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Abstract

In a metric measured space with the volume doubling property, we
show that a subgaussian lower estimate for the heat kernel implies
an upper estimate provided the volume growth is uniform or an exit
time estimate holds. This extends work of Grigor’yan, Hu and Lau
(2008) which treats the case where the volume is a power function.
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1 Introduction and main results

Let (M,d, µ) be a noncompact metric space endowed with a Dirichlet form
(E ,F) in L2(M,µ). Assume that the heat semigroup (Tt)t≥0 associated with
(E ,F) has an integral kernel, which is called the heat kernel and denoted
by pt(x, y). If M is a Riemannian manifold and if the Dirichlet form is the
classical one, i.e., the one associated with the Laplace-Beltrami operator ∆,
pt(x, y) is the minimal positive fundamental solution to the heat equation
on M :

∂u

∂t
= ∆u.

In the Euclidean space Rn, the heat kernel is given by the Gauss-Weierstrass
kernel

pt(x, y) =
1

(4πt)n/2
exp

(
−|x− y|2

4t

)
.

For x ∈ M and r > 0, let Br(x) = {y ∈ M : d(x, y) < r} be the open
ball in M , set V (x, r) = µ(Br(x)) and assume that the space is doubling,
i.e.,

V (x, 2r) ≤ C0V (x, r), for all x ∈ M and r > 0. (D)
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A consequence of the doubling property (D) and the fact that M is non-
compact is that there exist ν > 0 and ν′ > 0 which satisfy

c

(
R

r

)ν′

≤ V (y, R)
V (x, r)

≤ C

(
R

r

)ν

for all x, y ∈ M and R ≥ r > 0, (∗)

as soon as BR(y) ∩ Br(x) 6= ∅ [13, Theorem 1.1].
A more general form of the lower and upper estimates holds on a large

classes of fractal spaces:

c

V (x, t1/β)
exp

(
−
(

dβ(x, y)
ct

)1/(β−1)
)
≤ pt(x, y)

for all t > 0 and almost every x, y ∈ M (LEβ)

and

pt(x, y) ≤ C

V (x, t1/β)
exp

(
−
(

dβ(x, y)
Ct

)1/(β−1)
)

for all t > 0 and almost every x, y ∈ M , (UEβ)

where β ≥ 2 is a so-called escape time exponent or random walk dimension
(for a reference, cf., e.g., [1, 2, 14, 16]). It is well-known that (UEβ) implies
the diagonal lower estimate

c

V (x, t1/β)
≤ pt(x, x) for all t > 0 and almost every x ∈ M ; (DLEβ)

cf. [3, Lemma 1], [15, § 3.3], and also [19, Proposition 7.28]. However, note
that (UEβ) does not imply (LEβ); a simple example of that in the case β = 2
is the manifold constructed by glueing smoothly two copies of RD\B(0, 1)
along the unit sphere [3]. Moreover, assuming (UEβ), a necessary and
sufficient condition to obtain (LEβ) is the Hölder estimate

|f(x)− f(y)| ≤ C

V 1/p(x, d(x, y))
·

max
{

d(x, y)α‖∆α/2f‖p , d(x, y)α′‖∆α′/2f‖p

}
for all f ∈ C∞0 (M), x, y ∈ M , p large enough and some α, α′ > ν

p , where ν

as in (∗); cf. [4].
If the volume is polynomial, i.e., if V (x, r) ' rD for some D > 0,

Grigor’yan, Hu and Lau showed in [12] that one can obtain from (LEβ) the
upper estimate

pt(x, y) ≤ C

tD/β
for all t > 0 and almost every x, y ∈ M .
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The aim of this work is to extend this link between lower and upper esti-
mates in the more general setting when the space is doubling. More pre-
cisely, we assume that the volume is uniform, i.e.,

cϕ(r) ≤ V (x, r) ≤ Cϕ(r) for all x ∈ M and r > 0, (U)

where ϕ is an increasing continuous function, which generalizes the polyno-
mial case, treated in [12]. Our first main result is:

Theorem 1.1. Assume that (D) and (U) hold. Then the lower estimate
(LEβ) implies the upper estimate

pt(x, y) ≤ C

ϕ(t1/β)
for all t > 0 and almost every x, y ∈ M .

