, β) = (Zm

2 × P )/ ∼β is an n-dimensional smooth
manifold. N(P, β) is a Zm

2 -space with the orbit map

πu : N(P, β) → P defined by πu([s, p]
∼β ) = p.

We show P has a smooth orbifold structure. Recall the open subset Uv of
P associated to each vertex v ∈ V (P ). Note that open sets {Uv : v ∈ V (P )}
cover P . Let d be the Euclidean distance in Rn. Let Fi1 , Fi2 , . . . , Fin be
the facets of P such that v is the intersection of Fi1 , Fi2 , . . . , Fin . For each
p ∈ Uv, let

xj(p) = d(p, Fij ), for all j = 1, 2, . . . , n.

Let Bn
v = {(x1(p), . . . , xn(p)) ∈ Rn

≥0 : p ∈ Uv}. So the map

f : Uv → Bn
v defined by p→ (x1(p), . . . , xn(p))

gives a diffeomorphism from Uv to Bn
v . Consider the standard action of Zn

2

on Rn with the orbit map

ξ : Rn → Rn
≥0.

Then ξ−1(Bn
v ) is diffeomorphic to Bn. Hence (ξ−1(Bn

v ), f
−1 ◦ ξ,Zn

2 ) is a
smooth orbifold chart on Uv. To show the compatibility of these charts as v
varies over V (P ), we can introduce some additional smooth orbifold charts
to make this collection an smooth orbifold atlas as in section 2. From the
definition of ∼ it is clear that π : X(P, ϑ) → P is a smooth orbifold covering.

Definition 3.6. Let L be the simplicial complex dual to P . The right-
angled Coxeter group Γ associated to P is the group with one generator for
each element of V (L) and relations between generators are the following;
a2 = 1 for all a ∈ V (L), (ab)2 = 1 if {a, b} ∈ E(L).
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For each p ∈ P , let F (p) ⊂ P be the unique face containing p in its
relative interior. Let F (p) = Fj1 ∩ . . . ∩ Fjl . Let aj1 , . . . , ajl be the vertices
of L dual to Fj1 , . . . , Fjl respectively. Let ΓF (p) be the subgroup generated
by aj1 , . . . , ajl of Γ. Define an equivalence relation ∼ on Γ× P by

(g, p) ∼ (h, q) if p = q and h−1g ∈ ΓF (p).

Let Y = (Γ × P )/ ∼ be the quotient space. We follow this construction
from [DJ]. So Y is a Γ-space with the orbit map

ξΓ : Y → P defined by ξΓ([g, p]
∼) = p. (3.4)

Then Y is an n-dimensional manifold and ξΓ is an orbifold covering. Since
each facet is connected, whenever two generators of Γ commute the inter-
section of corresponding facets of P is nonempty. From Theorems 10.1 and
13.5 of [D], we get that Y is simply connected. Hence ξΓ is a universal
orbifold covering and the orbifold fundamental group of P is Γ.

Let H be the kernel of abelianization map Γ → Γab. The group H
acts on Y freely and properly discontinuously. So the orbit space Y/H is a
manifold. The space Y/H is called the universal abelian cover of P . Note
that N(P, β) = Y/H. Let

ξβ : Y → N(P, β) (3.5)

be the corresponding orbit map.
Define a function ϑ : Zm

2 → Zn−1
2 by ϑ(βj) = ϑ(Fj) = ϑj on the basis of

Zm
2 . So ϑ is a linear surjection. ϑ induces a surjection

ϑ̃ : N(P, β) → X(P, ϑ) defined by ϑ̃([s, p]∼β ) = [s, p]∼. (3.6)

That is the following diagram commutes.

N(P, β)
ϑ̃−−−−→ X(P, ϑ)

π̂u

y π̂

y
P

id−−−−→ P

(3.7)

From this commutative diagram we get ϑ̃ is a smooth orbifold covering of
X(P, ϑ). Hence the composition map

ϑ̃ ◦ ξβ : Y → X(P, ϑ)

is a smooth universal orbifold covering. From [Th] and Theorem 3.4 we
obtain the following necessary condition for existence of an s-characteristic
function.
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Theorem 3.7. Let ϑ : F(P ) → Zn−1
2 be an s-characteristic function of the

n-polytope P (n > 2). Then the space Y is diffeomorphic to Rn.

Note that when P is an n-simplex, Y is homeomorphic to the n-dimensio-
nal sphere Sn. So by this theorem there does not exist an s-characteristic
function of n-simplex.

Let ξϑ be the following composition map

Γ → Γab ϑ−−−−→ Zn−1
2 . (3.8)

Clearly ker(ξϑ), kernel of ξϑ, acts on Y with the orbit map ϑ̃ ◦ ξβ . Now
using the observation 2, we get the following corollary.

