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Abstract
Present investigation is concerned with the propagation of obliquely incident water waves by
a pulsating line source in presence of a fixed nearly vertical rigid cliff, submerged in deep
water, assuming the surface tension effect at the free surface. For the perfectly vertical cliff,
it’s effect on the source is similar to another source located at the image point of the main
source regarding to the vertical cliff. However, because of the bended figure of the cliff, there
will be extra effects. Assuming the surface tension effect at the free surface, these effects have
been obtained up to first order term to the wave amplitude at infinity (A1) and the velocity
potential (φ1) for deep water by employing a simplified perturbation theory followed by an
adequate Havelock’s expansion of water wave potential. Considering the two particular shapes
of the nearly vertical cliff viz.(i) c(y) = y exp(−λy) and (ii) c(y) = α sin βy, these corrections
are also found interms of the integrals involving the shape function of the cliff in presence of
surface tension at the free surface. Neglecting the effect of surface tension at the free surface,
the approximate solution of the corresponding problem can be found. The solution of the
corresponding two dimensional problem can also be derived by a known substitution.
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1 Introduction
In the past and recent years, few attempts have been reported to study the problem of water waves
progressing towards a nearly vertical cliff. The first problem in this field was considered by Shaw[1]),
where he applied a perturbation technique that involves the solution of a singular integral equation
to obtain the first order corrections to the reflection and transmission coefficients associated with
a surface piercing nearly vertical barrier. The problem tackled by Packham[2] has been generalised
by Chakrabarti[3], wherein he considered the effect of surface tension on incoming surface water
waves against a cliff which is periodically corrugated with a small amplitude by applying a special
type of Fourier sine transform technique. Mandal and Kundu[4] studied the problem of scattering of
water waves by a submerged nearly vertical plate based on perturbational analysis assuming linear
theory. The problem of reflection of water waves by a nearly vertical cliff was considered by Mandal
and Kar[5] and they employed a technique based on a simplified perturbational analysis followed
by Havelock’s expansion[6] of water wave potential. Rhodes-Robinson[7] studied the problem of
reflection of water waves by a nearly vertical cliff in the presence of surface tension at the free
surface. Since then few attempts have been studied to tackle this class of water wave problems and
few of its generalization by employing different mathematical techniques [8-11].

In the present paper, we likewise allow the surface tension effect at the free surface for the problem
of propagation of obliquely incident water waves by an oscillating line source in the presence of a
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fixed nearly vertical cliff in deep water. Assuming linear theory, a simplified perturbation theory
followed by an appropriate Havelock’s expansion is used to find the first order corrections to the
wave amplitude at infinity and the velocity potential for deep water. These corrections have also
been obtained by considering two particular shapes of the nearly vertical cliff.

2 Statement of the problem
We consider that a train of progressive waves propagating at the surface of a homogeneous, incom-
pressible, inviscid liquid of density ρ is incident, obliquely, on a nearly vertical rigid cliff, in deep
water. A rectangular Cartesian co-ordinate system is used in which the y-axis is taken vertically
downwards into the liquid so that the undisturbed free surface is the plane y = 0, x > 0 and the
position of the nearly vertical cliff is B : x = ε c(y), 0 < y < ∞, where ε is a small non-dimensional
quantity with c(0) = 0 and c(y) is bounded and continuous in 0 < y < ∞. The origin is taken at a
point on the line of intersection where the nearly vertical cliff and the free surface meet. We assume
that a source of pulsating unit strength placed in the liquid at the point (a, b, 0) with a, b > 0.

3 Formulation of the problem
Assuming the motion of the liquid is irrotational and simple harmonic in time with circular fre-
quency σ and of small amplitude so that there exists a velocity potential Φ(x, y, z, t) in the liquid
region which represent progressive waves moving towards the shore line (i.e., the z-axis) such that
the wave crests at large distance from the shore tend to straight line which make an arbitrary angle
θ with the z-axis. Thus we may write

Φ(x, y, z, t) = Re[φ(x, y) exp −i(σt + νoz)]

where νo = γo sin θ and γo is the infinite depth wave number with surface tension which satisfies the
equation [12] γo(1 + Mγ2

o) = K, K = σ2/g, g is the acceleration due to gravity and M = τ/(ρg),
τ being the coefficient of surface tension.
Using linear theory, the function φ(x, y) satisfies:
the two dimensional modified Helmholtz’s equation

(∇2 − ν2
o )φ = 0 (3.1)

in the fluid region except at the point where the oscillating line source is present,
the linearized form of the free surface condition with surface tension