The main strategy of the proof of this theorem is inspired by [12], but
we had to adapt it in order to treat our more general setting.

Towards our second main result, in a doubling space satisfying the fol-
lowing exit time estimate

crβ ≤ Ex(τBr(x)) ≤ Crβ , (Eβ)

where τBr(x) is the exit time from Br(x) and Ex is the expectation with re-
spect to the process ({Xt}t>0, {Px}x∈X) associated with (E ,F), our second
main result is:

Theorem 1.2. Let (E ,F) be a regular, local and conservative Dirichlet
form in L2(M,µ). If (D) and (Eβ) hold, then (LEβ) implies (UEβ).

Note that in a doubling space satisfying (Eβ), the upper estimate (UEβ)
is equivalent to

pt(x, y) ≤ C

V (x, t1/β)
for all t > 0 and almost every x, y ∈ M . (DUEβ)

For a reference, cf. [10]. In the setting of a doubling Riemannian manifold
and β = 2, the condition (E2) can be dropped in the previous theorem, i.e.,
we have the following statement:

Theorem 1.3. Let M be a doubling Riemannian manifold and pt its heat
kernel. Then the Gaussian lower estimate (LE2) implies the Gaussian upper
estimate (UE2).



64 S. Boutayeb

2 Preliminaries

Let (M,d, µ) be a noncompact metric space endowed with a Dirichlet form
(E ,F) in L2(M,µ). That is E is a closed, symmetric, non-negative definite
bilinear form on a dense subspace F of L2(M,µ), which satisfies the Markov
property. The closedness of the form E means that F is a Hilbert space with
respect to the E1-inner product

E1(f, g) = E(f, g) + (f, g),

where ( , ) is the inner product on L2(M,µ). Let E(f) := E(f, f). The
Markov property means that if f ∈ F , then f̃ = (f ∧ 1)+ is also in F and
E(f̃) ≤ E(f).

Recall some further definitions and results on Dirichlet forms (cf. [7, 10]):
the form (E ,F) has a generator, which is a non-negative definite self-adjoint
operator in L2 and will be denoted by A. The domain of A is a dense
subspace of F and

(Af, g) = E(f, g), f ∈ dom(A), g ∈ F .

The generator A determines the heat semigroup (Tt)t≥0 defined by

Tt = exp(−tA), t ≥ 0,

which is a family of bounded self-adjoint contraction operators in L2. In
addition, the semigroup (Tt)t≥0 is submarkovian, i.e.,

0 ≤ f a.e. implies 0 ≤ Ttf a.e.; and f ≤ 1 a.e. implies Ttf ≤ 1 a.e.; (†)

cf. [7, Theorem 1.4.1]. Note that the submarkovian character of (Tt)t≥0

implies that Tt preserves the inequalities between functions, which allows
to use monotone limits to extend Tt from L2 to L∞ and then to any Lp,
1 ≤ p ≤ ∞. Moreover, the extended operator Tt is a contraction on any
Lp, 1 ≤ p ≤ ∞ (cf. [7, p. 33]). The form (E ,F) is called conservative if
Tt1 = 1 for every t > 0, is local if E(f, g) = 0 for any f , g ∈ F with disjoint
supports. (E ,F) is called regular if F ∩ C0(M) is dense both in F and in
C0(M) endowed with the sup-norm.

In the sequel, we shall assume that the Dirichlet form (E ,F) possesses a
heat kernel {pt(x, y)}t>0, that is a family of measurable functions on M×M
which satisfies

Ttf(x) =
∫

M

pt(x, y)f(y)dµ(y),

for almost every x ∈ M , t > 0 and f ∈ L2. It is well known that

‖Tt‖1→∞ = sup
x,y∈M

pt(x, y).
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Moreover, using the semigroup property and the fact that (Tt)t≥0 is sym-
metric, it is easy to prove that |pt(x, y)| ≤

√
pt(x, x)pt(y, y), and thus, we

have
‖Tt‖1→∞ = sup

x∈M
pt(x, x).

