On a special hypersurface of a Finsler space with (α, β)-metric

Pradeep Kumar ${ }^{1}$, S. K. Narasimhamurthy ${ }^{2}$, H. G. Nagaraja ${ }^{3}$, S. T. Aveesh ${ }^{4}$
${ }^{1}$ Department of Mathematics, Yagachi Institute of Technology, Hassan 573201, Karnataka, India
${ }^{2}$ Department of Mathematics, Kuvempu University, Shankaraghatta 577451, Shimoga, Karnataka, India
${ }^{3}$ Department of Mathematics, Bangalore University, Centra College Campus, Bangalore 577451, Karnataka, India
${ }^{4}$ Department of Mathematics, Alva's Institute of Engineering and Technology, Moodbidri 574225, Karnataka, India
E-mail: \{pradeepget,nmurthysk,hgnagaraj, aveeshst\}@gmail.com

2000 Mathematics Subject Classification. 53B40. 53C60.
Keywords. Special Finsler hypersurface, (α, β)-metric, normal curvature vector, second fundamental tensor, hyperplane of first, second and third kind.

Abstract

The purpose of the present paper is to consider a special hypersurface of a Finsler space with (α, β)-metric $\alpha+\sqrt{\alpha^{2}+\beta^{2}}$. We prove conditions for the special Finsler hypersurface to be a hyperplane of first, second and third kind.

1 Introduction

Let $F^{n}=\left(M^{n}, L\right)$ be an n-dimensional Finsler space, i.e., an n-dimensional differential manifold M^{n} equipped with a fundamental function $L(x, y)$. The concept of (α, β)-metric was proposed by Matsumoto [4] and investigated in detail by Matsumoto [6, 7], Kikuchi [2], Shibata [10], Hashiguchi [1] and others. The study of some well known (α, β)-metrics, the Randers metric $\alpha+\beta$, the Kropina metric α^{2} / β, and the generalized Kropina metric α^{m+1} / β^{m} have greatly contributed to the growth of Finsler geometry and its applications to theory of relativity.

In 1985, Matsumoto [5] studied the theory of Finslerian hypersurfaces and various types of Finslerian hypersurfaces called hyperplanes of the first, second and third kind.

The (α, β)-metric $\alpha+\sqrt{\alpha^{2}+\beta^{2}}$ is considered desirable from the viewpoint of geometry as well as applications. Since α is a Riemannian metric, this metric L is closely linked to a Riemannian metric [8].

In the present paper, we consider the special hypersurface $F^{n-1}(c)$ of the Finsler metric with $b_{i}(x)=\partial_{i} b$ being the gradient of a scalar function
$b(x)$ [3]. We determine conditions for this special hypersurface to be a hyperplane of first, second and third kind. Throughout the present paper we use the terminology and notations of Matsumoto's monograph [6].

2 Preliminaries

Let $F^{n}=\left(M^{n}, L\right)$ be a Finsler space with (α, β)-metric

$$
\begin{equation*}
L(\alpha, \beta)=\alpha+\sqrt{\alpha^{2}+\beta^{2}} \tag{2.1}
\end{equation*}
$$

where $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1-form on M^{n}.

In $F^{n}=\left(M^{n}, L\right)$, the normalized element of support $l_{i}=\dot{\partial}_{i} L$ and the angular metric tensor $h_{i j}$ are defined as follow (following [9]):

$$
\begin{align*}
l_{i} & =\alpha^{-1} L_{\alpha} Y_{i}+L_{\beta} b_{i}, \tag{2.2}\\
h_{i j} & =p a_{i j}+q_{0} b_{i} b_{j}+q_{1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+q_{2} Y_{i} Y_{j}, \tag{2.3}
\end{align*}
$$

