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Abstract

We define the concept of a spectrally compact operator, and study
the basic properties of these operators. We show that the class of
spectrally compact operators is strictly contained in the class of com-
pact operators and in the class of spectrally bounded operators. It is
also proved that the set of spectrally compact operators on a spec-
trally normed space E is a right ideal of SB(E) and in certain cases
it is a two sided ideal. We will also study the spectral adjoint of a
spectrally compact operator.
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1 Introduction

Let E be a normed space endowed with a spectral structure in the sense
that there exists a linear topological isomorphism τ from E into a unital
Banach algebra A. We consider E as a normed subspace of A, and we
write E ⊆ A. Such a normed space E is said to be a spectrally normed
space. It should be emphasized that the spectral structure on E depends
on the embedding, up to topological isomorphisms. For x ∈ E, sp(x) and
r(x) denote the spectrum and the spectral radius of x with respect to the
Banach algebra A, respectively. A spectrally normed space is said to be
commutative (semisimple) whenever A is commutative (semisimple).

Every normed space E carries at least one spectral structure via the iso-
metric embedding jE : E → C(E1

∗), the complex-valued continuous func-
tions on the dual closed unit ball E1

∗, endowed with the weak*-topology.
This is a commutative semisimple structure and ‖x‖ = r(x) for x ∈ E.

Let E,F be spectrally normed spaces. A linear mapping T : E → F is
called spectrally bounded , if there exists M ≥ 0, such that r(Tx) ≤ Mr(x),
for all x ∈ E. In general, a spectrally bounded operator need not be bounded
and conversely, a bounded operator between spectrally normed spaces may
not be spectrally bounded, see [3, Examples 2.7, 2.8].

∗The authors would like to express their deepest thanks to the referees for valuable
comments and suggesting the shorter proof of Theorem 2.10.
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Mathieu and Schick initiated a systematic study of spectrally bounded
operators between spectrally normed spaces in [3]. Spectrally bounded op-
erators on von Neumann algebras and simple C∗-algebras were studied in
[4, 2].

For each pair of spectrally normed spaces E and F , we denote by
B(E,F ),K(E,F ) and SB(E,F ), the space of all bounded operators, all
compact operators and all spectrally bounded operators from E to F , re-
spectively. The closed unit ball of E is denoted by E1. For T ∈ SB(E,F )
the value

‖T‖σ = inf{M ≥ 0 : r(Tx) ≤Mr(x), x ∈ E},

is called the spectral operator norm of T . We recall the following results
from [3].

Proposition 1.1. [3, Proposition 2.4] Let E,F and G be spectrally normed
spaces and S, T ∈ SB(E,F ) and R ∈ SB(F,G) then

1. ‖T‖σ = sup{r(Tx) : x ∈ E, r(x) ≤ 1} = sup{r(Tx) : x ∈ E, r(x) = 1};

2. ‖λT‖σ = |λ|‖T‖σ for all λ ∈ C;

3. ‖RT‖σ ≤ ‖R‖σ‖T‖σ;

4. ‖S + T‖σ ≤ ‖S‖σ + ‖T‖σ, if F is commutative.

Proposition 1.2. [3, Proposition 2.5] Suppose that F is a commutative
semisimple spectrally normed space. For every spectrally normed space E,
(SB(E,F ), ‖.‖σ) is a normed space. If E = F then SB(E) = SB(E,E) is a
unital normed algebra.

In Section 2, we define spectrally compact operators and study some
of their basic properties. We show that the class of spectrally compact
operators is strictly contained in the class of compact operators and in
the class of spectrally bounded operators. We will also show that the set of
spectrally compact operators on a spectrally normed space E is a right ideal
of the algebra SB(E) which, in certain cases, is a two sided ideal. Section 3 is
devoted to the study of the spectral adjoint of a spectrally compact operator.
We will show that the spectral adjoint of every spectrally compact operator
is spectrally compact, but it remains open if this is in fact an equivalence.

2 Basic properties of spectrally compact operators

From now on, throughout the paper, E and F are assumed to be complex
spectrally normed spaces.

