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Abstract
In this work, we consider a one-dimensional piezoelectric beam model with magnetic effects
in the presence of a delay term acting on the two equations. The existence and uniqueness
of solutions to the system are proved by the semigroup theory. We demonstrate the system’s
exponential stability using the energy method and multiplier techniques. Under a suitable
assumption on the weight of the delay that the damping effect through two equations is strong
enough to stabilize the system even in the presence of a time delay. Furthermore, our result
does not depend on any relationship between system parameters.
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1 Introduction
In recent years, we have seen a large number of published works on piezoelectric materials [23].
Piezoelectric materials, such as quartz, Rochelle salt, and barium titanate, possess the significant
characteristic of converting mechanical energy into electromagnetic energy when subjected to me-
chanical stress. The phenomenon responsible for this conversion is known as the direct piezoelectric
effect, which was discovered by the brothers Pierre and Jacques Curie in 1880. Reciprocally, the
same materials have the ability to convert electromagnetic energy to mechanical energy, and this
phenomenon is well known as the reverse piezoelectric effect, which was uncovered by Gabriel
Lippmann [25] in 1881. Piezoelectric materials find numerous applications in various domains of
real life, including civil engineering, industrial applications, the automotive industry, aeronautical
engineering, and space structures. Additionally, these materials have been extensively utilized as
sensors and actuators in the fields of structures and intelligent systems [3]. Furthermore, these
smart materials can be used in many fields, especially when dealing with piezoelectric motors,
sonars and injection mechanisms. These materials’ activity is associated with their microscopic
polarization, which is brought on by the presence of a dipole moment, which is brought on by the
lack of central symmetry. Additionally, a little amount of mechanical energy is also converted into
magnetic energy during the process of turning mechanical energy into electric energy. This last
energy has a relatively small effect on the general dynamics, and there exist models that neglect
magnetic effects such as piezoelectric beams. However, this magnetic contribution may limit the
system performance. For example, the magnetic effect can cause oscillations in the output, which
leads to system instability in closed loop [20, 28]. The following references can be used to find
further issues with piezoelectric systems: [6, 11, 12, 13, 14, 15, 16, 26].
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In the modeling of piezoelectric systems, three main effects and their interrelationships should be
taken into account: mechanical, electrical, and magnetic. Mechanical effects are generally modeled
through Kirchhoff, Euler–Bernoulli, or Mindlin–Timoshenko small displacement assumptions; see,
for example, [27]. There are mainly three approaches for including electrical and magnetic effects:
electrostatic, quasi–static, and fully dynamic [24]. Electrostatic and quasi–static approaches are
widely employed; see, for example, [4, 8]. These models totally exclude magnetic effects and
their coupling with electrical and mechanical effects. Although the mechanical equations in an
electrostatic approach are dynamic, the electrical effects are stationary. The quasi–static approach
still excludes magnetic effects, but electric charges have time dependence. The electromechanical
coupling is not dynamic. On the other hand, in the references [9, 10, 29, 30] a great deal of attention
has been given to the study of differential variational-hemivariational inequalities. Morris et al. [17]
using a variational approach to introduce the following coupled model of piezoelectric beams with
magnetic effects 

ρvtt − αvxx + γβpxx = 0 in (0, L) × (0,∞) ,
µptt − βpxx + γβvxx = 0 in (0, L) × (0,∞) ,
v (0, t) = p (0, t) = αvx (L, t) − γβpx (L, t) = 0,
βpx (L, t) − γβvx (L, t) = −V (t) /h,
(v, vt, p, pt) (x, 0) = (v0, v1, p0, p1) (x) .