Corollary 3.8. The orbifold fundamental group ofX(P, ϑ) is ker(ξϑ) which
is a normal subgroup of the right-angled Coxeter group associated to the
polytope P .

4 Homology and Euler characteristic

4.1 Face vector of polytope

The face vector or f -vector is an important concept in the combinatorics
of polytopes. Let L be a simplicial n-polytope and fj is the number of
j-dimensional faces of L. The integer vector f(L) = (f0, . . . , fn−1) is called
the f -vector of the simplicial polytope L. Let hi be the coefficients of tn−i

in the polynomial

(t− 1)n +Σn−1
0 fi(t− 1)n−1−i. (4.1)

The vector h(L) = (h0, . . . , hn) is called h-vector of L. Obviously h0 = 1,
and Σn

0hi = fn−1. The f -vector and h-vector of a simple n-polytope P is
the f -vector and h-vector of its dual simplicial polytope respectively, that
is f(P ) = f(P ∗) and h(P ) = h(P ∗).

Hence for a simple n-polytope P ,

f(P ) = (f0, . . . , fn−1), (4.2)

where fj is the number of codimension-(j + 1) faces of P . Then hn = 1
and Σ

n

0
hi is the number of vertices of P . The face vector is a combinatorial

invariant of polytopes, that is it depends only on the face poset of the
polytope.

4.2 CW -complex structure

To calculate the singular homology groups of small orbifold X we construct
a CW -structure on these orbifolds and describe how the cells are attached.
Realize P as a convex polytope in Rn and choose a linear functional

φ : Rn → R (4.3)
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which distinguishes the vertices of P , as in proof of Theorem 3.1 in [DJ].
The vertices are linearly ordered according to ascending value of φ. We
make the 1-skeleton of P into a directed graph by orienting each edge such
that φ increases along edges. For each vertex of P define its index indP (v),
as the number of incident edges that point towards v.

Definition 4.1. A subset Q ⊆ P of dimension k is called a proper subcom-
plex of P if Q is connected and Q is the union of some k-dimensional faces
of P .

In particular each face of P is a proper subcomplex of P . The 1-skeleton
of Q is a subcomplex of the 1-skeleton of P . The restriction of φ on the
1-skeleton of Q makes it a directed graph. Define index indQ(v) of each
vertex v of Q as the number of incident edges in Q that point towards v.
Let V (Q) and F(Q) denote the set of vertices and the set of faces of Q
respectively.

Lemma 4.2. Let X be a small orbifold over a simple polytope P . Then X
has a CW -complex structure with Σn

khi cells in dimension k, 0 ≤ k ≤ n.

Proof. Let

IP ={(u, eu)∈V (P )×E(P ) : indP (u)=nandeu is the edge joining the vertices

u, xu such that φ(u) > φ(xu) > φ(a) for all vertex a ∈ V (P )− {u, xu}}.
Let Ueu = Uu ∩ Uxu and Qn = P . Then Weu = (Zn−1

2 × Ueu)/ ∼ is
homeomorphic to the n-dimensional open ball Bn ⊂ Rn. Let

Qn−1 = P − Ueu . (4.4)

Qn−1 is the union of facets not containing the edge eu of P . So Qn−1

is an (n − 1)-dimensional proper subcomplex of P and V (P ) = V (Qn−1).
Let v ∈ V (Qn−1) with indQn−1(v) = n − 1. Let Fn−1

v ∈ F(Qn−1) be the
smallest face which contains the inward pointing edges incident to v inQn−1.
If v1, v2 are two vertices of Qn−1 with indQn−1(v1) = n − 1 = indQn−1(v2)
then Fn−1

v1 ̸= Fn−1
v2

. Let

IQn−1 ={(v, ev)∈V (P )×E(P ) : indQn−1(v)=n−1 and ev is the edge joining

the vertices v, yv ∈ V (Fn−1
v ) : φ(v) > φ(yv) > φ(b) ∀ b ∈ V (Fn−1

v )−{v, yv}}.
Let

Uev = Uv ∩ Uyv ∩ Fn−1
v for each (v, ev) ∈ IQn−1 .