Definition 2.1. A linear mapping T : E → F is said to be spectrally
compact if T (UE) is compact in F , where UE = {x ∈ E : r(x) ≤ 1} and
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E,F are spectrally normed spaces. The set of spectrally compact operators
from E to F is denoted by KSB(E,F ).

Proposition 2.2. If T : E → F is a spectrally compact operator, then T
is spectrally bounded.

Proof. Let UE = {x ∈ E : r(x) ≤ 1}. Since T (UE) is compact, there is
M ≥ 0 such that

‖T (x)‖ ≤M for every x ∈ UE . (2.1)

Now suppose that x ∈ E. If r(x) > 0 then by (2.1), ‖T ( x
r(x) )‖ ≤M and so

r(Tx) ≤Mr(x). If r(x) = 0, for given ε > 0 we have r( x
(ε/M) ) = 0. Thus by

(2.1) ∥∥∥∥T ( x

(ε/M)

)∥∥∥∥ ≤M
and ‖T (x)‖ ≤ M · ε

M
= ε. Therefore r(Tx) ≤ ‖Tx‖ = 0, since ε > 0

is arbitrary. It follows that r(Tx) ≤ Mr(x) for all x ∈ E, and hence
T ∈ SB(E,F ). q.e.d.

Proposition 2.3. Each spectrally compact operator T : E → F is a com-
pact operator.

Proof. Let E1 be the closed unit ball of E. Since for each x ∈ E1, r(x) ≤ 1
we have E1 ⊆ UE , and T (E1) ⊆ T (UE). Therefore T (E1) is compact.

q.e.d.

The following examples show that in Propositions 2.2 and 2.3 the reverse
implications do not hold.

Example 2.4. (i) Let A be an infinite dimensional commutative unital
Banach algebra and M2(C) the C∗-algebra of all complex 2 × 2 matrices.
Suppose that ϕ is a character and f is an unbounded linear functional on
A. Then the linear mapping T : A→M2(C) defined by

T (a) =
(
ϕ(a) f(a)

0 ϕ(a)

)
for every a ∈ A,

is an unbounded operator and for each a ∈ A, r(T (a)) = |ϕ(a)| ≤ r(a). Thus
T is spectrally bounded. Clearly this mapping is not spectrally compact,
otherwise, by Proposition 2.3, it should be compact and hence bounded.

(ii) Let A = M2(C), and f : A → C a linear functional defined by
f(aij) = a12 for all (aij) ∈ A. Clearly, f is compact. We show that it is not
spectrally compact. Let

a =
(

0 1
0 0

)
,
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then r(a) = 0 and r(f(a)) = 1. It follows that f is not spectrally bounded
and hence it is not spectrally compact.

If E and F are spectrally normed spaces and T : E → F is a linear
mapping then it is easy to see that for R ≥ 0,

(i) {T (x) : r(x) ≤ R} is compact if and only if {T (x) : r(x) ≤ 1} is com-
pact.

(ii) {T (x) : r(x) < R} is compact if and only if {T (x) : r(x) < 1} is com-
pact.

A subset B of a spectrally normed space E is called spectrally bounded
if there is M ≥ 0 such that r(x) ≤M , for all x ∈ B.

Theorem 2.5. Suppose that T : E → F is a linear mapping between spec-
trally normed spaces E and F . Then the following conditions are equivalent:

(i) T is a spectrally compact operator,

(ii) for every spectrally bounded subset B of E, T (B) is compact, and

(iii) for every spectrally bounded sequence (xn) in E, (T (xn)) has a con-
vergent subsequence in F .

Proof. “(i)⇔(ii)” is obvious.
“(ii)⇒(iii)”. Suppose that (xn) is a spectrally bounded sequence in E.

Then there is M ≥ 0 such that r(xn) ≤ M for all n ∈ N. Let B = {x ∈
E : r(x) ≤ M}. By (ii), T (B) is compact and (T (xn)) is a sequence in the
compact set T (B), so it has a convergent subsequence.

“(iii)⇒(ii)”. Suppose that B is a spectrally bounded subset of E. To
show that T (B) is compact, we prove that every sequence in this set has a
convergent subsequence. Let (yn) be a sequence in T (B), then there exists
a sequence (xn) in B such that

‖yn − Txn‖ <
1
n

for every n ∈ N.