(1.1)

In the given model, the positive parameters ρ, α, γ, µ, β, and L represent the mass density per unit
volume, elastic stiffness, piezoelectric coefficient, magnetic permeability, water resistance coefficient
of the beam, and the length of the beam, respectively. In addition, the relationship is considered

α = α1 + γ2β with α1 > 0, (1.2)

where h represents the thickness of the beam and V (t) denotes the voltage applied at the electrode.
In this context, the functions v = v(x, t) and p = p(x, t) are used to represent the transverse
displacement of the beam and the total load of the electric displacement along the transverse
direction at each point x, respectively. Ramos et al. [21] conducted a study on the following system
of piezoelectric beams with magnetic effects

ρvtt − αvxx + γβpxx + δvt = 0, in (0, L) × (0, T ) ,
µptt − βpxx + γβvxx = 0, in (0, L) × (0, T ) ,
v (0, t) = αvx (L, t) − γβpx (L, t) = 0, 0 ≤ t ≤ T,
p (0, t) = px (L, t) − γvx (L, t) = 0, 0 ≤ t ≤ T,
(v, vt, p, pt) (x, 0) = (v0, v1, p0, p1) (x) , 0 ≤ x ≤ L.

(1.3)

In their study, Ramos et al. investigated the exponential decay of the total energy and various
numerical aspects related to the dissipative piezoelectric beams system with magnetic effects. They
demonstrated that the dissipation produced by the damping term δvt, which acts in the mechanical
equation, is sufficiently strong to exponentially stabilize the solution of the system given by (1.3),
regardless of the physical parameters of the model. In addition, they presented the results of
numerical simulations using the explicit finite difference method. Freitas et al. [7] studied the
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following piezoelectric beams system
ρvtt − αvxx + γβpxx + f1 (v, p) + vt = h1,
µptt − βpxx + γβvxx + f2 (v, p) + µ1pt + µ2pt (x, t− τ) = h2,
v (0, t) = vx (L, t) = p (0, t) = px (L, t) = 0, t ≥ 0,
(v, vt, p, pt) (x, 0) = (v0, v1, p0, p1) (x) , x ∈ (0, L) .

(1.4)

In their study, they analyzed the long-time behavior of the system by studying its associated dy-
namical system. They showed that the system is gradient and asymptotically smooth. Where
x ∈ (0, L) and t ∈ (0, T ) , the functions f1 (v, p) and f2 (v, p) represent nonlinear source terms in
the system. The terms h1 and h2 correspond to external forces acting on the system. Further-
more, vt and pt represent the damping effects associated with displacement and magnetic current,
respectively. On the other hand, in [2] Afilal et al. studied the following piezoelectric beams with
magnetic effects and localized damping

ρvtt − αvxx + γβpxx + α (x) vt = 0, in (0, L) × (0,∞) ,
µptt − βpxx + γβvxx = 0, in (0, L) × (0,∞) ,
v (0, t) = αvx (L, t) − γβpx (L, t) = 0, t ∈ (0,∞) ,
p (0, t) = px (L, t) − γvx (L, t) = 0, t ∈ (0,∞) ,
(v, vt, p, pt) (x, 0) = (v0, v1, p0, p1) (x) , x ∈ (0, L) .

(1.5)

The authors, by using a damping mechanism acting only on one component and on a small part of
the beam, established that the system (1.5) is exponentially stable.
The introduction of delay terms is prevalent in many practical applications, differentiating the prob-
lem from those examined in existing literature, as highlighted by [22]. Surprisingly, incorporating
even a minor delay can disrupt the stability of a system that is otherwise uniformly asymptotically
stable in the absence of delay, unless specific additional conditions or control terms are integrated,
as demonstrated by [1]. Hence, studying the stability implications in systems with time delays
holds immense theoretical and practical significance. Extensive research has explored the impact
of time delay on the stability of dynamic systems, revealing that it frequently acts as a source of
instability.
A simple example of a Time-Delay System (TDS) can be illustrated as follows: Imagine a person
taking a shower, aiming to reach a specific water temperature, Td, by adjusting the hot and cold
water mixer. We’ll use T (t) to represent the water temperature coming out of the mixer and τ as
the constant time it takes for the water to travel from the mixer to the person’s head (see Figure 1).
We assume that the change in temperature is directly proportional to the angle at which the mixer
handle is turned, and the rate at which the handle is turned depends on the difference between
the current temperature, T (t), and the desired temperature, Td. At any given time, t, the person
perceives the water temperature that left the mixer at time t − τ . This leads to the following
equation incorporating the constant delay τ :

T′(t) = −ξ (T(t− τ) − Td) , ξ ∈ R

We present the following picture for further clarification:
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Figure 1. A Showering person