where

$$
\begin{align*}
Y_{i} & =a_{i j} y^{j} \\
p & =L L_{\alpha} \alpha^{-1}=\frac{\left(\alpha+\sqrt{\alpha^{2}+\beta^{2}}\right)^{2}}{\alpha \sqrt{\alpha^{2}+\beta^{2}}}, \\
q_{0} & =L L_{\beta \beta}=\frac{\alpha^{2}\left(\alpha+\sqrt{\alpha^{2}+\beta^{2}}\right)}{\left(\alpha^{2}+\beta^{2}\right)^{\frac{3}{2}}}, \tag{2.4}\\
q_{1} & =L L_{\alpha \beta} \alpha^{-1}=\frac{-\beta\left(\alpha+\sqrt{\alpha^{2}+\beta^{2}}\right)}{\left(\alpha^{2}+\beta^{2}\right)^{\frac{3}{2}}}, \\
q_{2} & =L \alpha^{-2}\left(L_{\alpha \alpha}-L_{\alpha} \alpha^{-1}\right) \\
& =-\frac{\left(\alpha+\sqrt{\alpha^{2}+\beta^{2}}\right)\left(\alpha^{3}+\left(\alpha^{2}+\beta^{2}\right)^{\frac{3}{2}}\right)}{\alpha^{3}\left(\alpha^{2}+\beta^{2}\right)^{\frac{3}{2}}},
\end{align*}
$$

with $L_{\alpha}=\partial L / \partial \alpha, L_{\beta}=\partial L / \partial \beta, L_{\alpha \alpha}=\partial L_{\alpha} / \partial \alpha, L_{\beta \beta}=\partial L_{\beta} / \partial \beta$ and $L_{\alpha \beta}=\partial L_{\alpha} / \partial \beta$. Again, following [9], the fundamental tensor $g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}$ is defined by:

$$
\begin{equation*}
g_{i j}=p a_{i j}+p_{0} b_{i} b_{j}+p_{1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+p_{2} Y_{i} Y_{j}, \tag{2.5}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{0}=q_{0}+L_{\beta}^{2}=\frac{\alpha^{3}}{\left(\alpha^{2}+\beta^{2}\right)^{\frac{3}{2}}}+1, \\
& p_{1}=q_{1}+L^{-1} p L_{\beta}=\frac{\beta^{3}}{\alpha\left(\alpha^{2}+\beta^{2}\right)^{\frac{3}{2}}}, \tag{2.6}
\end{align*}
$$

$$
\begin{aligned}
p_{2} & =q_{2}+p^{2} L^{-2} \\
& =-\frac{\left(\alpha+\sqrt{\alpha^{2}+\beta^{2}}\right)\left(\alpha^{3}+\left(\alpha^{2}+\beta^{2}\right)^{\frac{3}{2}}\right)}{\alpha^{3}\left(\alpha^{2}+\beta^{2}\right)^{\frac{3}{2}}}+\frac{\left(\alpha+\sqrt{\alpha^{2}+\beta^{2}}\right)^{2}}{\alpha^{2}\left(\alpha^{2}+\beta^{2}\right)} .
\end{aligned}
$$

The reciprocal tensor $g^{i j}$ of $g_{i j}$ is defined (following [9]) by:

$$
\begin{equation*}
g^{i j}=p^{-1} a^{i j}+S_{0} b^{i} b^{j}+S_{1}\left(b^{i} y^{j}+b^{j} y^{i}\right)+S_{2} y^{i} y^{j}, \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
& b^{i}=a^{i j} b_{j}, S_{0}=\left(p p_{0}+\left(p_{0} p_{2}-p_{1}^{2}\right) \alpha^{2}\right) / \zeta \\
& S_{1}=\left(p p_{1}+\left(p_{0} p_{2}-p_{1}^{2}\right) \beta\right) / \zeta p \tag{2.8}\\
& S_{2}=\left(p p_{2}+\left(p_{0} p_{2}-p_{1}^{2}\right) b^{2}\right) / \zeta p, b^{2}=a_{i j} b^{i} b^{j} \\
& \zeta=p\left(p+p_{0} b^{2}+p_{1} \beta\right)+\left(p_{0} p_{2}-p_{1}^{2}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) .
\end{align*}
$$