From observation 1,Wev = (Zn−1
2 ×Uev )/ ∼ is homeomorphic to the (n−1)-

dimensional open ball Bn−1 ⊂ Rn−1. Let

Qn−2 = P − {{
∪

(u,eu)∈IQn

Ueu} ∪ {
∪

(v,ev)∈IQn−1

Uev}}. (4.5)
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So Qn−2 is an (n − 2)-dimensional proper subcomplex of P and V (P ) =
V (Qn−2). Let w ∈ V (Qn−2) with indQn−2(w) = n−2. Let Fn−2

w ∈ F(Qn−2)
be the smallest face which contains the inward pointing edges incident to
w in Qn−2. If w1, w2 are two vertices of Qn−2 with indQn−2(w1) = n− 2 =
indQn−2(w2) then F

n−2
w1

̸= Fn−2
w2

. Let

IQn−2 ={(w, ew)∈V (P )×E(P ) : indQn−2(w)=n−2 and ew is the edge joining

the vertices w, zw∈V (Fn−2
w ) : φ(w)>φ(zw)>φ(c) ∀ c∈V (Fn−2

w )−{w, zw}}.
Let

Uew = Uw ∩ Uzw ∩ Fn−2
w for each (w, ew) ∈ IQn−2 .

From observation 1, Wew = (Zn−1
2 × Uew)/ ∼ is homeomorphic to the

(n− 2)-dimensional open ball Bn−2 ⊂ Rn−2.
Continuing this process we observe that Q1(∼= (Zn−1

2 × Q1)/ ∼) is a
maximal tree of the 1-skeleton of P and Q0 = V (P ). Hence relative interior
of each edge of (Zn−1

2 ×Q1)/ ∼ is homeomorphic to the 1-dimensional ball
in R. So corresponding to each edge of polytope P , we construct a cell

of dimension ≥ 1 of X. Let X0 = V (P ) and Xk =
k∪

i=1

∪
(v,ev)∈IQi

W ev for

1 ≤ k ≤ n. Then Xk is the k-th skeleton of X and

X =
n∪

k=1

Xk.

The integer hn−i is the number of vertices v ∈ V (P ) of indP (v) = i.
The Dehn-Sommervile relation is

hi = hn−i ∀ i = 0, 1, . . . , n,

see Theorem 1.20 of [BP]. Hence the number of k-dimensional cells in X is

|IQk | = Σn
khi for 1 ≤ k ≤ n. (4.6)

So we get a CW -complex structure on X with Σn
khi cells in dimension k,

0 ≤ k ≤ n. �

We describe the attaching map for a k-dimensional cell. Here k-dimensio-
nal cells are

{Wev : (v, ev) ∈ IQk}.
Let (v, ev) ∈ IQk . Let F k

v ∈ F(Qk) be the smallest face containing the
inward pointing edges to v in Qk. Define an equivalence relation ∼ev on
Zn−1
2 × F k

v by

(t, p) ∼ev (s, q) if p = q ∈ F ′ and s− t ∈ GF ′ (4.7)
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where F ′ ∈ F(F k
v ) is a face containing the edge ev. The quotient space

(Zn−1
2 × F k

v )/ ∼ev is homeomorphic to the closure of open ball Bk ⊂ Rk.
The attaching map φFk

v
is the natural quotient map

φFk
v
: Sk−1 ∼= (Zn−1

2 × (F k
v −Uev )/ ∼ev → (Zn−1

2 × (F k
v −Uev )/ ∼ . (4.8)

Since singular homology and cellular homology are isomorphic, we com-
pute cellular homology of X. To calculate cellular homology we compute
the boundary map of the cellular chain complex for X. To compute the
boundary map we need to compute the degree of the following composition
map βwev

Sk−1
φ

Fk
v−→ (Zn−1

2 × (F k
v − Uev )/ ∼

q−→ Xk−1

Xk−2
=

∨
(w,ew)∈I

Qk−1

Sk−1
w

qw−→ Sk−1
w

(4.9)
where F k

v is a face of Qk of dimension k (k ≥ 2), Sk−1
w

∼= Sk−1 and q, qw
are the quotient maps.

Lemma 4.3. Degree of the map βwev is 2 if k ≥ 2 is odd and βwev is a
surjection. Otherwise it is zero.

Proof. Clearly the above composition map βwev is either surjection or con-
stant up to homotopy. When the map is constant the degree of the compo-
sition map βwev is zero. We calculate the degree of the composition when
it is a surjection.

Let (w, ew) ∈ IQk−1 be such that βwev is a surjection. Let zw be the
vertex of the edge ew other than w. Let F k−1

w ∈ F(Qk−1) be the smallest
face which contains the inward pointing edges to w in Qk−1. Let

Uew = Uw ∩ Uzw ∩ F k−1
w .

So Uew is an open subset of F k−1
w and Uew contains the relative interior of

ew. The face F k−1
w ⊂ F k

v − Uev is a facet of F k
v . Note that

Wew = (Zn−1
2 × Uew)/ ∼ = Sk−1

w − {Xk−2/Xk−2}.