Understanding these stability issues is pivotal for ensuring the dependable operation of time-
delay systems across various applications. Notably, controlling magnetically influenced piezoelectric
beams with time delay has emerged as a prominent research area, as evidenced by recent studies
such as (e.g. [5, 7]). In [5], the author proposed magnetic-affected piezoelectric beams incorporating
Cattaneo’s law and a distributed delay term given by:

ρvtt − αvxx + γβpxx + ηθx = 0,
µptt − βpxx + γβvxx + µ1pt +

∫ τ2
τ1
µ2 (s) pt (x, t− s) ds = 0,

θt + kqx + ηvxt = 0,
τqt + δq + kθx = 0,
v (0, t) = αvx (L, t) − γβpx (L, t) = 0, ∀t > 0,
p (0, t) = px (L, t) − γvx (L, t) = 0, ∀t > 0,
θ (0, t) = θ (L, t) = 0, ∀t > 0,
pt (x,−t) = f0 (x, t) , (x, t) ∈ (0, L) × (0, τ2),
(v, vt, p, pt, θ, q) (x, 0) = (v0, v1, p0, p1, θ0, q0) (x) , ∀x ∈ (0, L) .

In the given system, where θ = θ(x, t) represents the temperature difference, η > 0 is the coupling
constant associated with the heating effect, q = q(x, t) signifies the heat flux, and τ > 0 is the
relaxation time indicating the time delay in temperature response. Initial data v0, v1, p0, p1,
θ0, q0, and the history function f0 are involved, along with constitutive constants µ1, δ, and k,
which are positive. Additionally, µ2 : [τ1, τ2] −→ R is a bounded function, where τ1 and τ2 are
real numbers meeting the condition 0 ≤ τ1 < τ2. Under appropriate assumptions considering
the weight of both delay and frictional damping, the author established the well-posedness of the
system and demonstrated its exponential stability. Messaoudi et al. [14] they studied the following
one-dimensional nonlinear piezoelectric beams with thermal and magnetic effects in the presence
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of a distributed delay term acting on the heat equation given by:

ρvtt − αvxx + γβpxx + δθx + ψ (t) g (vt) = 0, in (0, L) × (0,∞) ,
µptt − βpxx + γβvxx = 0, in (0, L) × (0,∞) ,
cθt − k1θxx −

∫ τ2
τ1
k2 (s) θxx (x, t− s) ds+ δvtx = 0, in (0, L) × (0,∞) ,

v (0, t) = vx (L, t) = p (0, t) = px (L, t) = θ (0, t) = θ (L, t) = 0, t ≥ 0,
(v, vt, p, pt, θ) (x, 0) = (v0, v1, p0, p1, θ0) (x) , x ∈ (0, L) ,
θx (x,−t) = f0 (x, t) , x ∈ (0, L) , t ∈ (0, τ2) .

(1.6)

First, they showed by applying the semigroup method that the system is well-posed. Through
the construction of an appropriate Lyapunov functional, they established a general decay result
for the solutions of the system, for which the exponential and polynomial decays are only special
cases, under a suitable assumption on the weight of the delay that the damping effect through
heat conduction is strong enough to stabilize the system even in the presence of a time delay.
Furthermore, the results do not depend on any relationship between system parameters. Motivated
and inspired by the above papers, in this article we consider the following system:

ρvtt = αvxx − γβpxx − ρ1vt − ρ2vt (x, t− τ) , in (0, L) × (0,∞) ,
µptt = βpxx − γβvxx − µ1pt − µ2pt (x, t− σ) , in (0, L) × (0,∞) ,
(v, vt, p, pt) (x, 0) = (v0, v1, p0, p1) (x) , x ∈ (0, L) ,
v (0, t) = αvx (L, t) − γβpx (L, t) = 0, t ≥ 0,
p (0, t) = px (L, t) − γvx (L, t) = 0, t ≥ 0,
vt (x, t− τ) = f0 (x, t− τ) , t ∈ (0, τ) ,
pt (x, t− σ) = g0 (x, t− σ) , t ∈ (0, σ) .