Finally (as usual, following [9]), the hv-torsion tensor $C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}$ is defined by:

$$
\begin{equation*}
2 p C_{i j k}=p_{1}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\gamma_{1} m_{i} m_{j} m_{k}, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{1}=p \frac{\partial p_{0}}{\partial \beta}-3 p_{1} q_{0}, m_{i}=b_{i}-\alpha^{-2} \beta Y_{i} \tag{2.10}
\end{equation*}
$$

We note that m_{i} is a non-vanishing covariant vector orthogonal to the element of support y^{i}.

Let $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ be the components of Christoffel symbols of the associated Riemannian space R^{n} and ∇_{k} be covariant differentiation with respect to x^{k} relative to this Christoffel symbols. We shall use the following tensors

$$
\begin{equation*}
2 E_{i j}=b_{i j}+b_{j i}, 2 F_{i j}=b_{i j}-b_{j i} \tag{2.11}
\end{equation*}
$$

where $b_{i j}=\nabla_{j} b_{i}$.
Let $\mathrm{C} \Gamma=\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{i}\right)$ be the Cartan connection of F^{n}. The difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ of the special Finsler space F^{n} is given by

$$
\begin{align*}
D_{j k}^{i}= & B^{i} E_{j k}+F_{k}^{i} B_{j}+F_{j}^{i} B_{k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j} \\
& -b_{0 m} g^{i m} B_{j k}-C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m}+C_{j k m} A_{s}^{m} g^{i s} \tag{2.12}\\
& +\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right),
\end{align*}
$$

where

$$
B_{k}=p_{0} b_{k}+p_{1} Y_{k}, B^{i}=g^{i j} B_{j}, F_{i}^{k}=g^{k j} F_{j i}
$$

$$
\begin{align*}
B_{i j} & =\frac{p_{1}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right)+\frac{\partial p_{0}}{\partial \beta} m_{i} m_{j}}{2}, B_{i}^{k}=g^{k j} B_{j i}, \tag{2.13}\\
A_{k}^{m} & =b_{k}^{m} E_{00}+B^{m} E_{k 0}+B_{k} F_{0}^{m}+B_{0} F_{k}^{m}, \\
\lambda^{m} & =B^{m} E_{00}+2 B_{0} F_{0}^{m}, B_{0}=B_{i} y^{i} .
\end{align*}
$$

and ' 0 ' denotes contraction with y^{i} except for the quantities p_{0}, q_{0} and S_{0}.

3 Finsler hypersurface

A hypersurface M^{n-1} of the underlying manifold M^{n} may be represented parametrically by the equations $x^{i}=x^{i}\left(u^{\alpha}\right)$, where u^{α} are the Gaussian co-ordinates on M^{n-1} (Latin indices run from 1 to n, while Greek indices take values from 1 to $n-1$). We assume that the matrix of projection factors $B_{\alpha}^{i}=\partial x^{i} / \partial u^{\alpha}$ is of rank $n-1$. The element of support y^{i} at a point $u=u^{\alpha}$ of M^{n} is to be taken tangential to M^{n-1}, that is

$$
\begin{equation*}
y^{i}=B_{\alpha}^{i}(u) v^{\alpha}, \tag{3.1}
\end{equation*}
$$

so that $v=v^{\alpha}$ is thought of as the supporting element of M^{n-1} at the point u^{α}.
The metric tensor $g_{\alpha \beta}$ and v-torsion tensor $C_{\alpha \beta \gamma}$ of F^{n-1} are given by

$$
g_{\alpha \beta}=g_{i j} B_{\alpha}^{i} B_{\beta}^{j}, \quad C_{\alpha \beta \gamma}=C_{i j k} B_{\alpha}^{i} B_{\beta}^{j} B_{\gamma}^{k} .
$$

