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Abstract

In this paper we show that the welded tangloids show us even macroscopic objects
and their dynamics can be characterized by EQFTs. It may also require inclusion
of scattering cluster quasiparticles for accurate description, for example in far-from
equilibrium processes, because time-dependent dynamics strongly matters.
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1 Introduction
We show an application of welded tangloids to effective quantum field theories. Effective
quantum field theories (EQFTs) are field theories for composite particles derived from more
fundamental quantum field theories (QFTs). In the literature, effective field theories were
derived by integrating in a path integral about the degree of freedom that do not matter in
theoretical description [4], [5]. For example, one can derive an EQFT for protons or neutrons
that are composed on three quarks from Quantum chromodynamics, the fundamental QFT
for quarks and gluons, the elementary particles that make up protons or neutrons.
The paper’s organization is as follows:
In section 2, we review the definition of welded tangle-oids categories defined in [1]. A
monoidal category ( see for example [2]) of unoriented welded tangle-oids have defined by
giving a presentation by using presentation of slideable 1

2 -monoidal categories [1].
In Section 3 we show how to the welded tangloids show us even macro- scopic objects and

their dynamics can be characterized by EQFTs. It may also require inclusion of scattering
cluster quasiparticles for accurate descrip- tion, for example in far-from equilibrium processes,
because time-dependent dynamics strongly matters.
Finally we conclude by our main result in last section.

2 Unoriented welded tangle-oids
In this section we review the definition of welded tangle-oids categories defined in [1]. A
monoidal category ( see for example [2]) of unoriented welded tangle-oids have defined by
giving a presentation by using presentation of slideable 1

2 -monoidal categories [1].
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Definition 2.1. [1, definition 7.2.1] Consider the monoidal graph

β = (N, E(β), ⊗0, 0, δ1, δ2),

where for all m, n ∈ N, m ⊗0 n = m + n, and

E(β) = {X+, X−, X, ∪, ∩, ¡, !},

the incidence maps

δ1X+ = 2, δ2X+ = 2, δ1X− = 2, δ2X− = 2,

δ1X = 2, δ2X = 2, δ1∪ = 0, δ2∪ = 2,

δ1∩ = 2, δ2∩ = 0, δ1¡ = 1, δ2¡ = 0,

δ1! = 0, δ2! = 1.

These generators can be presented geometrically as

Consider the path category, see for example ([3], over β∗, the extent of the monoidal graph
β.

P (β∗) = (N, homP (β∗)(n, m), •, φ ).

Therefore
Ω(β) = (P (β∗), ⊗0, 0, n#, #m)

is a 1
2 -monoidal category, whose set of objects is the set of natural numbers, where for all

n, m, k ∈ N ;
n#m(k) = n ⊗0 k ⊗0 m = n + k + m,

and for all generating morphism (f : k → k′) ∈ E(β), we have

n#m(f) = n + k + m
nΘfΘm−−−−−→ n + k′ + m.

Then we have the free- 1
2 -monoidal category-triple

(β, Ω(β), δ).
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Definition 2.2 (Unoriented welded tangle-oids category). The unoriented welded tangle-oids
category UWTC is the strict monoidal category formally presented by

F
(

Ω(β)
/

W
)

,

where Ω(β) defined in [1, Section 7.2] and W is the 1
2 -monoidal closure of the congruence

template W that is defined as follows.
Given m, n ∈ N, then Wm,n is the relation in homP (β∗)(m, n), defined as ( the picture

will follow)
In homP (β∗)(1, 1), we have the only relations

• [WT1] : (id1 ⊗ ∩)(X ⊗ id1)(id1 ⊗ ∪) ∼W1,1 id1 ∼W1,1 (∩ ⊗ id1)(id1 ⊗ X)(∪ ⊗ id1).

• [WT2] : (id1 ⊗ ∩)(X+ ⊗ id1)(id1 ⊗ ∪) ∼W1,1 id1 ∼W1,1 (id1 ⊗ ∩)(X− ⊗ id1)(id1 ⊗ ∪).

• [WT3] : (∩ ⊗ id1)(id1 ⊗ X−)(∪ ⊗ id1) ∼W1,1 id1 ∼W1,1 (∩ ⊗ id1)(id1 ⊗ X+)(∪ ⊗ id1).