(1.7)

The coefficients ρ1 and µ1 are positive constants. ρ2 and µ2 are a real numbers. Here, we prove
the well-posedness and stability results for the problem (1.7), under the assumption{

ρ1 > |ρ2| ,
µ1 > |µ2| . (1.8)

There are many instances where time delays act as a source of instability in systems. However, time
delays can actually stabilize certain systems, contrary to what might be expected. The question in
this context is whether the time delay affecting the two equations has an impact on the system’s
stability. The primary goal and new aspect of this work is to answer the question we asked positively,
by considering (1.7). Firstly, we adopt the semigroup method to obtain the well–posedness of the
system (1.7). Secondly, we use the multiplier method and some properties of convex functions to
obtain the exponential decay of the solution associated with the system (1.7), irrespective of any
condition of the system’s parameters.
The paper is organized as follows: In Section 2, we introduce some assumptions needed in our work
and prove the well–posedness of the system (1.7). In Section 3, we state and prove our stability
result. Moreover, throughout this paper, we will assume that (1.2) is satisfied.

2 The well-posedness of the problem
In this section, we prove the existence and uniqueness of solutions for (1.7) using the semigroup
theory [19]. As in [18], we introduce the new variables{

z(x, ϱ, t) = vt (x, t− ϱτ) , x ∈ (0, L) , ϱ ∈ (0, 1) , t > 0,
y(x, ϱ, t) = pt (x, t− ϱσ) , x ∈ (0, L) , ϱ ∈ (0, 1) , t > 0.
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Therefore, system (1.7) is equivalent to

ρvtt = αvxx − γβpxx − ρ1vt − ρ2z(x, 1, t), (x, t) ∈ (0, L) × (0,∞),
τzt(x, ϱ, t) = −zϱ(x, ϱ, t), (x, ϱ, t) ∈ (0, L) × (0, 1) × (0,∞),
µptt = βpxx − γβvxx − µ1pt − µ2y(x, 1, t), (x, t) ∈ (0, L) × (0,∞),
σyt(x, ϱ, t) = −yϱ(x, ϱ, t), (x, ϱ, t) ∈ (0, L) × (0, 1) × (0,∞),
z(x, ϱ, 0) = f0 (x,−ϱτ) , (x, ϱ) ∈ (0, L) × (0, 1) ,
y(x, ϱ, 0) = g0 (x,−ϱσ) , (x, ϱ) ∈ (0, L) × (0, 1) ,
(v, vt, p, pt) (x, 0) = (v0, v1, p0, p1) (x) , ∀x ∈ (0, L) ,
v (0, t) = αvx (L, t) − γβpx (L, t) = 0, ∀t > 0,
p (0, t) = px (L, t) − γvx (L, t) = 0, ∀t > 0,

(2.1)

Thus, we shall consider system (2.1) instead of system (1.7).
The aim of this section is to prove that system system (2.1) is well-posed.
Introducing the vector function Φ = (v, vt, z, p, pt, y)T , system (2.1) can be written as{

Φ′ (t) = AΦ (t) , t > 0,
Φ (0) = Φ0 = (v0, v1, f0, p0, p1, g0)T

,
(2.2)

where the operator A is defined by

A


v
vt

z
p
pt

y

 =



vt
1
ρ

[αvxx − γβpxx − ρ1vt − ρ2z(x, 1, t)]

− 1
τ
zϱ(x, ϱ, t)
pt

1
µ

[βpxx − γβvxx − µ1pt − µ2y(x, 1, t)]

− 1
σ
yϱ(x, ϱ, t)


.

Next, we consider the following space

H1
∗ (0, L) =

{
f ∈ H1 (0, L) ; f (0) = 0

}
, H2

∗ (0, L) = H2 (0, L) ∩H1
∗ (0, L) ,

and the Hilbert space

H = H1
∗ (0, L) × L2 (0, L) × L2 (

(0, L) , L2 (0, L)
)