If (E ,F) is a conservative, local and regular Dirichlet form, Grigor’yan and
Hu proved in [10] that in a doubling space, (UEβ) is equivalent to the
conjunction of the exit time (Eβ) and the so-called relative Faber-Krahn
inequality

λ1(Ω) ≥ c

rβ

(
V (x, r)
|Ω|

)α

, (FKβ)

for any ball Br(x) ⊂ M and any open set Ω ⊂ Br(x), where

λ1(Ω) = inf
f∈F(Ω)\{0}

E(f)
‖f‖2

2

,

and F(Ω) := {f ∈ F : f = 0 on M\Ω}, c, α being two positive constants.

Throughout this paper, we fix r0 ∈ ]0,+∞], letters c, C, C ′, C1, etc.
will denote positive constants, whose values may change at each occurrence.
For any β > 0, define a non-negative functional Wβ on L2 by

Wβ(f) := sup
0<r<r0

r−β

∫
M

[
1

V (x, r)

∫
Br(x)

|f(y)− f(x)|2dµ(y)

]
dµ(x),

and the Besov space W β,2 := {f ∈ L2 : Wβ(f) < +∞} with the norm
(‖f‖2

2 + Wβ(f))1/2. For r > 0 and f ∈ L1, set

fr(x) =
1

V (x, r)

∫
Br(x)

f(y)dµ(y).

Lemma 2.1. Assume that (D) holds, then for all 0 < r < r0 and f ∈ W β,2,
we have ‖f‖2

2 ≤ C
(
‖fr‖2

2 + rβWβ(f)
)
, where C > 0 only depends on β.

Proof. See the proof of [12, Proposition 2.1, p. 4]. q.e.d.

Now we consider the following local lower estimate

c

V (x, t1/β)
exp

(
−
(

d(x, y)
ct1/β

)β/(β−1)
)
≤ pt(x, y)

for all t < δrβ
0 and almost every x, y ∈ M . (LEβ

r0
)
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Note that (LEβ
r0

) implies the so-called near lower estimate

c0

V (x, t1/β)
≤ pt(x, y)

for all t < δrβ
0 and almost every x, y ∈ M

satisfying d(x, y) ≤ δt1/β , (NLEβ
r0

)

where c, c0 and δ are positives constants. The converse is true when the
midpoint property or equivalently the chain condition holds. For the proof
one use the classical chain argument (cf. [11, Corollary 3.5], [15, Lemma
5.1], and also [17, pp. 539–540]).

We have the following inequality between E and Wβ . The proof is similar
to the one in the polynomial case (cf. [12, pp. 7–8]).

Lemma 2.2. Assume that (D) holds, then (NLEβ
r0

) implies cWβ(f) ≤ E(f),
for all f ∈ F , where c depends only on δ and the constant c0 in (NLEβ

r0
).

3 Doubling and exit time estimate

In this section, (M,d, µ) is a doubling space endowed with a Dirichlet form
(E ,F), which satisfies the exit time estimate

crβ ≤ Ex(τBr(x)) ≤ Crβ , (Eβ)

where τBr(x) is the exit time from Br(x) and Ex is the expectation with
respect to the processes ({Xt}t>0, {Px}x∈X) associated with (E ,F).

Remark 3.1. The condition (E2) is satisfied for any complete noncompact
manifold of non-negative Ricci-curvature (for a reference, cf. [13]).

Fix R > 0 and x0 ∈ M . Let ν and ν′ as in (∗). Consider the following
function for r > 0:

ϕx0,R(r) = min{(r/R)ν , (r/R)ν′}V (x0, R).

Lemma 3.2. Assume that (D) and (NLEβ
r0

) hold. Then

‖f‖2
2 ≤ C

(
1

ϕx0,R(r)
‖f‖2

1 + rβE(f)
)

for all f ∈ F(BR(x0)) and all r < r0, (Ir0
x0,R)

where C > 0 is independent of x0, r0 and R, and F(BR(x0)) = {f ∈ F :
supp(f) ⊂ BR(x0)}.
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Proof. Lemma 2.1 and Lemma 2.2 yield ‖f‖2
2 ≤ C

(
‖fr‖2

2 + rβE(f)
)
, for all

f ∈ F(BR(x0)) and r < r0. On the other hand, since supp(f) ⊂ BR(x0),
then

fr(x) =
1

V (x, r)

∫
Br(x)

f(y)dµ =
1

V (x, r)

∫
Br(x)∩BR(x0)

f(y)dµ.