• [WT4] : (∩ ⊗ id1)(id1 ⊗ ∪) ∼W1,1 id1 ∼W1,1 (id1 ⊗ ∩)(∪ ⊗ id1).

In homP (β∗)(2, 2), we have the only relation

• [WT5] : X−X+ ∼W2,2 id2 ∼W2,2 X+X−.

In homP (β∗)(3, 3), we have the only relations

• [WT6] : (X+ ⊗ id1)(id1 ⊗ X+)(X+ ⊗ id1) ∼W3,3 (id1 ⊗ X+)(X+ ⊗ id1)(id1 ⊗ X+).

• [WT7] : (X+ ⊗ id1)(id1 ⊗ X)(X ⊗ id1) ∼W3,3 (id1 ⊗ X)(X ⊗ id1)(id1 ⊗ X+).

• [WT8] : (X ⊗ id1)(id1 ⊗ X+)(X+ ⊗ id1) ∼W3,3 (id1 ⊗ X+)(X+ ⊗ id1)(id1 ⊗ X).

In homP (β∗)(3, 1), we have the only relations

• [WT9] : (∩ ⊗ id1)(id1 ⊗ X−) ∼W3,1 (id1 ⊗ ∩)(X+ ⊗ id1).

• [WT9]′ : (∩ ⊗ id1)(id1 ⊗ X+) ∼W3,1 (id1 ⊗ ∩)(X− ⊗ id1).

• [WT9]′′ : (∩ ⊗ id1)(id1 ⊗ X) ∼W3,1 (id1 ⊗ ∩)(X ⊗ id1).

In homP (β∗)(1, 3), we have the only relations

• [WT10] : (id1 ⊗ X+)(∪ ⊗ id1) ∼W1,3 (X− ⊗ id1)(id1 ⊗ ∪).

• [WT10]′ : (id1 ⊗ X−)(∪ ⊗ id1) ∼W1,3 (X+ ⊗ id1)(id1 ⊗ ∪).

• [WT10]′′ : (id1 ⊗ X)(∪ ⊗ id1) ∼W1,3 (X ⊗ id1)(id1 ⊗ ∪).
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In homP (β∗)(1, 0), we have the only relation

• [WT11] : ∩(id1⊗!) ∼W1,0 ¡ ∼W1,0 ∩(! ⊗ id1).

In homP (β∗)(0, 1), we have the only relation:

• [WT12] : (id1⊗¡)∪ ∼W0,1 ! ∼W0,1 (¡ ⊗ id1)∪.

In homP (β∗)(2, 1), we have the only relations

• [WT13] : (¡ ⊗ id1)X+ ∼W2,1 id1⊗¡.

• [WT13]′ : (id1⊗¡)X− ∼W2,1 ¡ ⊗ id1.

• [WT14] : (¡ ⊗ id1)X ∼W2,1 id1⊗¡.

• [WT14]′ : (id1⊗¡)X ∼W2,1 ¡ ⊗ id1.

Note that we do not impose that in homP (β∗)(2, 1):
(¡ ⊗ id1)X− ≁W2,1 id1⊗¡.

These relations can be present geometrically as (note we read the diagram from bottom
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to top)
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3 Applications of welded tangloids
We show an application of welded tangloids to effective quantum field theories. Effective
quantum field theories (EQFTs) are field theories for composite particles derived from more
fundamental quantum field theories (QFTs). For example, one can derive an EQFT for
protons or neutrons that are composed on three quarks from Quantum chromodynamics,
the fundamental QFT for quarks and gluons, the elementary particles that make up protons
or neutrons. Elementary particles can be described by a set of N quantum fields θk, k ∈
{1, . . . , N}. If the action functional is denoted by S , the path integral for the dynamics of
these elementary particles has the form:

Z =
∫

(
N∏

k=1
D[θk])eiS(θ1,...,θn) . . . (a)
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Now we can introduce M new effective quantum fields xk, k ∈ {1, . . . , M} that can be
represented as a function of the elementary quantum fields θk, i.e. in the form xk =
fk(θ1, . . . , θN ) k ∈ {1, . . . , M}. One can express the path integral (Equation (a)) with the
constraint that defines effective quantum fields as:

Z =
∫

(
N∏

k=1
D[θk])eiS(θ1,...,θN )(

M∏
k=1

D[yk]eiyk(xk−fk(θ1,...,θN ))) =

∫ M∏
k=1

D[yk]
[

(
N∏

k=1
D[θk)])e(iS(θ1,...,θn)+

∑M

j=1
iyj(xj−fj(θ1,...,θN ))

]
=

∫ M∏
k=1

D[yk]eiSeff (y1,...,yM ). ... (b)

In Equation (b) we have introduced the effective action Seff that is defined as

Seff = −i ln(
∫ [

(
N∏

k=1
D[θk)])e(iS(θ1,...,θn)+

∑M

j=1
iyj(xj−fj(θ1,...,θN ))

]
) ....(c)

where the functions S(θ1, . . . , θN ) and fj(θ1, . . . , θN ) are polynomial and the action S(θ1, . . . , θN )
has the form

S(θ1, . . . , θN ) =
N∑

j,k=1
cjkθjθk + Sint(θ1, . . . , θN ) . . . (d)

where, cjk are constants and Sint is the interaction part of the action that has cubic or higher
powers in fields θi. We will do a Taylor expansion in Equation (c) around variables.

Seff = −i ln(
∫ [

(
N∏

k=1
D[θk)])ei

∑N

j,k=1
cjkθjθk+

∑M

j=1
iyjxj

] ∞∑
m=0

Sint
m(θ1, . . . , θN )

m!

∞∑
n=0

1
n! (

M∑
j=1

−iyj(fj(θ1, . . . , θN ))n) ... (e)

Upon evaluation of the path integral (Equation (e)), one has to do a contraction of pairs in
θk fields. To resemble the categorial structure discussed in previous sections, we will analyze
first, what contraction of terms with m = 0 (i.e. without interaction terms) will give. A
contraction will be of generator type ∪, ∩, that leading just from one field to another within
a polynomial depicted by fj(θ1, . . . , θN ) (same indices j) or within different fj(θ1, . . . , θN )-
polynomials (different indices j). Moreover, the X+, X− may also depict these contractions.
Distinction between ∪, ∩ and X+, X− will be time ordering: X+, X− will occur if fields
on different times will be contracted, ∪, ∩ are contraction on equal times. In case of non-
contracted variables, we have generators !, i , open ends in graphs. This happens, if elemen-
tary quantum fields still matter in effective theories like when treating atoms or molecules,

109



but electron and/or photon (are particles arising in the more fundamental theory of Quantum
Electrodynamics) dynamics still matter. Finally, we have the general case with m ̸= 0, where
interaction vertices matter. Here, the generator X will come into play. It is a contraction of
a quartic vertex. Cubic vertices are also in X, when two of its four open ends are identified
to be equal. It is a contraction of a quartic vertex. Cubic vertices are also in , when two of its
four open ends are identified to be equal. A contraction will be of generator type , that lead-
ing just from one field to another within a polynomial depicted by (same indices ) or within
different -polynomials (different indices ). Moreover, the may also depict these contractions.
Distinction between and will be time ordering: will occur if fields on different times will
be contracted, are contraction on equal times. In case of non-contracted variables, we have
generators , open ends in graphs. This happens, if elementary quantum fields still matter
in effective theories like when treating atoms or molecules, but electron and/or photon (are
particles arising in the more fundamental theory of Quantum Electrodynamics) dynamics
still matter. Finally, we have the general case with , where interaction vertices matter. Here,
the generator will come into play. It is a contraction of a quartic vertex. Cubic vertices are
also in , when two of its four open ends are identified to be equal. So this category will re-
semble So this category will resemble all possible contractions performed when transitioning
from a fundamental theory with up to quartic vertices to an effective theory. It distinguishes
between equal-time contractions (pure compositions of elementary particles, e.g. atoms and
molecules) and different-time contractions (quasiparticles which carry information on specific
dynamic behavior, e.g. clusters linked to certain scattering processes).

4 Conclusion
In this paper the welded tangloids show us that even macroscopic objects and their dy-
namics can be characterized by EQFTs. It may also require inclusion of scattering cluster
quasiparticles for accurate description, for example in far-from equilibrium processes, because
time-dependent dynamics strongly matters.
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