×H1
∗ (0, L) × L2 (0, L) × L2 (

(0, L) , L2 (0, L)
)
,

equipped with the inner product〈
Φ, Φ̃

〉
H

= ρ

∫ L

0
vtṽtdx+ ζ

∫ L

0

∫ 1

0
z (x, ϱ) z̃ (x, ϱ) dϱdx+ µ

∫ L

0
ptp̃tdx+ α1

∫ L

0
vxṽxdx

+ξ
∫ L

0

∫ 1

0
y (x, ϱ) ỹ (x, ϱ) dϱdx+ β

∫ L

0
(γvx − px) (γṽx − p̃x) dx,

for Φ = (v, vt, z, p, pt, y)T , Φ̃ = (ṽ, ṽt, z̃, p̃, p̃t, ỹ)T and ζ, ξ are two positive constants such that{
τ |ρ2| ≤ ζ ≤ τ (2ρ1 − |ρ2|) ,
σ |µ2| ≤ ξ ≤ σ (2µ1 − |µ2|) . (2.3)
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The domain of A is

D (A) =
{

Φ ∈ H
∣∣∣∣ v, p ∈ H2

∗ (0, L) , vt, pt ∈ H1
∗ (0, L) , vx (L) = px (L) = 0,

z, y, zϱ, yϱ ∈ L2 (
(0, L) , L2 (0, L)

) }
,

and it is dense in H. We have the following existence and uniqueness result.

Theorem 2.1. Assume that Φ0 ∈ H and (1.8) holds, then system (2.1) has a unique solution
Φ ∈ C (R+; H). Moreover, if Φ0 ∈ D (A), then

Φ ∈ C
(
R+;D (A)

)
∩ C1 (

R+; H
)
.

Proof. We use the semigroup approach. Sufficiently, we prove that A : D (A) ⊂ H → H is a
maximal monotone operator. For this purpose, we need the following two steps: A is dissipative
and Id− A is surjective.
Step 1. A is dissipative.
For any Φ = (v, vt, z, p, pt, y)T ∈ D (A), by using the inner product and integration by parts, we
can obtain that

⟨AΦ,Φ⟩H = −
(
ρ1 − ζ

2τ

) ∫ L

0
v2

t dx− ζ

2τ

∫ L

0
z2 (x, 1, t) dx−

(
µ1 − ξ

2σ

) ∫ L

0
p2

tdx

− ξ

2σ

∫ L

0
y2 (x, 1, t) dx− ρ2

∫ L

0
vtz(x, 1, t)dx− µ2

∫ L

0
pty(x, 1, t)dx. (2.4)

Using Young’s inequality, we obtain

−ρ2

∫ L

0
vtz(x, 1, t)dx ≤ |ρ2|

2

∫ L

0
v2

t dx+ |ρ2|
2

∫ L

0
z2(x, 1, t)dx, (2.5)

−µ2

∫ L

0
pty(x, 1, t)dx ≤ |µ2|

2

∫ L

0
p2

tdx+ |µ2|
2

∫ L

0
y2(x, 1, t)dx. (2.6)

Substituting (2.5) and (2.6) in (2.4) and using (2.3), it follows that

⟨AΦ,Φ⟩H ≤ −C1

∫ L

0
v2

t dx− C2

∫ L

0
p2

tdx− C3

∫ L

0
z2 (x, 1, t) dx− C4

∫ L

0
y2 (x, 1, t) dx

≤ 0,

where

C1 = ρ1 − ζ

2τ − |ρ2|
2 , C2 = µ1 − ξ

2σ − |µ2|
2 , C3 = ζ

2τ − |ρ2|
2 , C4 = ξ

2σ − |µ2|
2 ,

which implies that A is a dissipative operator.
Step 2. Id− A is surjective.
Let F = (f1, ..., f6)T ∈ H, we prove that there exists Φ = (v, vt, z, p, pt, y)T ∈ D (A) satisfying

(Id− A) Φ = F, (2.7)
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that is 

v − vt = f1 ∈ H1
∗ (0, L) ,

(ρ+ ρ1) vt − αvxx + γβpxx + ρ2z(x, 1, t) = ρf2 ∈ L2 (0, L) ,
τz + zϱ(x, ϱ, t) = τf3 ∈ L2 (

(0, L) , L2 (0, L)
)
,

p− pt = f4 ∈ H1
∗ (0, L) ,

(µ+ µ1) pt − βpxx + γβvxx + µ2y(x, 1, t) = µf5 ∈ L2 (0, L) ,
σy + yϱ(x, ϱ, t) = σf6 ∈ L2 (

(0, L) , L2 (0, L)
)
.