For any x such that Br(x) ∩ BR(x0) 6= ∅, (∗) yields

V (x0, R)
V (x, r)

≤ C max{(R/r)ν , (R/r)ν′}.

Otherwise, fr(x) = 0. Then

‖fr‖∞ ≤ C

V (x0, R)
max{(R/r)ν , (R/r)ν′}‖f‖1.

Again by (D), one has ‖fr‖1 ≤ C‖f‖1. Then

‖fr‖2 ≤ ‖fr‖1‖fr‖∞ ≤ C

ϕx0,R(r)
‖f‖2

1.

q.e.d.

In the present section, we shall take r0 = +∞, but we need the general
version of Lemma 3.2 in the next section.

Corollary 3.3. Assume that (D) holds, then (LEβ) implies there exists
C > 0 such that

‖f‖2
2 ≤ C

(
1

ϕx0,R(r)
‖f‖2

1 + rβE(f)
)

for all r > 0 and all f ∈ F(BR(x0)), (Ix0,R)

for any x0 ∈ M and R > 0.

Next, we show that the inequalities (Ix0,R) implies the relative Faber-
Krahn inequality (FKβ).

Proposition 3.4. Assume that (D) holds. If there exists C > 0 such that
(Ix0,R) is satisfied for all x0 ∈ M and R > 0, then the relative Faber-Krahn
inequality (FKβ) holds.

Proof. Let x0 ∈ M , R > 0, Ω ⊂ BR(x0) and f ∈ F(Ω). From (Ix0,R), it
follows that

‖f‖2
2 ≤ C

(
|Ω|

ϕx0,R(r)
‖f‖2

2 + rβE(f)
)

for all r > 0.
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Then taking infimum over all such f ,

1 ≤ C

(
|Ω|

ϕx0,R(r)
+ rβλ1(Ω)

)
for all r > 0.

Since ϕx0,R is continuous and increasing, and since

lim
r→+∞

ϕx0,R(r) = +∞ and lim
r→0+

ϕx0,R(r) = 0,

then, there exists r1 > 0 such that

|Ω|
ϕx0,R(r1)

= rβ
1 λ1(Ω).

It follows that
1 ≤ 2Crβ

1 λ1(Ω). (‡)

One has either

r1 =
(

|Ω|
λ1(Ω)V (x0, R)

) 1
β+ν

R
ν

β+ν or

r1 =
(

|Ω|
λ1(Ω)V (x0, R)

) 1
β+ν′

R
ν′

β+ν′ .

In the first case, replacing r1 by its value in (‡) yields

c

Rβ

(
V (x0, R)

|Ω|

)β/ν

≤ λ1(Ω).

In the second case, similarly, we obtain

c

Rβ

(
V (x0, R)

|Ω|

)β/ν′

≤ λ1(Ω).

Since Ω ⊂ BR(x0) and 0 < ν′ ≤ ν,

c

Rβ

(
V (x0, R)

|Ω|

)β/ν

≤ λ1(Ω)

follows again in this case. q.e.d.

Proof of Theorem 1.2. In a doubling space endowed with a regular, local
and conservative Dirichlet form, (FKβ) together with (Eβ) implies (UEβ)
[10]. Then as a consequence of Corollary 3.3 and Proposition 3.4, we obtain
Theorem 1.2. q.e.d. (Theorem 1.2)
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Note that in the polynomial case, (FKβ) implies (DUEβ), without as-
suming the locality of (E ,F) [10]. Then as a consequence of Corollary 3.3
and Proposition 3.4, we reobtain (DUEβ) from (LEβ), established in [12].

In the setting of Riemannian manifolds, for β = 2, we know that (FK2)
is equivalent to (UE2) [8, Proposition 5.2]. Then from Corollary 3.3 and
Proposition 3.4, we obtain the following interesting statement:

Corollary 3.5. Let M be a doubling Riemannian manifold and pt its heat
kernel. Then the Gaussian lower estimate (LE2) implies the Gaussian upper
estimate (UE2).