Kφ + φy + Mφyyy = 0 on y = 0, x > 0, (3.2)

as the cliff is rigid and fixed, the condition of vanishing of the normal component of velocity at the
cliff

φn = 0 on B : x = ε c(y), y > 0, (3.3)

where n denotes the outward drawn unit normal to the surface of the cliff,
since the wave amplitude becomes infinity at the origin, then

φ ∼ ln r as r = {(x − a)2 + (y − b)2}1/2 → 0, (3.4)
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the infinity requirements

φ, ∇φ → 0 as y → ∞ (3.5)

and as x → ∞, φ represents outgoing wave so that

φ ∼ A exp(−γoy + iµox) as x → ∞ (3.6)

where µo = γo cos θ and A is the amplitude of the radiated waves at infinity.
Assuming that the parameter ε is very small and ignoring O(ε3) terms, the boundary condition
(3.3) can be expressed in approximate form, on x = 0, as [8]

φx(0, y) − ε
∂

∂y
{c(y) φy(0, y)} + ε2

2

[
{c(y)}2 φxxx(0, y) − 2c(y) c

′
(y) φxy(0, y)

− {c
′
(y)}2 φx(0, y)

]
+ O(ε3) = 0 for 0 < y < ∞. (3.7)

4 Reduction to boundary value problem (BVP)
The form of the approximate boundary condition (3.7) suggests that the potential function φ(x, y)
and the unknown complex amplitude A may be expanded by the following straight forward pertur-
bational expansions, in terms of the small parameter ε as

φ(x, y, ε) = φ0(x, y) + εφ1(x, y) + ε2φ2(x, y) + O(ε3) (4.1)
and

A(ε) = A0 + εA1 + ε2A2 + O(ε3). (4.2)

Substituting the expansions (4.1) and (4.2) into the original BVP stated by (3.1) - (3.6), we obtain,
after equating the coefficients of like powers of ε from both sides of all the results evolved thus,
that the functions φ0, φ1 and φ2 must be the solution of the following three BVPs:
BVP-I: The problem is to determine the function φ0(x, y) which satisfies

(∇2 − ν2
o )φ0 = 0

in the fluid except at the point where the oscillating line source is present,

Kφ0 + φ0y + Mφ0yyy = 0 on y = 0, x > 0,

φ0x
= 0 on x = 0, 0 < y < ∞,

φ0 ∼ ln r as r → 0,

φ0, ∇φ0 → 0 as y → ∞,

φ0 ∼ A0 exp(−γoy + iµox) as x → ∞.

BVP-II: Determine the function φ1(x, y) satisfying



72 P. Agasti

(∇2 − ν2
o )φ1 = 0 in the liquid,

Kφ1 + φ1y + Mφ1yyy = 0 on y = 0, x > 0,

φ1x
(0, y) = ∂

∂y
{c(y) φ0y

(0, y)} = F (y), say, on x = 0, 0 < y < ∞,

φ1, ∇φ1 → 0 as y → ∞,

φ1 ∼ A1 exp(−γoy + iµox) as x → ∞.

BVP-III: To determine φ2(x, y) which satisfies

(∇2 − ν2
o )φ2 = 0 every where in the liquid,

Kφ2 + φ2y + Mφ2yyy = 0 on y = 0, x > 0,

φ2x
(0, y) = ∂

∂y
{c(y) φ1y

(0, y)} − 1
2

[
{c(y)}2 φ0xxx

(0, y) − 2c(y) c
′
(y) φ0xy

(0, y)

− {c
′
(y)}2 φ0x

(0, y)
]

= G(y), say, on x = 0, 0 < y < ∞.

φ2, ∇φ2 → 0 as y → ∞,

φ2 ∼ A2 exp(−γoy + iµox) as x → ∞.

5 Solution of the problem
Solution for BVP-I: If there is no cliff, the source potential in presence of surface tension at the
free surface is given by

G(x, y; a, b) = 2πi(1 + Mγ2
o)

1 + 3Mγ2
o

exp{−γo(y + b) + iµo | x − a |}

+ 2
∫ ∞

0

{γ(1 − Mγ2) cos γy − K sin γy}{γ(1 − Mγ2) cos bγ − K sin bγ}
γ1{γ2(1 − Mγ2)2 + K2}

× exp(−γ1 | x − a |) dγ. (5.1)

where γ1 = (γ2 + ν2
o )1/2.