(2.8)

Suppose we have obtained (vt, pt) with the suitable regularity, then{
vt = v − f1,
pt = p− f4,

(2.9)

so we have vt ∈ H1
∗ (0, L) and pt ∈ H1

∗ (0, L) .
Equations (2.8)3 and (2.8)6 with (2.9), recalling z(x, 0, t) = vt(x) and y(x, 0, t) = pt(x), yield

z (x, ϱ, t) = v (x) e−τϱ − f1 (x) e−τϱ + τe−τϱ

∫ ϱ

0
eτsf3(x, s)ds, (2.10)

y (x, ϱ, t) = p (x) e−σϱ − f4 (x) e−σϱ + σe−σϱ

∫ ϱ

0
eσsf6(x, s)ds. (2.11)

Clearly, z, y, zϱ, yϱ ∈ L2 (
(0, L) , L2 (0, L)

)
.

Inserting (2.9)1 and (2.10) into (2.8)2, and inserting (2.9)2 and (2.11) into (2.8)5, we get{
ρ3v − αvxx + γβpxx = h1,
µ3p− βpxx + γβvxx = h2,

(2.12)

where
ρ3 = ρ+ ρ1 + ρ2e

−τ ,
µ3 = µ+ µ1 + µ2e

−σ,

h1 = ρ3f1 + ρf2 − ρ2τe
−τ

∫ 1
0 e

τsf3(x, s)ds,
h2 = µ3f4 + µf5 − µ2σe

−σ
∫ 1

0 e
σsf6(x, s)ds.

The variational formulation corresponding to equation (2.12) takes the form

B
(

(v, p)T
, (ṽ, p̃)T

)
= G (ṽ, p̃)T

, (2.13)

where B :
[
H1

∗ (0, L) ×H1
∗ (0, L)

]2 −→ R is the bilinear form given by

B
(

(v, p)T
, (ṽ, p̃)T

)
= ρ3

∫ L

0
vṽdx+ α1

∫ L

0
vxṽxdx+ µ3

∫ L

0
pp̃dx+ β

∫ L

0
(γvx − px) (γṽx − p̃x) dx,

and G :
[
H1

∗ (0, L) ×H1
∗ (0, L)

]
−→ R is the linear form defined by

G (ṽ, p̃)T =
∫ L

0
h1ṽdx+

∫ L

0
h2p̃dx.
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Now we introduce the Hilbert space V = H1
∗ (0, L) ×H1

∗ (0, L) , equipped with the norm

∥(v, p)∥2
V = ∥v∥2

2 + ∥vx∥2
2 + ∥p∥2

2 + ∥γvx − px∥2
2 .

We can easily see that B and G are bounded. Furthermore, using integration by parts, we can
obtain that there exists a positive constant c such that

B
(

(v, p)T
, (v, p)T

)
= ρ3

∫ L

0
v2dx+ α1

∫ L

0
v2

xdx+ µ3

∫ L

0
p2dx+ β

∫ L

0
(γvx − px)2

dx

≥ c ∥(v, p)∥2
V ,

which implies that B (·, ·) is coercive. Consequently, the Lax-Milgram Lemma provides that (2.12)
has a unique solution (v, p)T ∈ V.
Then, by substituting v and p into (2.9), we obtain

vt ∈ H1
∗ (0, L) and pt ∈ H1

∗ (0, L) .

Next, it remains to show that

v, p ∈ H2(0, L) ∩H1
∗ (0, L) , vx (L) = px (L) = 0.

It follows from (2.12) that {
αvxx = ρ3v + γβpxx − h1,
βpxx = µ3p+ γβvxx − h2,

and therefore,
α1vxx = ρ3v + γµ3p− γh2 − h1 ∈ L2 (0, L) .

Consequently, by the regularity theory for the linear elliptic equations, it follows that

v ∈ H2(0, L) ∩H1
∗ (0, L) .