At each point u^{α} of F^{n-1}, a unit normal vector $N^{i}(u, v)$ is defined by

$$
g_{i j}(x(u, v), y(u, v)) B_{\alpha}^{i} N^{j}=0, g_{i j}(x(u, v), y(u, v)) N^{i} N^{j}=1
$$

As for the angular metric tensor $h_{i j}$, we have

$$
\begin{equation*}
h_{\alpha \beta}=h_{i j} B_{\alpha}^{i} B_{\beta}^{j}, h_{i j} B_{\alpha}^{i} N^{j}=0, h_{i j} N^{i} N^{j}=1 . \tag{3.2}
\end{equation*}
$$

If $\left(B_{i}^{\alpha}, N_{i}\right)$ denote the inverse of $\left(B_{\alpha}^{i}, N^{i}\right)$, then we have $B_{i}^{\alpha}=g^{\alpha \beta} g_{i j} B_{\beta}^{j}$, $B_{\alpha}^{i} B_{i}^{\beta}=\delta_{\alpha}^{\beta}, B_{i}^{\alpha} N^{i}=0, B_{\alpha}^{i} N_{i}=0, N_{i}=g_{i j} N^{j}, B_{i}^{k}=g^{k j} B_{j i}$, and $B_{\alpha}^{i} B_{j}^{\alpha}+N^{i} N_{j}=\delta_{j}^{i}$. The induced connection IC $=\left(\Gamma_{\beta \gamma}^{* \alpha}, G_{\beta}^{\alpha}, C_{\beta \gamma}^{\alpha}\right)$ of F^{n-1} induced by the Cartan's connection $\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{i}\right)$ is given by

$$
\begin{aligned}
\Gamma_{\beta \gamma}^{* \alpha} & =B_{i}^{\alpha}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta}^{\alpha} H_{\gamma}, \\
G_{\beta}^{\alpha} & =B_{i}^{\alpha}\left(B_{0 \beta}^{i}+\Gamma_{0 j}^{* i} B_{\beta}^{j}\right), \\
C_{\beta \gamma}^{\alpha} & =B_{i}^{\alpha} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k},
\end{aligned}
$$

where

$$
\begin{align*}
M_{\beta \gamma} & =N_{i} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}, M_{\beta}^{\alpha}=g^{\alpha \gamma} M_{\beta \gamma} \tag{3.3}\\
H_{\beta} & =N_{i}\left(B_{0 \beta}^{i}+\Gamma_{o j}^{* i} B_{\beta}^{j}\right)
\end{align*}
$$

and $B_{\beta \gamma}^{i}=\partial B_{\beta}^{i} / \partial U^{r}, B_{0 \beta}^{i}=B_{\alpha \beta}^{i} v^{\alpha}$ (cf. [5]). The quantities $M_{\beta \gamma}$ and H_{β} are called the second fundamental v-tensor and normal curvature vector, respectively [5]. The second fundamental h-tensor $H_{\beta \gamma}$ (cf., again, [5]) is defined as

$$
\begin{equation*}
H_{\beta \gamma}=N_{i}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta} H_{\gamma}, \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\beta}=N_{i} C_{j k}^{i} B_{\beta}^{j} N^{k} . \tag{3.5}
\end{equation*}
$$

The relative h- and v-covariant derivatives of projection factor B_{α}^{i} with respect to ICГ are given by

$$
\begin{equation*}
B_{\alpha \mid \beta}^{i}=H_{\alpha \beta} N^{i},\left.\quad B_{\alpha}^{i}\right|_{\beta}=M_{\alpha \beta} N^{i} \tag{3.6}
\end{equation*}
$$

Equation (3.4) shows that $H_{\beta \gamma}$ is generally not symmetric and

$$
\begin{equation*}
H_{\beta \gamma}-H_{\gamma \beta}=M_{\beta} H_{\gamma}-M_{\gamma} H_{\beta} . \tag{3.7}
\end{equation*}
$$

The above equations yield

$$
\begin{equation*}
H_{0 \gamma}=H_{\gamma}, H_{\gamma 0}=H_{\gamma}+M_{\gamma} H_{0} \tag{3.8}
\end{equation*}
$$

We shall use the following definitions and lemmas which are due to Matsumoto and can be found in [5]:

Definition 3.1. If each path of a hypersurface F^{n-1} with respect to the induced connection is also a path of the enveloping space F^{n}, then F^{n-1} is called a hyperplane of the first kind.