The quotient group GFk−1
w

/GFk
v
is isomorphic to Z2. Hence from equa-

tions 4.7, 4.8 and 4.9 we get that (βwev )
−1(Wew) has two components Y 1

and Y 2 in Sk−1. The restrictions (βwev )|Y 1 and (βwev )|Y 1 , on Y 1 and Y 2

respectively, give homeomorphism to Wew . Let yv be the vertex of the edge
ev other than v. Observe that

(Zn−1
2 × (F k

v − {Uev ∪ {v, yv}})/ ∼ev
∼= I0 × Sk−2.
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Hence from the definition of equivalence relation ∼, it is clear that Y 2

is the image of Y 1 under the map (possibly up to homotopy)

(id×a) : I0×Sk−2 → I0×Sk−2 defined by (id×a)(r, x) = (r,−x), (4.10)

where I0 is the open interval (0, 1) ⊂ R. The degree of (id× a) is (−1)k−1.
Hence the degree of the composition map βwev is

dvw = deg(βwev ) =

 2 if k ≥ 2 is odd and βwev is a surjection
0 if k ≥ 2 is even and βwev is a surjection
0 if βwev is constant

(4.11)
�

Theorem 4.4. The singular homology groups of the small orbifold X with
coefficients in Z is

Hk(X,Z) =


Z if k = 0 and if k = n even
(⊕hk

Z)⊕ (⊕Σn
k+1hi Z2) if k is even, 0 < k < n

0 otherwise

Proof. The cellular chain complex of the CW -complex constructed in lemma
4.2 of small orbifold X is

0 → Z dn−→ ⊕|IQn−1 | Z → · · · d3−→⊕|IQ2 | Z d2−→ ⊕|IQ1 | Z
d1−→ ⊕|IQ0 | Z → 0

(4.12)
where dk is the boundary map of the cellular chain complex. If k ≥ 2 the
formula of dk is

dk(Wev ) =
∑

(w,ew)∈I
Qk−1

dvwWew , (4.13)

where (v, ev) ∈ IQk and dvw is the degree of the composition map βwev .
Hence the map dk is represented by the following matrix with entries

{dvw : (v, ev) ∈ IQk , (w, ew) ∈ IQk−1}. (4.14)

So by lemma 4.3 the map dk is the zero matrix for all even k. When
k ≥ 2 is odd, the map dk is injective and the image of the map dk is the
submodule generated by

{
∑

(w,ew)∈I
Qk−1

dvwWew : (v, ev) ∈ IQk}. (4.15)

Hence the quotient module (⊕|I
Qk−1 | Z)/Imdk is isomorphic to (⊕hk

Z)⊕
(⊕Σn

k+1hi Z2).



Some small orbifolds over polytopes 19

Since the 1- skeletonX1 is a tree with Σn
0hi vertices and Σn

1hi edges. The
boundary map d1 is an injection. The image of d1 is Σ

n
1hi dimensional direct

summand of ⊕|IQ0 | Z over Z. Hence (⊕|IQ0 | Z)/d1(⊕|IQ1 | Z) is isomorphic
to Z. �

Remark 4.5. If P is an even dimensional simple polytope then the small
orbifold over P is orientable.

Corollary 4.6. The singular homology groups of the orbifold X with co-
efficients in Q is

Hk(X,Q) =

 Q if k = 0 and if k = n even
⊕hk

Q if k is even, 0 < k < n
0 otherwise

With coefficients in Z2 the cellular chain complex 4.12 is

0 → Z2
0−→ ⊕|IQn−1 | Z2

0−→ · · · 0−→ ⊕|IQ1 | Z2
d1−→ ⊕|IQ0 | Z2

0−→ 0 (4.16)

Where d1 is an injection. Hence (⊕|IQ0 | Z2)/d1(⊕|IQ1 | Z2) is isomorphic to

Z2. So we get the following corollary.

Corollary 4.7. The singular homology groups of the orbifold X with co-
efficients in Z2 is

Hk(X,Z2) =


Z2 if k = 0 and if k = n
⊕Σn

khi Z2 if 1 < k < n
0 if k = 1

Remark 4.8. The k-th modulo 2 Betti number bk(X) of small orbifold X
is zero when k = 1. bk(X) = Σn

k hi if 1 < k ≤ n and b0(X) = h0 = 1.
Hence modulo 2 Euler characteristic of X is

X(X) = h0 +Σn
k=2(−1)kΣn

khi = Σ
[n/2]
0 h2i. (4.17)

Observe that bk(X) ̸= bn−k(X) if 1 6 k < n. Hence the Poincaré Duality
for small orbifolds is not true with coefficients in Z2.