Moreover, we have

α1

∫ L

0
vxxudx = ρ3

∫ L

0
vudx+ γµ3

∫ L

0
pudx− γ

∫ L

0
h2udx−

∫ L

0
h1udx,

for any u ∈ C1 ([0, L]) ⊂ H1
∗ (0, L) (u (0) = 0) . By using the integration by parts, we obtain

vx (L)u (L) = 0, ∀u ∈ C1 ([0, L]) , u (0) = 0.

Therefore,
vx (L) = 0.

In a similar way, we obtain

p ∈ H2(0, L) ∩H1
∗ (0, L) , px (L) = 0.

Hence, there exists a unique Φ ∈ D(A) such that equation (2.7) is satisfied. Therefore, the operator
Id − A is surjective. Moreover, it is easy to see that D(A) is dense in H. Consequently, the well-
posedness result follows from Lumer-Philips theorem. q.e.d.
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3 Exponential decay of solutions
In this section, we state and prove the exponential decay for system (2.1)–(2.2). It will be achieved
by using the perturbed energy method. We define the following energy functional:

E (t) := 1
2

∫ L

0

[
ρv2

t + µp2
t + α1v

2
x + β (γvx − px)2 + ζ

∫ 1

0
z2(x, ϱ, t)dϱ+ ξ

∫ 1

0
y2(x, ϱ, t)dϱ

]
dx.

(3.1)
The main result of this section is the following theorem.

Theorem 3.1. Let (v, z, p, y) be the solution of system (2.1). Then the energy E (t) satisfies, for
all t ≥ 0,

E (t) ≤ η0e
−η1t, (3.2)

where η0 and η1 are positive constants.

To prove this result, we need the following lemmas.

Lemma 3.2. Let (v, z, p, y) be the solution of system (2.1). Then the energy functional satisfies

d

dt
E (t) ≤ −C1

∫ L

0
v2

t dx− C2

∫ L

0
p2

tdx− C3

∫ L

0
z2(x, 1, t)dx− C4

∫ L

0
y2(x, 1, t)dx, (3.3)

where

C1 = ρ1 − ζ

2τ − |ρ2|
2 , C2 = µ1 − ξ

2σ − |µ2|
2 ,

C3 = ζ

2τ − |ρ2|
2 , C4 = ξ

2σ − |µ2|
2 .

Proof. Multiplying (2.1)1 and (2.1)3 by vt and pt, respectively, and integrating over (0, L) and
summing up, using integration by parts and the boundary conditions, we get

1
2
d

dt

∫ L

0

[
ρv2

t + µp2
t + α1v

2
x + β (γvx − px)2

]
dx

= −
∫ L

0
ρ1v

2
t dx−

∫ L

0
µ1p

2
tdx−

∫ L

0
µ2y(x, 1, t)ptdx−

∫ L

0
ρ2z(x, 1, t)vtdx. (3.4)

Now, multiplying (2.1)2 by ζ

τ
z(x, ϱ, t) and integrating the product over (0, L) × (0, 1), and recalling

that z(x, 0, t) = vt, we obtain

ζ

2
d

dt

∫ L

0

∫ 1

0
z2(x, ϱ, t)dϱdx = ζ

2τ

∫ L

0
v2

t dx− ζ

2τ

∫ L

0
z2(x, 1, t)dx, (3.5)

and multiplying (2.1)4 by ξ

σ
y(x, ϱ, t) and integrating the product over (0, L) × (0, 1), and recalling

that y(x, 0, t) = pt, we obtain

ξ

2
d

dt

∫ L

0

∫ 1

0
y2(x, ϱ, t)dϱdx = ξ

2σ

∫ L

0
p2

tdx− ξ

2σ

∫ L

0
y2(x, 1, t)dx. (3.6)
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Adding Eqs. (3.4)–(3.6), we have

d

dt
E (t) = −

(
ρ1 − ζ

2τ

) ∫ L

0
v2

t dx−
(
µ1 − ξ

2σ

) ∫ L

0
p2

tdx− ζ

2τ

∫ L

0
z2(x, 1, t)dx

− ξ

2σ

∫ L

0
y2(x, 1, t)dx−

∫ L

0
ρ2z(x, 1, t)vtdx−

∫ L

0
µ2y(x, 1, t)ptdx. (3.7)