Definition 3.2. If each h-path of a hypersurface F^{n-1} with respect to the induced connection is also a h-path of the enveloping space F^{n}, then F^{n-1} is called a hyperplane of the second kind.

Definition 3.3. If the unit normal vector of F^{n-1} is parallel along each curve of F^{n-1}, then F^{n-1} is called a hyperplane of the third kind.

Lemma 3.4. The normal curvature $H_{0}=H_{\beta} v^{\beta}$ vanishes if and only if the normal curvature vector H_{β} vanishes.

Lemma 3.5. A hypersurface F^{n-1} is a hyperplane of the first kind if and only if $H_{\alpha}=0$.

Lemma 3.6. A hypersurface F^{n-1} is a hyperplane of the second kind with respect to the connection $\mathrm{C} \Gamma$ if and only if $H_{\alpha}=0$ and $H_{\alpha \beta}=0$.

Lemma 3.7. A hypersurface F^{n-1} is a hyperplane of the $3^{n d}$ kind with respect to the connection $\mathrm{C} \Gamma$ if and only if $H_{\alpha}=0$ and $H_{\alpha \beta}=M_{\alpha \beta}=0$.

4 The special hypersurface $F^{n-1}(c)$ of the Finsler space

Let us consider the Finsler metric $L=\alpha+\sqrt{\alpha^{2}+\beta^{2}}$ with a gradient $b_{i}(x)=$ $\partial_{i} b$ for a scalar function $b(x)$ and the special hypersurface $F^{n-1}(c)$ given by the equation $b(x)=c$ for a constant c (cf. [3]).

From parametric equations $x^{i}=x^{i}\left(u^{\alpha}\right)$ of $F^{n-1}(c)$, we get $\partial_{\alpha} b(x(u))=$ $0=b_{i} B_{\alpha}^{i}$, so that $b_{i}(x)$ are regarded as covariant components of a normal vector field of $F^{n-1}(c)$. Therefore, along the $F^{n-1}(c)$ we have

$$
\begin{equation*}
b_{i} B_{\alpha}^{i}=0 \text { and } b_{i} y^{i}=0 \tag{4.1}
\end{equation*}
$$

The induced metric $L(u, v)$ of $F^{n-1}(c)$ is given by

$$
\begin{equation*}
L(u, v)=2 \sqrt{a_{\alpha \beta} v^{\alpha} v^{\beta}}, a_{\alpha \beta}=a_{i j} B_{\alpha}^{i} B_{\beta}^{j} \tag{4.2}
\end{equation*}
$$

which is the Riemannian metric. At a point of $F^{n-1}(c)$, from (2.4), (2.6) and (2.8), we have

$$
\begin{align*}
& p=4, q_{0}=2, q_{1}=0, q_{2}=-4 \alpha^{-2}, p_{0}=2, p_{1}=0 \tag{4.3}\\
& p_{2}=0, \zeta=8\left(2+b^{2}\right), S_{0}=1 / 4\left(2+b^{2}\right), S_{1}=0, S_{2}=0
\end{align*}
$$

Therefore, from (2.7) we get

$$
\begin{equation*}
g^{i j}=\frac{1}{4}\left[a^{i j}-\frac{b^{i} b^{j}}{2+b^{2}}\right] . \tag{4.4}
\end{equation*}
$$