Exploiting the relation

φ0(x, y) = G(x, y; a, b) + G(x, y; −a, b) (5.2)

into (5.1) we find

φ0(x, y) ∼ 4πi(1 + Mγ2
o)

1 + 3Mγ2
o

exp{−γo(y + b) + iµox} cos µoa as | x |→ ∞. (5.3)
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Hence from the last relation of BVP-I, A0 is found as

A0 = 4πi(1 + Mγ2
o)

1 + 3Mγ2
o

exp(−γob) cos µoa. (5.4)

Solution for BVP-II: Employing the Havelock’s expansion[13] of water wave potential, we can
express φ1(x, y) as

φ1(x, y) = A1 exp(−γoy + iµox)

+
∫ ∞

0
A(γ){γ(1 − Mγ2) cos γy − K sin γy} × exp(−γ1x) dγ, x > 0. (5.5)

Then from the 3rd condition of the BVP-II, we find

iµoA1 exp(−γoy) −
∫ ∞

0
γ1A(γ){γ(1 − Mγ2) cos γy − K sin γy} dγ = F (y), (5.6)

so that by Havlock’s inversion theorem[6],

A1 = −2i

∫ ∞

0
F (y) exp(−γoy) dy, (5.7)

and
A(γ) = − 2

πγ1γ2

∫ ∞

0
F (y){γ(1 − Mγ2) cos γy − K sin γy} dy, (5.8)

where γ2 = γ2(1 − Mγ2)2 + K2.

Substituting for F (y) from the 3rd condition of BVP-II into (5.7) and using (5.2) and (5.1), we
obtain, after some elementary manipulation, that

A1 = −8πγ2
o(1 + Mγ2

o)
1 + 3Mγ2

o

exp(−γob + iµoa)
∫ ∞

0
c(y) exp(−2γoy) dy

+ 8iγo

∫ ∞

0
c(y)

{∫ ∞

0
U(l, y) V (l, b) dl

}
exp(−γoy) dy, (5.9)

where U(x, y) = x(1 − Mx2) sin xy + K cos xy,

and V (x, y) = x{x(1 − Mx2) cos xy − K sin xy}
x1{x2(1 − Mx2)2 + K2}

exp(−x1a)

where x1 = (x2 + ν2
o )1/2.

Following a similar process, the general expression for A(γ) is given by(see Appendix-A)

A(γ) = 8iγγo(1 + Mγ2
o)

γ1γ2(1 + 3Mγ2
o) exp(−γob + iµoa)

∫ ∞

0
c(y) U(γ, y) exp(−γoy) dy
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+ 8 γ

πγ1γ2

∫ ∞

0
c(y) U(γ, y)

{∫ ∞

0
U(l, y) V (l, b) dl

}
dy. (5.10)

6 Special shapes of the cliff
Let us consider to special shapes for the nearly vertical cliff viz. (i) c(y) = y exp(−λy) for λ > 0
and (ii) c(y) = α sin βy, a corrugated cliff.
Case-I: When c(y) = y exp(−λy)
In this case we find (see Appendix-B)

A1 = − 8πγ2
o(1 + Mγ2

o)
(λ + 2γo)2(1 + 3Mγ2

o) exp(−γob + iµoa)

+ 8iγo

∫ ∞

0

l2{2(λ + γo)(1 − Ml2) − K} + K(λ + γo)2

{(λ + γo)2 + l2}2 V (l, b) dl, (6.1)

and

A(γ) = 8γ

πγ1γ2

(
πiγo(1 + Mγ2

o)[2γ2(1 − Mγ2)(λ + γo) + K{(λ + γo)2 − γ2}]
(1 + 3Mγ2

o){(λ + γo)2 + γ2}2 exp(−γob + iµoa)

+
∫ ∞

0

V (l, b)
{λ2 + (γ + l)2}2

[
γ(1 − Mγ2)

{
Kλ(γ + l) − l

2(1 − Ml2)
(

λ2 − (γ + l)2
)}

+ K
{

λl(1 − Ml2)(l + γ) + K

2

(
λ2 − (l + γ)2

)}]
dl

+
∫ ∞

0

V (l, b)
{λ2 + (γ − l)2}2

[
γ(1 − Mγ2)

{
Kλ(γ − l) + l

2(1 − Ml2)
(

λ2 − (γ − l)2
)}

+ K
{

λl(1 − Ml2)(l − γ) + K

2

(
λ2 − (l − γ)2

)}]
dl

)
. (6.2)

Case-II: When c(y) = α sin βy
In this case we obtain (see Appendix-C)

A1 = − 8παβγ2
o(1 + Mγ2

o)
(β2 + 4γ2

o)(1 + 3Mγ2
o) exp(−γob + iµoa)

+ 4iαγo

∫ ∞

0

{
γol(1 − Ml2) + K(β − l)