4 Doubling and uniform volume growth

In this section, (M,d, µ) is a doubling space which satisfies the following
uniform condition:

cϕ(r) ≤ V (x, r) ≤ Cϕ(r) for all x ∈ M and r > 0, (U)

where ϕ is an increasing continuous function, which generalize the polyno-
mial case (V (x, r) ' rD, D > 0), presented in [12]. In this setting, one can
find a similar result as in Lemma 3.2:

Lemma 4.1. Assume that (D) and (NLEβ
r0

) hold. Then

‖f‖2
2 ≤ C

(
1

ϕ(r)
‖f‖2

1 + rβE(f)
)

for all f ∈ F and all r < r0, (Ir0)

where C > 0 is independent of r0.

Proof. It suffices to see from (U) that ‖fr‖∞ ≤ C
ϕ(r)‖f‖1 and the claim

follows by a similar argument as in Lemma 3.2. q.e.d.

In the sequel, we will need the following properties of the function ϕ.

Lemma 4.2. Assume that (D) and (U) hold. Then

lim
R→+∞

ϕ(R) = +∞ and lim
r→0+

ϕ(r) = 0.

In addition, there exist ν ≥ ν′ > 0 such that

c

(
S

s

)1/ν

≤ ϕ−1(S)
ϕ−1(s)

≤ C

(
S

s

)1/ν′

for all S ≥ s > 0,

where ϕ−1 is the inverse function of ϕ.
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Proof. Obviously from (∗), there exist ν ≥ ν′ > 0 such that

c

(
R

r

)ν′

≤ ϕ(R)
ϕ(r)

≤ C

(
R

r

)ν

for all R ≥ r > 0. (4.1)

In particular, cϕ(1)Rν′ ≤ ϕ(R), for R ≥ 1, and ϕ(r) ≤ ϕ(1)
c rν′ , for r ≤ 1.

Therefore, limr→+∞ ϕ(r) = +∞ and limr→0+ ϕ(r) = 0. On the other hand
(4.1) yields that

c

(
ϕ−1(S)
ϕ−1(s)

)ν′

≤ S

s
≤ C

(
ϕ−1(S)
ϕ−1(s)

)ν

for all S ≥ s > 0,

which is equivalent to

C−1/ν

(
S

s

)1/ν

≤ ϕ−1(S)
ϕ−1(s)

≤ c−1/ν′
(

S

s

)1/ν′

for all S ≥ s > 0.

q.e.d.

Now, we obtain a Nash inequality from the lower estimate for the heat
kernel.

Theorem 4.3. Assume that (D) and (U) hold. Then (LEβ
r0

) implies the
Nash inequality

θ(‖f‖2
2) ≤ C1

(
E(f) + r−β

0 ‖f‖2
2

)
, (Nβ

r0
)

for all f ∈ F such that ‖f‖1 ≤ 1, where θ(r) := r
(ϕ−1(C1r−1))β and C1 is

independent of r0.

Proof. We adapt here an idea from the polynomial case [12]. Let f ∈ F
such that ‖f‖1 ≤ 1. By Lemma 4.1, one has

‖f‖2
2 ≤ C

(
1

ϕ(r)
+ rβE(f)

)
,

for all 0 < r < r0. If r ≥ r0, it is clear that

‖f‖2
2 ≤

(
r

r0

)β

‖f‖2
2.

So for all r > 0, one has

‖f‖2
2 ≤ C

(
1

ϕ(r)
+ rβ

(
E(f) + r−β

0 ‖f‖2
2

))
, (4.2)
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If f ≡ 0, then (Nβ) is trivial. Otherwise E(f)+r−β
0 ‖f‖2

2 6= 0. Indeed, if this
expression vanishes, then r0 = +∞ and E(f) = 0. Lemma 2.2 yields f is a
non-zero constant, and by Lemma 4.2 we have limr→+∞ ϕ(r) = +∞, then
it is clear from (U) that µ(M) = +∞, hence f /∈ L2. This is a contradiction.
Moreover since limr→0+ ϕ(r) = 0, there exists r1 > 0 such that

rβ
1 ϕ(r1) =

1

E(f) + r−β
0 ‖f‖2

2

. (4.3)

Hence (4.2) yields ‖f‖2
2 ≤ 2C

ϕ(r1)
, or equivalently r1 ≤ ϕ−1(2C‖f‖−2

2 );

therefore ϕ(r1)r
β
1 ≤ 2C‖f‖−2

2

(
ϕ−1(2C‖f‖−2

2 )
)β

. Set C1 = 2C and define
θ(r) := r

(ϕ−1(C1r−1))β , we have

ϕ(r1)r
β
1 ≤

C1

θ(‖f‖2
2)

.