Thus along $F^{n-1}(c),(4.4)$ and (4.1) lead to $g^{i j} b_{i} b_{j}=b^{2}$ and thus

$$
\begin{equation*}
b_{i}(x(u))=\sqrt{\frac{b^{2}}{2\left(2+b^{2}\right)}} N_{i}, \quad b^{2}=a^{i j} b_{i} b_{j} . \tag{4.5}
\end{equation*}
$$

Again, from (4.4) and (4.5), we get

$$
\begin{equation*}
b^{i}=\sqrt{\frac{b^{2}}{2\left(2+b^{2}\right)}}\left[4 N^{i}+\frac{b^{i} b^{j} N_{j}}{2+b^{2}}\right] \tag{4.6}
\end{equation*}
$$

and consequently:
Theorem 4.1. Let F^{n} be a special Finsler space with $L=\alpha+\sqrt{\alpha^{2}+\beta^{2}}$ and a gradient $b_{i}(x)=\partial_{i} b(x)$ and let $F^{n-1}(c)$ be a hypersurface of F^{n} which is given by $b(x)=c$ for a constant c. Suppose the Riemannian metric $a_{i j} d x^{i} d x^{j}$ be positive definite and b_{i} be non-zero field. Then the induced metric on $F^{n-1}(c)$ is a Riemannian metric given by (4.2) and relations (4.5) and (4.6).

Theorem 4.2. The second fundamental v-tensor of special Finsler hypersurface $F^{n-1}(c)$ vanishes and the second fundamental h-tensor $H_{\alpha \beta}$ is symmetric.

Proof. The angular metric tensor and metric tensor of F^{n} are given by

$$
\begin{align*}
h_{i j} & =2\left[2 a_{i j}+b_{i} b_{j}-\frac{2 Y_{i} Y_{j}}{\alpha^{2}}\right], \tag{4.7}\\
g_{i j} & =2\left[2 a_{i j}+b_{i} b_{j}\right] .
\end{align*}
$$

From (4.1), (4.7) and (3.2), we get that if $h_{\alpha \beta}^{(a)}$ denote the angular metric tensor of the Riemannian metric $a_{i j}(x)$, then along $F^{n-1}(c), h_{\alpha \beta}=h_{\alpha \beta}^{(a)}$. From (2.6), we get $\frac{\partial p_{0}}{\partial \beta}=\frac{-3 \alpha^{3} \beta}{\left(\alpha^{2}+\beta^{2}\right)^{\frac{5}{2}}}$. Thus along $F^{n-1}(c)$, we have $\frac{\partial p_{0}}{\partial \beta}=0$ and therefore (2.10) gives $\gamma_{1}=0, m_{i}=b_{i}$. Therefore the hv-torsion tensor becomes

$$
\begin{equation*}
C_{i j k}=0 \tag{4.8}
\end{equation*}
$$

in the special Finsler hypersurface $F^{n-1}(c)$. Therefore, (3.3), (3.5) and (4.8) imply

$$
\begin{equation*}
M_{\alpha \beta}=0 \text { and } M_{\alpha}=0 \tag{4.9}
\end{equation*}
$$

Now (3.7) implies that $H_{\alpha \beta}$ is symmetric.
In the following, we give conditions under which $F^{n-1}(c)$ is a hyperplane of the first, second and third kind:

Theorem 4.3. The special Finsler hypersurface $F^{n-1}(c)$ is hyperplane of the first kind if and only if $2 b_{i j}=b_{i} c_{j}+b_{j} c_{i}$ holds.