Since (xn) is a spectrally bounded sequence, by the hypothesis there is a
subsequence (Txnj ) of (Txn), such that Txnj → y for some y ∈ F , as

j →∞. Let ε > 0 be given. There are N1, N2 ∈ N such that
1
nj

<
ε

2
for all

j ≥ N1 and
‖Txnj

− y‖ < ε

2
for every j ≥ N2.

So for all j ≥ max(N1, N2) we have

‖ynj − y‖ ≤ ‖ynj − Txnj‖+ ‖Txnj − y‖ <
ε

2
+
ε

2
= ε.

Thus ynj
→ y. q.e.d.
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Corollary 2.6. If S, T : E → F are spectrally compact operators, and if
λ ∈ C then S + λT is a spectrally compact operator.

As a consequence of Proposition 2.2 and Corollary 2.6, KSB(E,F ) is a
linear subspace of SB(E,F ).

Theorem 2.7. Let X be a dense linear subspace of E and T : X → F
a spectrally compact operator. Then T has a unique spectrally compact
extension T̃ : E → F .

Proof. Since T is bounded we can extend T to a bounded operator T̃ : E →
F . Suppose (xn) is a spectrally bounded sequence in E and let M ≥ 0 be
such that r(xn) ≤ M for all n ∈ N. Suppose V = {λ ∈ C : |λ| < M}, then
sp(xn) ⊆ V for all n ∈ N. Since x1 ∈ X, there is a sequence (x1n) in X
such that x1n → x1. By [1, Theorem 3.4.2], there exists 0 < δ1 < 1 such
that ‖x1 − y‖ < δ1 implies that sp(y) ⊆ V , that is r(y) ≤M . Take ε1 < δ1,
then there exists n1 ∈ N such that

‖x1n − x1‖ < ε1 < 1 for every n ≥ n1.

Thus sp(x1n) ⊆ V for all n ≥ n1. Similarly for x2 there exists a sequence
(x2n) in X such that x2n → x2. Again by [1, Theorem 3.4.2], there exists
0 < δ2 <

1
2 such that ‖x2 − y‖ < δ2 implies that sp(y) ⊆ V . Take 0 < ε2 <

δ2, there exists n2 ∈ N such that

‖x2n − x2‖ < ε2 <
1
2

for every n ≥ n2.

Therefore sp(x2n) ⊆ V for all n ≥ n2. An inductive argument gives us
a sequence (yk) ⊆ X (yk = xknk

(k ∈ N)) such that xk − yk → 0 and
sp(yk) ⊆ V . Since T is spectrally compact, there is a subsequence (ykj

)
such that Tykj

→ y0 for some y0 ∈ F , as j →∞. Since T̃ is continuous

T̃ xkj
− T̃ ykj

= T̃ (xkj
− ykj

)→ 0.

So T̃ xkj → y0 and hence T̃ is spectrally compact. q.e.d.

Proposition 2.8. If T ∈ SB(E,F ) and S ∈ KSB(F,G) for some spectrally
normed spaces E, F and G, then ST : E → G is spectrally compact.

Proof. Suppose that (xn) is a spectrally bounded sequence in E, that is
there exists M ≥ 0 such that r(xn) ≤M for all n ∈ N. Since T ∈ SB(E,F ),
by Proposition 1.1

r(Txn) ≤ ‖T‖σr(xn) ≤M‖T‖σ for every n ∈ N.

So (Txn) is a spectrally bounded sequence in F and hence it has a subse-
quence (Txnj ) such that (STxnj ) converges, because S is spectrally com-
pact. Therefore ST ∈ KSB(E,G). q.e.d.
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Corollary 2.9. KSB(E) is a right ideal of SB(E), and if E ⊆ C(Y ) for some
compact Hausdorff space Y , then KSB(E) is a two sided ideal of SB(E).

Proof. By Proposition 2.8, KSB(E) is a right ideal of SB(E). Suppose that
E ⊆ C(Y ), T ∈ SB(E) and S ∈ KSB(E). Let (xn) be a spectrally bounded
sequence in E. By Theorem 2.5, it has a subsequence (xnj

) such that
Sxnj

→ y for some y ∈ E, as j → ∞. Since E ⊆ C(Y ), by [3, Proposition
2.9], T is bounded and hence T (Sxnj )→ Ty. Thus TS is spectrally compact
by Theorem 2.5. q.e.d.