γ2
o + (β − l)2 + K(β + l) − γol(1 − Ml2)

γ2
o + (β + l)2

}
V (l, b) dl, (6.3)

and

A(γ) = 4iαγoγ(1 + Mγ2
o)

γ1γ2(1 + 3Mα2)

{
γoγ(1 − Mγ2) + K(β − γ)

γ2
o + (β − γ)2 + K(β + γ) − γoγ(1 − Mγ2)

γ2
o + (β + γ)2

}
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× exp(−γob + iµoa) + 4αγ

πγ1γ2

∫ ∞

0

{
γl2(1 − Mγ2)(1 − Ml2) − K2(β − γ)

l2 − (β − γ)2

− γl2(1 − Mγ2)(1 − Ml2) + K2(β + γ)
l2 − (β + γ)2

}
V (l, b) dl. (6.4)

7 Discussion
Assuming surface tension effect at the free surface, the problem of propagation of obliquely incident
water waves by a pulsating line source in the presence of a nearly vertical rigid cliff in water of
infinite depth is demonstrated here. Using linear theory, an approximate procedure essentially
based on standard perturbation analysis is applied to find the first order corrections to the wave
amplitude at infinity as well as the velocity potential in terms of integrals involving the shape of the
cliff. These corrections are also found by considering two particular shapes of the nearly vertical
rigid cliff. Again exploiting the known analytical expression for A1 and A(γ) in (5.5), the first
order correction to the velocity potential i.e., φ1(x, y) can be found and thus the BVP-III can be
solved by applying an appropriate Havelock’s expansion for φ2(x, y). In absence of the effect of
surface tension at the free surface, the approximate solution of the corresponding problem can also
be derived, simply by putting the coefficient of surface tension τ = 0. Further, if we put θ = 0, the
approximate solution in connection with the corresponding two dimensional problem can also be
derived.
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Appendix-A

Calculation of the function A(γ):
In order to calculate A(γ), we have to find∫ ∞

0
F (γ){γ(1 − Mγ2) cos γy − K sin γy} dy = I(γ), say. (A.1)

Substituting for F(y) from the third condition of BVP-II, I(γ) reduces to

I(γ) = γ(1 − Mγ2)I1(γ) − KI2(γ) (A.2)

where I1(γ) =
∫ ∞

0

∂

∂y
{c(y) φ0y

(0, y)} cos γy dy

and I2(γ) =
∫ ∞

0

∂

∂y
{c(y) φ0y

(0, y)} sin γy dy.

Now, utilizing c(0) = 0 and the expression for φ0(0, y) obtained from (5.2), we find

I1(γ) = −4πiγγo(1 + Mγ2
o)

1 + 3Mγ2
o

exp(−γob + iµoa)
∫ ∞

0
c(y) sin γy exp(−γoy) dy

− 4γ

∫ ∞

0
c(y) sin γy

{∫ ∞

0
U(l, y) V (l, b) dl

}
dy, (A.3)

and

I2(γ) = 4πiγγo(1 + Mγ2
o)

1 + 3Mγ2
o

exp(−γob + iµoa)
∫ ∞

0
c(y) cos γy exp(−γoy) dy
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+ 4γ

∫ ∞

0
c(y) cos γy

{∫ ∞

0
U(l, y) V (l, b) dl

}
dy. (A.4)

Thus, using (A.3) and (A.4) in (A.2), I(γ) is obtained and hence from (5.8), we find the general
expression for A(γ) which is given in (5.10).

Appendix-B

Evaluation of various integrals when c(y) = y exp(−λy):

Let us define

J1 =
∫ ∞

0
c(y) exp(−2γoy) dy and J2 =

∫ ∞

0
c(y) exp(−γoy)

{∫ ∞

0
U(l, y) V (k, b) dl

}
dy.

Taking c(y) = y exp(−λy), we obtain

J1 = 1
(λ + 2γo)2 , (B.1)

J2 =
∫ ∞

0
V (l, b)

[ ∫ ∞

0
U(l, y)y exp{−(λ + γo)y} dy

]
dl. (B.2)

The inner integral of (B.2) is computed as

l2{2(λ + γo)(1 − Ml2) − K} + K(λ + γo)2

{(λ + γo)2 + l2}2 ,

so that

J2 =
∫ ∞

0

V (l, b)
{(λ + γo)2 + l2}2 [l2{2(λ + γo)(1 − Ml2) − K} + K(λ + γo)2] dl. (B.3)

Hence using (B.1) and (B.3) in (5.9), we obtain the expression (6.1) for A1.