Then from (4.3), we conclude that θ(‖f‖2
2) ≤ C1

(
E(f) + r−β

0 ‖f‖2
2

)
. q.e.d.

Next, using the generalized Nash inequality (Nβ
r0

), we will show that we
can obtain an upper estimate.

Theorem 4.4. Assume that (D) and (U) hold. Then (LEβ
r0

) implies the
upper estimate

pt(x, y) ≤ C

ϕ(t1/β)

for all t < rβ
0 and almost every x, y ∈ M , where C is independent of r0.

As a consequence, for r0 = +∞, we obtain the proof of Theorem 1.1. In
addition, if β = 2, we obtain the following result.

Corollary 4.5. Assume that (D) and (U) hold. Then

c

ϕ(
√

t)
exp

(
−
(

d2(x, y)
ct

))
≤ pt(x, y)

for all t > 0 and almost every x, y ∈ M ,

implies the Gaussian upper estimate

pt(x, y) ≤ C

ϕ(
√

t)
exp

(
−
(

d2(x, y)
Ct

))
for all t > 0 and almost every x, y ∈ M .



72 S. Boutayeb

Proof. It is well known that the upper estimate

pt(x, y) ≤ c

ϕ(
√

t)
for all t > 0 and almost every x, y ∈ M

implies the Gaussian upper estimates (UE2) (for a reference, cf. [9, 6]). So
by using Theorem 4.4, the claim follows. q.e.d.

Now, let us prove Theorem 4.4, we shall use some techniques in [18] as
well as [5] and [20].

Proof of Theorem 4.4. Let f ∈ F , non negative such that ‖f‖1 ≤ 1. From
Theorem 4.3, we know that

θ(‖f‖2
2) ≤ C1

(
E(f) + r−β

0 ‖f‖2
2

)
, (Nβ

r0
)

where θ(r) := r
(ϕ−1(C1r−1))β . Thus

1 ≤ C1

(
E(f)

θ(‖f‖2
2)

+
(

r−1
0 ϕ−1

(
C1

‖f‖2
2

))β
)

. (4.4)

Set I(t) := ‖Ttf‖2
2, one has I ′(t) = −2(ATtf, Ttf) = −2E(Ttf). Since

(Tt)t≥0 is a submarkovian semigroup, we have ‖Ttf‖1 ≤ ‖f‖1. By applying
(4.4) to Ttf , we obtain that

2 ≤ C1

(
−I ′(t)
θ(I(t))

+ 2
(

r−1
0 ϕ−1

(
C1

I(t)

))β
)

.

Hence

2t ≤ C1

(∫ t

0

−I ′(s)
θ(I(s))

ds + 2
∫ t

0

(
r−1
0 ϕ−1

(
C1

I(s)

))β

ds

)
.

Since by an application of the submarkovian property, Hölder inequality
and Fubini’s Theorem, we see that ‖Tt‖2→2 ≤ 1, then I(t) = ‖Ttf‖2

2 is
non-increasing. Moreover ϕ−1 is increasing, then we get∫ t

0

(
r−1
0 ϕ−1(

C1

I(s)
)
)β

ds ≤
(

r−1
0 ϕ−1

(
C1

I(t)

))β

t.

It follows that

2t ≤ C1

(∫ I(0)

I(t)

dρ

θ(ρ)
+ 2

(
r−1
0 ϕ−1

(
C1

I(t)

))β

t

)
.