Theorem 2.10. Let E and F be spectrally normed spaces with F ⊆ C(Y ),
where Y is a compact Hausdorff space. The following statements hold:

(i) The inclusion mapping ι : SB(E,F )→ B(E,F ) is contractive,

(ii) if there exists M ≥ 0 satisfying ‖x‖ ≤ M , for every x in UE = {x ∈
E : r(x) ≤ 1}, the inequality ‖ι(T )‖ ≤ ‖T‖σ ≤ M‖ι(T )‖ holds for
every T in SB(E,F ),

(iii) SB(E,F ) is a Banach space whenever F is a closed subspace of C(Y ),

(iv) under the hypothesis in (ii), ι has closed range whenever F is a closed
subspace of C(Y ),

(v) ι(KSB(E,F ) ⊆ K(E,F ) and under the assumptions in (ii), KSB(E,F )
is a ‖.‖σ-closed subspace of K(E,F ).

Proof. (i) Since F ⊆ C(Y ), by [3, Proposition 2.9], we have

SB(E,F ) ⊆ B(E,F ),

and ‖T‖ ≤ ‖T‖σ for every T ∈ SB(E,F )). Thus the inclusion mapping
ι : SB(E,F )→ B(E,F ) is contractive.

(ii) By hypothesis, ‖x‖ ≤M for every x ∈ UE . Therefore, given x ∈ UE
and T in SB(E,F ), we have

r(T (x)) ≤ ‖T (x)‖ ≤ ‖ι(T )‖M.

Since x was arbitrarily chosen in UE , we deduce, via Proposition 1.2 or [3,
Proposition 2.4], that ‖T‖σ ≤M‖ι(T )‖.

(iii) Let (Tn) be a ‖.‖σ-Cauchy sequence in SB(E,F ). In this case, there
exists M ≥ 0 satisfying ‖Tn‖σ ≤ M , for every n ∈ N. Since F ⊆ C(Y ),
by [3, Proposition 2.9], we have SB(E,F ) ⊆ B(E,F ) and ‖.‖ ≤ ‖.‖σ on
SB(E,F ). We deduce that every ‖.‖σ-Cauchy sequence in SB(E,F ) is a
‖.‖-Cauchy sequence in B(E,F ). It follows that there exists T ∈ B(E,F )
such that ‖Tn − T‖ → 0 (F is a Banach space).
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Let us fix an arbitrary x ∈ E. Since F is commutative the spectral
radius is subadditive. Thus, the inequality

r(T (x) ≤ r((T − Tn)(x)) + r(Tn(x))
≤ ‖Tn − T‖‖x‖+ ‖Tn‖σr(x)
≤ ‖Tn − T‖‖x‖+Mr(x)

holds for every n ∈ N. Taking limit in n → ∞ we have r(T (x) ≤ Mr(x).
The required statement follows because x is arbitrary.

(iv) Follows from (i), (ii), and (iii).
(v) Proposition 2.5 above implies that ι(KSB(E,F )) ⊆ K(E,F ). Now

suppose that ‖Tn−T‖σ → 0 where (Tn) ⊆ KSB(E,F ) and T ∈ SB(E,F ). It
follows from (i) that ‖ι(Tn)− ι(T )‖ → 0 in B(E,F ). The sequence (ι(Tn))
lies in K(E,F ). Therefore, ι(T ) is a compact operator and, since UE is
bounded, there exists M ≥ 0 such that T (UE) = ι(T )(UE) ⊆ ι(T )(M(E1))
is compact. This shows that T ∈ KSB(E,F ). q.e.d.

Corollary 2.11. If E = F ⊆ C(Y ) for a compact Hausdorff space Y , then
KSB(E) is a closed two sided ideal of SB(E).

3 Spectral adjoint

We recall the following definition from [3]:

Definition 3.1. For a spectrally normed space E, (SB(E,C), ‖.‖σ) is called
the spectral dual of E and is denoted by Eσ.