5 Cohomology ring of small orbifolds

We have shown that the even dimensional small orbifolds are compact,
connected, orientable. Let X be an even dimensional small orbifold over the
polytope P . Hence by the following Proposition we get that the cohomology
ring of X satisfy the Poincaré duality with coefficients in rationals.
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Proposition 5.1 (Proposition 1.28, [ALR]). If a compact, connected Lie
group G acts smoothly and almost freely on an orientable, connected, com-
pact manifold M , then the cohomology ring H∗(M/G;Q) is a Poincaré
duality algebra. Hence, if X is a compact, connected, orientable orbifold,
then H∗(X;Q) will satisfy Poincaré duality.

We rewrite Poincaré duality for small orbifolds using the intersection
theory. The purpose is to show the cup product in cohomology ring is
Poincaré dual to intersection, see equation 5.9. The proof is akin to the
proof of Poincaré duality for oriented closed manifolds proved in [GH]. To
show these we construct a q-CW complex structure on X. The q-CW
complex structure on a Hausdorff topological space is constructed in [PS].

An open cell of q-CW complex is the quotient of an open ball by linear,
orientation preserving action of a finite group. Such an action preserves the
boundary of open ball. The construction mirrors the construction of usual
CW complex given in Hatcher [Ha]. In [PS] the authors show that q-cellular
homology of a q-CW complex is isomorphic to its singular homology with
coefficients in rationals. Similarly we can show that q-cellular cohomology of
a q-CW complex is isomorphic to its singular cohomology with coefficients
in rationals.

Let P be an n-dimensional simple polytope where n is even and π : X →
P be a small orbifold over P . Let P ′ be the second barycentric subdivision
of the polytope P . Let

{ηkα : α ∈ Λ(k) and k = 0, 1, . . . , n} (5.1)

be the simplices in P ′. Here k is the dimension of ηkα and Λ(k) is an index
set. Let (ηkα)

0 be the relative interior of k-dimensional simplex ηkα.

Definition 5.2. A subset Y ⊆ X is said to be relatively open subset of di-
mension k if for each point y ∈ Y there exist an orbifold chart (Ũ , G, ψ) such
that ψ(V ) ∋ y is an open subset of Y , for some k-dimensional submanifold

V of Ũ .

Then (π−1)(ηkα)
0 is disjoint union of the following relatively open subsets

{(σk
αi
)0 ⊂ X : i = 1, . . . , α(k)}

for some natural number α(k). Here σk
αi

is the closure of (σk
αi
)0 in X.

The restriction of π on σk
αi

is a homeomorphism onto the simplex ηkα for
i = 1, . . . , α(k). Then the collection

{σk
αi

: i = 1, . . . , α(k) and α ∈ Λ(k) and k = 0, 1, . . . , n} (5.2)

gives a simplicial decomposition of the small orbifold X. So

K = {σk
αi
, ∂}αi,k (5.3)



Some small orbifolds over polytopes 21

is a simplicial complex of X.

Definition 5.3. The transversality of two relatively open subsets U and V
of X at p ∈ U ∩ V is defined as follows:

1. If p is a smooth point of X, we say U intersect V transversely at p
whenever Tp(U) + Tp(V ) = Tp(X).

2. If p is an orbifold point of X there exist an orbifold chart (Bn,Z2, φv)
such that φv(0) = p. We say U intersect V transversely at p whenever
T0(φ

−1
v (U)) + T0(φ

−1
v (V )) = T0(B

n).

Let σk1
αi

and ρk2

βj
be two simplices of dimension k1 and k2 respectively in

the simplicial complex K of X.

Definition 5.4. We say σk1
αi

and ρk2

βj
intersect transversely at p ∈ σk1

αi
∩ ρk2

βj

if there exist two relatively open subsets U ⊂ X and V ⊂ X containing σk1
αi

and ρk2

βj
respectively such that dim(U) = k1, dim(V ) = k2 and U intersect

V transversely at p.

Let U and V be two complementary dimensional relatively open subset
of X that intersect transversely at p ∈ U ∩ V .

Definition 5.5. Define the intersection index of U and V at p to be
1 if there exist oriented bases {ξ1, . . . , ξk1} and {η1, . . . , ηk2} for Tp(U)
(T0(φ

−1
v (U))) and Tp(V ) (T0(φ

−1
v (V ))) respectively such that

{ξ1, . . . , ξk1 , η1, . . . , ηk2} is an oriented basis for TpX(T0B
n) whenever p is

smooth (respectively orbifold) point of X. Otherwise the intersection index
of U and V at p is −1.