Proof. From (4.1), we get $b_{i \mid \beta} B_{\alpha}^{i}+b_{i} B_{\alpha \mid \beta}^{i}=0$. Therefore, from (3.6) and using $b_{i \mid \beta}=b_{i \mid j} B_{\beta}^{j}+\left.b_{i}\right|_{j} N^{j} H_{\beta}$, we get

$$
\begin{equation*}
b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}+\left.b_{i}\right|_{j} B_{\alpha}^{i} N^{j} H_{\beta}+b_{i} H_{\alpha \beta} N^{i}=0 . \tag{4.10}
\end{equation*}
$$

Since $\left.b_{i}\right|_{j}=-b_{h} C_{i j}^{h}$, we get

$$
\left.b_{i}\right|_{j} B_{\alpha}^{i} N^{j}=0
$$

Thus (4.10) gives

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{2\left(2+b^{2}\right)}} H_{\alpha \beta}+b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}=0 . \tag{4.11}
\end{equation*}
$$

Note that $b_{i \mid j}$ is symmetric. Furthermore, contracting (4.11) with v^{β} and then with v^{α} and using (3.1), (3.8) and (4.9) we get

$$
\begin{align*}
\sqrt{\frac{b^{2}}{2\left(2+b^{2}\right)}} H_{\alpha}+b_{i \mid j} B_{\alpha}^{i} y^{j} & =0 \tag{4.12}\\
\sqrt{\frac{b^{2}}{2\left(2+b^{2}\right)}} H_{0}+b_{i \mid j} y^{i} y^{j} & =0 \tag{4.13}
\end{align*}
$$

In view of Lemmas 3.4 and 3.5, the hypersurface $F^{n-1}(c)$ is hyperplane of the first kind if and only if $H_{0}=0$. Thus from (4.13) it follows that $F^{n-1}(c)$ is a hyperplane of the first kind if and only if $b_{i \mid j} y^{i} y^{j}=0$. Here $b_{i \mid j}$ being the covariant derivative with respect to $\mathrm{C} \Gamma$ of F^{n} depends on y^{i}.

On the other hand $\nabla_{j} b_{i}=b_{i j}$ is the covariant derivative with respect to the Riemannian connection $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ constructed from $a_{i j}(x)$, therefore $b_{i j}$ does not depend on y^{i}. We shall consider the difference $b_{i \mid j}-b_{i j}$ in the following. The difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ is given by (2.12). Since b_{i} is a gradient vector, from (2.11) we have $E_{i j}=b_{i j}, F_{i j}=0$ and $F_{j}^{i}=0$. Thus (2.12) reduces to

$$
\begin{align*}
D_{j k}^{i}= & B^{i} b_{j k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j}-b_{0 m} g^{i m} B_{j k} \\
& -C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m}+C_{j k m} A_{s}^{m} g^{i s} \tag{4.14}\\
& +\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{j k}^{m} C_{m s}^{i}\right) .
\end{align*}
$$

In view of (4.3) and (4.4), the expressions in (2.13) reduce to

$$
\begin{align*}
& B_{i}=2 b_{i}, B^{i}=\frac{b^{i}}{2+b^{2}}, B_{i j}=0, \tag{4.15}\\
& B_{j}^{i}=0, \quad A_{k}^{m}=B^{m} b_{k 0}, \lambda^{m}=B^{m} b_{00}
\end{align*}
$$

By virtue of (4.15), we have $B_{0}^{i}=0$ and $B_{i 0}=0$ which give $A_{0}^{m}=B^{m} b_{00}$. Therefore we get

$$
\begin{aligned}
D_{j 0}^{i} & =B^{i} b_{j o} \\
D_{00}^{i} & =B^{i} b_{00}=\left[\frac{b^{i}}{2+b^{2}}\right] b_{00} .
\end{aligned}
$$

Thus from (4.1), along the hypersurface $F^{n-1}(c)$, we finally get

$$
\begin{align*}
b_{i} D_{j 0}^{i} & =\left[\frac{b^{2}}{2+b^{2}}\right] b_{j 0}, \tag{4.16}\\
b_{i} D_{00}^{i} & =\left[\frac{b^{2}}{2+b^{2}}\right] b_{00} . \tag{4.17}
\end{align*}
$$