From lower to upper estimates of heat kernels in doubling spaces 73

Then either

t ≤ C1

∫ I(0)

I(t)

dρ

θ(ρ)
(4.5)

or

1 ≤ 2C1

(
r−1
0 ϕ−1

(
C1

I(t)

))β

. (4.6)

Assume that (4.5) holds, then

t ≤ C1

∫ +∞

I(t)

dρ

θ(ρ)
. (4.7)

Let us first show that r → 1
θ(r) is integrable on +∞. Indeed, it follows from

Lemma 4.2 that there is c > 0 such that for all r ≥ 1:

cr1/ν ≤ ϕ−1(C1)
ϕ−1(C1r−1)

,

hence
ϕ−1(C1r

−1) ≤ Cr−1/ν ,

thus (ϕ−1(C1r
−1))β ≤ Cβr−β/ν . Therefore

1
θ(r)

≤ Cβr−1−β/ν for all r ≥ 1.

Hence
∫ +∞ dr

θ(r) < +∞. So, we can define t 7−→ m(t) as the inverse function
of the function

γ(t) :=
∫ +∞

t

dρ

θ(ρ)
,

which has to be also decreasing. So (4.7) yields t ≤ C1γ(I(t)), and this
means that

I(t) ≤ m

(
t

C1

)
. (4.8)

Next, we prove that there exists c > 0 independent of t, such that

m(t) ≤ C1

ϕ(ct1/β)
.

Indeed, replacing θ by its expression, we obtain that

γ(t) =
∫ +∞

t

(ϕ−1(C1ρ
−1))β

ρ
dρ =

∫ C1t−1

0

(ϕ−1(s))β

s
ds. (4.9)
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By Lemma 4.2, there exists c > 0 independent of t such that for all s ∈
]0, C1t

−1]:

c

(
C1t

−1

s

)1/ν

≤ ϕ−1(C1t
−1)

ϕ−1(s)
.

Then
(ϕ−1(s))β

s
≤
(
c−1ϕ−1(C1t

−1)
)β

(C1t
−1)−β/νsβ/ν−1.

Integrating between 0 and C1t
−1, this yields∫ C1t−1

0

(ϕ−1(s))β

s
ds ≤

(
c−1ϕ−1(C1t

−1)
)β

(C1t
−1)−β/ν

∫ C1t−1

0

sβ/ν−1ds.

Therefore ∫ C1t−1

0

(ϕ−1(s))β

s
ds ≤ ν

β

(
c−1ϕ−1(C1t

−1)
)β

≤
(
c−1ϕ−1(C1t

−1)
)β

.

Thus, it follows from (4.9) that for all t > 0, we have

γ(t) ≤
(
c−1ϕ−1(C1t

−1)
)β

,

i.e., t ≤
(
c−1ϕ−1(C1m(t)−1)

)β , or equivalently ϕ(ct1/β) ≤ C1m(t)−1. So
m(t) ≤ C1

ϕ(ct1/β)
. Then by (4.8), we obtain that

I(t) ≤ C1

ϕ(C2t1/β)
,

where C2 = cC
−1/β
1 . If (4.6) holds, then

ϕ

(
r0

(2C1)1/β

)
≤ C1

I(t)
,

i.e., I(t) ≤ C1
ϕ(C3r0)

, where C3 = (2C1)−1/β . So, we conclude that for all
t > 0, we have

I(t) ≤ C1 max
{

1
ϕ(C2t1/β)

,
1

ϕ(C3r0)

}
.

Using (4.1), it follows that I(t) ≤ C max
{

1
ϕ((2t)1/β)

, 1
ϕ(r0)

}
. Set h(t) :=

C max{ 1
ϕ(t1/β)

, 1
ϕ(r0)

}. So for all t > 0 and ‖f‖1 ≤ 1, we have I(t) ≤
h(2t), i.e., ‖Ttf‖2 ≤

√
h(2t), and therefore ‖Tt‖1→2 ≤

√
h(2t). Since

‖Tt‖1→2 = ‖Tt‖2→∞, we obtain that ‖Tt‖1→∞ ≤ ‖Tt/2‖2
1→2 ≤ h(t), which

completes the proof, since ‖Tt‖1→∞ = supx,y∈M pt(x, y) for all t > 0.
q.e.d. (Theorem 4.4)
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