Since antipodal action on Bn (as n is even) is orientation preserving
there is no ambiguity in the above definition. Let

A = Σnαiσ
k1
αi

and B = Σmβjρ
k2

βj

be two cycles of the simplicial complex K such that n = k1 + k2 and they
intersect transversely.

Definition 5.6. Define the intersection number of A and B is the sum
of the intersection indixes (counted with multiplicity) at their intersection
points.

The number is finite since A and B are closed subsets of compact space
X. We show that the intersection number depends only on the homology
class of the cycle. Let σk1

αi
and ρk2

βj
be two simplices in K with k1 + k2 = n.

From the construction of the simplicial complex K we make some observa-
tions.
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Observation 3. 1. σk1
αi

and ρk2

βj
can not contain different orbifold points

whenever their intersection is nonempty.

2. Each σk1
αi

and ρk2

βj
can contain at most one orbifold point.

3. If σk1
αi

and ρk2

βj
contain an orbifold point or not, whenever their inter-

section is nonempty, we can find a Z2-invariant smooth homotopy

G : [0, 1]×Xv → Xv

fixing the orbifold point of Xv such that G(0 × Uk1
αi
) and G(1 × V k2

βj
)

intersect transversely where Uk1
αi

and V k2

βj
containing σk1

αi
and ρk2

βj
re-

spectively are suitable relatively open subsets of Xv and dimUk1
αi

= k1,

dimV k2

βj
= k2.

Let σk1
α0

+ . . . + σk1
αk1

be the boundary of (k1 + 1)-simplex σk1+1
α . The

observations 3 also hold for the simplices σk1+1
α and ρk2

βj
although k1 + 1 +

k2 = n+ 1. If G′ is the smooth homotopy and G′(0× Uk1+1
α ) ∩ G′(1× V k2

βj
)

is nonempty then the subset

G′(0× Uk1+1
α ) ∩ G′(1× V k2

βj
)

of X is a collection of piecewise smooth curves. After lifting a curve to
an orbifold chart (if necessary), using the similar arguments as in [GH]
we can show that intersection number of σk1

α0
+ . . . + σk1

αk1
and ρk2

βj
is zero.

Integrating these computation to the boundary A = Σnαiσ
k1
αi

and the cycle

B = Σmβjρ
k2

βj
we ensure that the intersection number of A and B is zero.

Let K′ = {τkαi
, ∂} be the first barycentric subdivision of the

complex K. Now we construct the dual q-cell decomposition of the complex
K. For each vertex σ0

αi
in the complex K, let

∗σ0
αi

=
∪

σ0
αi

∈τn
βj

τnβj
(5.4)

be the n-dimensional q-cell which is the union of the n-simplices τnβj
∈ K′

containing σ0
αi

as a vertex. Then for each k-simplex σk
αi

in the decomposi-
tion K, let

∗σk
αi

=
∩

σ0
βj

∈τn
αi

∗σ0
βj

(5.5)

be the intersection of the n-dimensional q-cells associated to the k + 1
vertices of σk

αi
. The q-cells {∆n−k

αi
= ∗σk

αi
} give a q-cell decomposition ofX,
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called the dual q-cell decomposition of K. So the dual q-cell decomposition
{∆n−k

α } is a q-CW structure on X.
From the description of dual q-cells it is clear that ∆n−k

αi
intersects σk

αi

transversely when dimension of σk
αi

is greater than zero. ∆n
αi

is a quotient
space of the antipodal action on a symmetric convex polyhedral centered at
origin in Rn. Since the antipodal action on Rn (n even) preserve orientation
of Rn, we can define the intersection number of σ0

αi
and ∆n

αi
to be 1. We

consider the orientation on the dual q-cell {∆n
αi
} such that the intersection

number of σk
αi

and ∆n−k
αi

is 1.
Using the same argument as Grifiths and Harris have made in the proof

of Poincaré duality theorem in [GH], we can prove the following relation
between boundary operator ∂ on the cell complex {σk

αi
} and coboundary

operator δ on the dual q-cell complex {∆n−k
αi

} when dimension of σk
αi

is
greater than one,

δ({∆n−k
αi

}) = (−1)n−k+1 ∗ (∂σk
αi
). (5.6)

Let {σk
αi
} =< x, y >∈ K be a one simplex with the vertices x, y. The

orientation on {σk
αi
} comes from the orientation of X. Since we are con-

sidering q-cell structure on X, define δ({∆n−1
αi

}) = ∗σ0
y − ∗σ0

x. So we get a

map σk
αi

→ ∆n−k
αi

which induces an isomorphism

ξ′k : Hk(X,Q) → Hn−k
q-CW(X,Q), (5.7)

where Hn−k
q-CW(X,Q) is n − k th q-cellular cohomology group. Hence we

have the following theorem for even dimensional small orbifold.