From (4.8) it follows that

$$
b^{m} b_{i} C_{j m}^{i} B_{\alpha}^{j}=b^{2} M_{\alpha}=0
$$

Therefore, the relation $b_{i \mid j}=b_{i j}-b_{r} D_{i j}^{r}$ and equations (4.16), (4.17) give

$$
b_{i \mid j} y^{i} y^{j}=b_{00}-b_{r} D_{00}^{r}=\left[\frac{2}{2+b^{2}}\right] b_{00}
$$

Consequently, (4.12) and (4.13) may be written as

$$
\begin{aligned}
& \sqrt{b^{2}} H_{\alpha}+\left[\frac{2 \sqrt{2}}{\sqrt{2+b^{2}}}\right] b_{i \mid 0} B_{\alpha}^{i}=0, \\
& \sqrt{b^{2}} H_{0}+\left[\frac{2 \sqrt{2}}{\sqrt{2+b^{2}}}\right] b_{00}=0
\end{aligned}
$$

Thus the condition $H_{0}=0$ is equivalent to $b_{00}=0$, where $b_{i j}$ does not depend on y^{i}. Since y^{i} is to satisfy (4.1), the condition is written as $b_{i j} y^{i} y^{j}=$ $\left(b_{i} y^{i}\right)\left(c_{j} y^{j}\right)$ for some $c_{j}(x)$, so that we have

$$
\begin{equation*}
2 b_{i j}=b_{i} c_{j}+b_{j} c_{i} \tag{4.18}
\end{equation*}
$$

The claim follows.
Q.E.D.

Proposition 4.4. If the special Finsler hypersurface $F^{n-1}(c)$ is a hyperplane of the first kind then it becomes a hyperplane of the second kind, too.

Proof. Using (4.8), (4.14) and (4.15), we have $b_{r} D_{i j}^{r}=\frac{b^{2}}{2+b^{2}} b_{i j}$. Substituting (4.18) in (4.11) and using (4.1), we get

$$
\begin{equation*}
H_{\alpha \beta}=0 . \tag{4.19}
\end{equation*}
$$

Thus, from Lemmas 3.4, 3.5, and 3.6 and Theorem 4.3, we get the result.
Q.E.D.

Proposition 4.5. The special Finsler hypersurface $F^{n-1}(c)$ is a hyperplane of the third kind if and only if it is a hyperplane of the first kind.

Proof. The claim follows from (3.8), (4.19) and Theorem 4.2.

References

[1] M. Hashiguchi and Y. Ichijyō. On some special (α, β)-metrics. Reports of the Faculty of Science of Kagoshima University, 8:39-46, 1975.
[2] S. Kikuchi. On the condition that a space with (α, β)-metric be locally Minkowskian. Tensor (N.S.), 33(2):242-246, 1979.
[3] I.-Y. Lee, H.-Y. Park, and Y.-D. Lee. On a hypersurface of a special finsler space whih a metric $\alpha+\beta^{2} / \alpha$. Korean Journal of Mathematical Sciences, 8(1):93-101, 2001.
[4] M. Matsumoto. On C-reducible Finsler spaces. Tensor (N.S.), 24:2937, 1972.
[5] M. Matsumoto. The induced and intrinsic Finsler connections of a hypersurface and Finslerien projective geometry. Journal of Mathematics of Kyoto University, 25(1):107-144, 1985.
[6] M. Matsumoto. Foundations of Finsler geometry and special Finsler spaces. Kaiseisha Press, Shigaken, 1986.
[7] M. Matsumoto. Projectively flat Finsler spaces with (α, β)-metric. Reports on Mathematical Physics, 30(1):15-20, 1991.
[8] M. Matsumoto. Finsler spaces with (α, β)-metric of Douglas type. Tensor (N.S.), 60(2):123-134, 1998.
[9] G. Randres. On an asymmetrical metric in the four-space of general relativity. Physical Review, 59(2):195-199, 1941.
[10] C. Shibata. On Finsler spaces with an (α, β)-metric. Journal of Hokkaido University of Education. Section II A, 35(1):1-16, 1984.