Further, let us define

J3 =
∫ ∞

0
c(y) sin γy exp(−γoy) dy, J4 =

∫ ∞

0
c(y) sin γy

{∫ ∞

0
U(l, y) V (l, b) dl

}
dy,

J5 =
∫ ∞

0
c(y) cos γy exp(−γoy) dy, J6 =

∫ ∞

0
c(y) cos γy

{∫ ∞

0
U(l, y) V (l, b) dl

}
dy.

Substituting c(y) = y exp(−λy) in the above expressions, we obtain

J3 = 2(λ + γo)γ
{(λ + γo)2 + γ2}2 , (B.4)
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J4 =
∫ ∞

0
V (l, b)

{∫ ∞

0
sin γy U(l, y) y exp(−λy) dy

}
dl, (B.5)

J5 = (λ + γo)2 − γ2

{(λ + γo)2 + γ2}2 , (B.6)

J6 =
∫ ∞

0
V (l, b)

{∫ ∞

0
cos γy U(l, y) y exp(−λy) dy

}
dl. (B.7)

The inner integrals of (B.5) and (B.7), are calculated and finally J4 and J6 reduce to the following
forms:

J4 =
∫ ∞

0
V (l, b)

{
l

2(1 − Ml2)
[ λ2 − (γ − l)2

{λ2 + (γ − l)2}2 − λ2 − (γ + l)2

{λ2 + (γ + l)2}2

]
+ Kλ

[ γ + l

{λ2 + (γ + l)2}2 + γ − l

{λ2 + (γ − l)2}2

]}
dl, (B.8)

J6 =
∫ ∞

0
V (l, b)

{
λl(1 − Ml2)

[ l + γ

{λ2 + (l + γ)2}2 + l − γ

{λ2 + (l − γ)2}2

]
+ K

2

[ λ2 − (l + γ)2

{λ2 + (l + γ)2}2 + λ2 − (l − γ)2

{λ2 + (l − γ)2}2

]}
dl. (B.9)

Then utilizing (B.4), (B.6), (B.8) and (B.9) in (5.10), we finally find the general expression of A(γ),
which is given by (6.2).

Appendix-C

Explicit calculations of various integrals when c(y) = α sin βy :
Assuming c(y) = α sin βy in the integrals represented by J1 and J2, defined in Appendix-B, we find

J1 = αβ

β2 + 4γ2
o

, (C.1)

J2 = α

∫ ∞

0
V (l, b)

{∫ ∞

0
U(l, y) sin βy exp(−γoy) dy

}
dl. (C.2)

The inner integral of (C.2) is equal to

1
2

[
γol(1 − Ml2) + K(β − l)

γ2
o + (β − l)2 + K(β + l) − γol(1 − Ml2

γ2
o + (β + l)2

]
.

Thus J2 reduces to the form

J2 = α

2

∫ ∞

0
V (l, b)

{
γol(1 − Ml2) + K(β − l)

γ2
o + (β − l)2 + K(β + l) − γol(1 − Ml2)

γ2
o + (β + l)2

}
dl, (C.3)
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so that using (C.1) and (C.3) in (5.9), we obtain the expression of A1 given by (6.3).
When c(y) = α sin βy, the integrals given by J3 to J7 already defined in Appendix-B, are

J3 = αγo

2

{
1

γ2
o + (β − γ)2 − 1

γ2
o + (β + γ)2

}
, (C.4)

J4 = α

∫ ∞

0
V (l, b)

{∫ ∞

0
sin βy sin γy U(l, y) dy

}
dl, (C.5)

J5 = α

2

{
β − γ

γ2
o + (β − γ)2 − β + γ

γ2
o + (β + γ)2

}
, (C.6)

J6 = α

∫ ∞

0
V (l, b)

{∫ ∞

0
sin βy cos γy U(l, y) dy

}
dl. (C.7)

Using a convergence factor of the type used by Evans and Morris (cf. [14]), the inner integral of
(C.5) and (C.7) are evaluated and finally J4 and J6 reduce to the following forms:

J4 = α

2

∫ ∞

0
l2(1 − Ml2) V (l, b)

{
1

l2 − (β − γ)2 − 1
l2 − (β + γ)2

}
dl, (C.8)

J6 = αK

2

∫ ∞

0
V (l, b)

{
β − γ

(β − γ)2 − l2 + β + γ

(β + γ)2 − l2

}
dl. (C.9)

Then using (C.4), (C.6), (C.8) and (C.9) in the expression (5.10), we obtain the analytical expression
for A(γ), which is given by (6.4).