Theorem 5.7 (Poincaré duality). Let X be an even dimensional small
orbifold. The intersection pairing

Hk(X,Q)×Hn−k(X,Q) → Q

is nonsingular; that is, any linear functional Hn−k(X,Q) → Q is expressible
as the intersection with some class Θ ∈ Hk(X,Q). There is an isomorphism
ξ′k from Hk(X,Q) to Hn−k(X,Q).

Using this Poincaré duality theorem for even dimensional small orbifold
we can calculate the cohomology groups of small orbifold X.

Theorem 5.8. The singular cohomology groups of the even dimensional
small orbifold X with coefficients in Q is

Hk(X) =

 Q if k = 0 and if k = n even
⊕hk

Q if k is even, 0 < k < n
0 otherwise.
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We can also define a product µk1k2 similarly as in [GH] but some care
is needed at orbifold points. The product

µk1k2 : Hn−k1(X,Q)×Hn−k2(X,Q) → Hn−k1−k2(X,Q) (5.8)

on the homology of X in arbitrary dimensions satisfying the following com-
mutative diagram.

Hn−k1(X,Q)×Hn−k2(X,Q)
µk1k2−−−−→ Hn−k1−k2(X,Q)

ξn−k1
×ξn−k2

y ξn−k1−k2

y
Hk1(X,Q)×Hk2(X,Q)

u−−−−→ Hk1+k2(X,Q)

(5.9)

where the lower horizontal map u is the cup product in cohomology ring.
We write some observations about the transversality of faces of an n-

dimensional polytope P (n even). Let F and F ′ be two faces of P . F and
F ′ intersect transversely if codim(F ∩ F ′) = codimF + codimF ′. Since P
is simple polytope, the following two properties are satisfied.

Property 1. Let F be a 2k-dimensional face of P and u be a vertex of F .
Then there is a unique (n− 2k)-dimensional face F ′ of P such that F and
F ′ meet at u transversely.

Property 2. Let F be a face of codimension 2k. Then there is k many
distinct faces of codimension two such that they intersect transversely at
each point of F .

Lemma 5.9. Let π : X → P be an even dimensional small orbifold and
X(F, ϑ′) = π−1(F ) for each face F of P . Then

1. For each 2k-dimensional face F of P , the homology class represented
by X(F, ϑ′), denoted by [X(F, ϑ′)], is not zero in H∗(X,Q).

2. The cohomology ring H∗(X,Q) is generated by 2-dimensional classes.

Proof. The space X(F, ϑ′) is a 2k-dimensional suborbifold of X, for each
2k-dimensional (0 ≤ 2k ≤ n) face F of P . By Corollary 4.6 we get that the
homology in degree 2k of X is generated by the classes of form [X(F, ϑ′)],
where F is a 2k-dimensional face.

By equation 5.9, the dual of X(F ∩F ′, ϑ′) is the cup product of the dual
of [X(F, ϑ′)] and the dual of [X(F ′, ϑ′)], if F and F ′ intersect transversely
and otherwise the dual of X(F ∩ F ′, ϑ′) is zero.

The property 1 tells that there is an (n− 2k)-dimensional face F ′ which
intersects F transversely at a vertex of P . Since the homology classes
[X(F, ϑ′)] and [X(F ′, ϑ′)] are dual in intersection pairing of Poincaré dual-
ity, they are both nonzero. This proves (1) of the above Lemma.
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In theorem 5.8 we show the odd dimensional cohomology group is zero.
The cohomology in degree 2k is generated by Poincaré duals of classes of
the form [X(F, ϑ′)], codimF = 2k. By property 2, F is the transverse
intersection of distinct faces of codimension two. Hence, the Poincaré dual
of [X(F, ϑ′)] is the product of cohomology classes of dimension 2. This
proves (2) of the above Lemma. �

Recall the index function indP from section 4. Let F̂v ∈ F(P ) be the
smallest face containing the inward pointing edges incident to the vertex
v of P . Let w be the Poincaré dual of class of the form [X(F̂v, ϑ

′)], also
denoted by [v]. Let {v1, v2, . . . , vr} be the set of vertices of P such that
indP (vi) = n − 2. We show that {w1, w2, . . . , wr} is a minimal generating
set of H∗(X,Q).

Let Aj = {v ∈ V (P ) : indP (v) = j. Let UF̂v
be the open subset of

F̂v obtained by deleting all faces of F̂v not containing the vertex v. From
section 2 it is clear that π−1(UF̂v

) is homeomorphic to the orbit spaceBj/Z2,

where Z2 action on Bj is antipodal. So π−1(UF̂v
) is j-dimensional q-cell in

X. Clearly

X =
∪

v∈V (P )

π−1(UF̂v
).