Remark 3.2. By Proposition 1.2, for every spectrally normed space E, the
space Eσ is normed. In fact it is a Banach space, see [3, Proposition 3.2]. If
E∗ denote the dual of E then by Theorem 2.10 (i) or [3, Proposition 2.9], we
have a contractive embedding from Eσ into E∗. In other words, Eσ ⊆ E∗

and ‖f‖ ≤ ‖f‖σ for every f ∈ Eσ.
We consider Eσ as a spectrally normed space via the spectral structure

inherited from the embedding into C((Eσ)∗1). Moreover, in this spectral
structure ‖f‖σ = r(f) for all f ∈ Eσ.

If T : E → F is a spectrally bounded operator, the linear operator
Tσ : Fσ → Eσ defined by Tσg = g ◦ T (for g ∈ Fσ), is said to be the
spectral adjoint of T . The following proposition is [3, Corollary 3.7].

Proposition 3.3. The spectral adjoint Tσ of a spectrally bounded operator
T is a spectrally bounded operator with ‖Tσ‖σ ≤ ‖T‖σ.

We show that a similar result holds for spectrally compact operators.
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Theorem 3.4. Suppose that T : E → F is a spectrally compact operator
then Tσ : Fσ → Eσ is spectrally compact.

Proof. We consider a spectral structure on Fσ as in Remark 3.2. Let B ⊆
Fσ be a spectrally bounded set, so there exists C > 0 such that

‖g‖σ = r(g) ≤ C for every g ∈ B.

We shall show that Tσ(B) is totally bounded. Let ε > 0 be given. Since T
is spectrally compact, T (UE) = {Tx : r(x) ≤ 1} is relatively compact and
hence is totally bounded in F . So there are x1, . . . , xn ∈ UE such that for
every x ∈ UE there exists j ∈ {1, . . . , n} for which

‖Tx− Txj‖ <
ε

3C
.

We define a linear operator S : Fσ → Cn by

S(g) = (g(Tx1), ..., g(Txn)) for every g ∈ Fσ.

Since each g ∈ B is a bounded linear functional and T is compact, S is
a compact operator and hence S(B) is a compact set. Therefore S(B) is
totally bounded, that is there exist g1, . . . , gm in B such that for each g ∈ B
there exists k ∈ {1, . . . ,m} with

‖Sg − Sgk‖e <
ε

3
,

where ‖.‖e denotes the Euclidean norm on Cn. Thus for every g ∈ B there
is k ∈ {1, . . . ,m} such that

|g(Txj)− gk(Txj)|2 ≤
n∑
`=1

|g(Tx`)− gk(Tx`)|2 = ‖S(g − gk)‖2e <
ε2

32
,

for every j ∈ {1, . . . , n}. Fix arbitrary x ∈ UE and g ∈ B. There is
j ∈ {1, . . . , n} such that

‖Tx− Txj‖ <
ε

3C
.

There is k ∈ {1, . . . ,m} such that

‖Sg − Sgk‖e <
ε

3
.

For every g ∈ B we have ‖g‖ ≤ ‖g‖σ ≤ C, thus

|g(Tx)− gk(Tx)| ≤ |g(Tx)− g(Txj)|+ |g(Txj)− gk(Txj)|
+ |gk(Txj)− gk(Tx)|

≤ ‖g‖.‖Tx− Txj‖+
ε

3
+ ‖g‖.‖Txj − Tx‖

< C.
ε

3C
+
ε

3
+ C.

ε

3C
= ε.
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Therefore

‖Tσg − Tσgk‖σ = sup{r((Tσg − Tσgk)(x)) : r(x) ≤ 1}
= sup{|(Tσg − Tσgk)(x)| : r(x) ≤ 1}
= sup{|g(Tx)− gk(Tx)| : r(x) ≤ 1} ≤ ε.

So for each g ∈ B there exists k ∈ {1, . . . , n} such that ‖Tσg−Tσgk‖σ ≤ ε.
It follows that Tσ(B) is totally bounded. q.e.d.

We close with an open question:

Question 3.5. Let Tσ, the spectral adjoint of a linear mapping T between
spectrally normed spaces, be spectrally compact. Is it true that T is also
spectrally compact?
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