This gives a q-CW structure on X. From Theorem 1.20 of [BP], we get
the number of j-dimensional cells is hn−j , cardinality of Aj . So the cor-
responding q-cellular chain complex gives that {[v] : v ∈ Aj} is a basis of
Hj(X,Q) if j is even. Theorem 5.8 tells that {w = ξj([v]) : v ∈ Aj} is a
basis of Hn−j(X,Q) if j is even.

Let F be a codimension 2k face of P with top vertex v of index n− 2k.
By property 2 F is unique intersection of k many distinct codimension 2
faces F̂vi1

, . . . , F̂vik
with top vertices vi1 , . . . , vik ∈ {v1, v2, . . . , vr} respec-

tively. Hence wi1 . . . wik = w in H∗(X,Q). Consider the polynomial ring
Q[w1, w2, . . . , wr]. Let the map

µni1 ...nil
: Hni1

(X,Q)× · · · ×Hnil
(X,Q) → Hn−ni1−···−nil

(X,Q) (5.10)

be defined by the repeated application of the product map µni1ni2
. Let I

be the ideal of Q[w1, w2, . . . , wr] generated by the following elements

S=


wi1wi2 . . . wil ifµni1 ...nil

([vi1 ], . . . , [vil ]) = 0 in Hn−{ni1+···+nil
}(X,Q)∏l1

1 wik−
∏l2

1 wjl
ifµni1

...nil1
([vi1 ],. . .,[vil1 ])=µnj1

...njl2
([vj1 ],. . . ,[vjl2 ]) in

Hn−{ni1+···+nil
}(X,Q) with ni1+. . .+nil1=nj1+. . .+njl2

(5.11)
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The Poincaré Duality theorem and intersection theory ensure that the re-
lations among wi’s are exactly as described above. Hence we have the
following theorem.

Theorem 5.10. The cohomology ring of even dimensional small orbifoldX
over the simple polytope P is isomorphic to the quotient ring
Q[w1, w2, . . . , wr]/I.

6 Some remarks on toric version

Definition 6.1. The function ψ : F(P ) → Zn−1 is called an isotropy func-
tion of P if the facets Fi1 , Fi2 , . . . , Fin intersect at vertex of P then the
set

{ψi1 , ψi2 , . . . , ψik−1
, ψ̂ik , ψik+1

, . . . , ψin},

where ψ(Fi) = ψi, is a basis of Zn−1 over Z for each k (1 < k < n).

Here the symbolˆrepresents the omission of corresponding entry.
The quotient Tn−1 = (Zn−1⊗R)/Zn−1 is a compact (n−1)-dimensional

torus. Suppose F = F1 ∩ . . . ∩ Fl. Let GF be the subgroup of Tn−1 de-
termined by the span of ψ1, . . . , , ψl. Let S(P, ψ) be the quotient space of
equivalence relation ∼T on Tn−1 × P define by

(t, p) ∼T (s, q) if p = q and s−1t ∈ GF (p) (6.1)

where F (p) is the unique face of polytope P whose relative interior contains
p. Then every point of S(P,ψ) are smooth point except a finite set of points
corresponding to the set V (P ) if n ≥ 3. When n = 2 the quotient space is
homeomorphic to 3-sphere. Only this is the case where the quotient space
is a manifold.

We can give a CW -structure on S(P, ψ) with cells in dimension 0, 1, 3,
. . . , 2n − 1 only. The zero dimensional cells correspond to the set V (P ).
The one dimensional cells correspond to the relative interior of each edge of
a maximal tree of the 1-skeleton of P . Hence in the cellular chain complex
of the CW -structure on S(P, ψ) each boundary map d′k is zero except d′1.
The map d′1 is injective and the image of the map d′1 is a direct summand
of a free module with codimension-1. Hence we can prove the following
theorem.

Theorem 6.2. The singular homology of the space S(P, ψ) with Z coeffi-
cients is

Hk(S(P,ψ),Z) =


Z if k = 0 and if k = 2n− 1
⊕Σn

l hi Z if k = 2l − 1 is odd and 1 < k < 2n− 1
0 otherwise
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Remark 6.3. If n ≥ 3 and P is a simple n-polytope, the space S(P,ψ) is
not an orbifold. The Euler characteristic of the space S(P, ψ) is

X(S(P, ψ),Z) = h0 +
n∑

k=2

(−1)2k−1
n∑
k

hi = h0 −
n∑
2

(i− 1)hi (6.2)
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