Using Young’s inequality, we can estimate

−
∫ L

0
ρ2z(x, 1, t)vtdx ≤ |ρ2|

2

∫ L

0
z2(x, 1, t)dx+ |ρ2|

2

∫ L

0
v2

t dx, (3.8)

−
∫ L

0
µ2y(x, 1, t)ptdx ≤ |µ2|

2

∫ L

0
y2(x, 1, t)dx+ |µ2|

2

∫ L

0
p2

tdx. (3.9)

Substitution of (3.8) and (3.9) into (3.7), and using (2.3) give (3.3), which concludes the proof.
q.e.d.

Lemma 3.3. Let (v, z, p, y) be the solution of system (2.1). Then the functional

L1 (t) := ρ

∫ L

0
vtvdx+ ρ1

2

∫ L

0
v2dx,

satisfies

L′
1 (t) ≤ −α1

2

∫ L

0
v2

xdx+ γ2β2

α1

∫ L

0
(γvx − px)2

dx+ ρ2
2C

α1

∫ L

0
z2(x, 1, t)dx+ ρ

∫ L

0
v2

t dx, (3.10)

where C is some positive constant.

Proof. Differentiating L1 (t) with respect to t, using (2.1)1 and integrating by parts over (0, L) and
using the boundary conditions in (2.1), we have

L′
1 (t) = −α1

∫ L

0
v2

xdx− γβ

∫ L

0
(γvx − px) vxdx− ρ2

∫ L

0
z(x, 1, t)vdx+ ρ

∫ L

0
v2

t dx. (3.11)

Using Young’s and Poincaré’s inequalities, we obtain

−γβ
∫ L

0
(γv − p)x vxdx ≤ γ2β2

α1

∫ L

0
(γvx − px)2

dx+ α1

4

∫ L

0
v2

xdx, (3.12)

−ρ2

∫ L

0
z(x, 1, t)vdx ≤ ρ2

2C

α1

∫ L

0
z2(x, 1, t)dx+ α1

4

∫ L

0
v2

xdx. (3.13)

Estimate (3.10) follows by substituting (3.12) and (3.13) into (3.11). q.e.d.
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Lemma 3.4. Let (v, z, p, y) be the solution of system (2.1). Then the functional

L2 (t) := −µ
∫ L

0
pt (γv − p) dx,

satisfies, the estimate

L′
2(t) ≤ −β

2

∫ L

0
(γvx − px)2

dx+
(
µ+ Cµ2

1
β

+ γ2µ2

4

) ∫ L

0
p2

tdx

+Cµ2
2

β

∫ L

0
y2(x, 1, t)dx+

∫ L

0
v2

t dx, (3.14)

where C is some positive constant.

Proof. By differentiating L2, using (2.1)2 and integrating by parts over (0, L) and using the bound-
ary conditions in (2.2), we obtain

L′
2(t) = −β

∫ L

0
(γvx − px)2

dx+ µ

∫ L

0
p2

tdx+ µ1

∫ L

0
pt (γv − p) dx

+µ2

∫ L

0
y(x, 1, t) (γv − p) dx− γµ

∫ L

0
ptvtdx. (3.15)

Using Young’s and Poincaré’s inequalities, we get for

µ1

∫ L

0
pt (γv − p) dx ≤ Cµ2

1
β

∫ L

0
p2

tdx+ β

4

∫ L

0
(γv − p)2

x dx, (3.16)

µ2

∫ L

0
y(x, 1, t) (γv − p) dx ≤ Cµ2

2
β

∫ L

0
y2(x, 1, t)dx+ β

4

∫ L

0
(γv − p)2

x dx, (3.17)

−γµ
∫ L

0
ptvtdx ≤ γ2µ2

4

∫ L

0
p2

tdx+
∫ L

0
v2

t dx. (3.18)

Substituting (3.16)-(3.18) into (3.15), we obtain (3.14). q.e.d.

Lemma 3.5. Let (v, z, p, y) be the solution of system (2.1). Then the functions

L3(t) :=
∫ L

0

∫ 1

0
e−2τϱz2 (x, ϱ, t) dϱdx, L4(t) :=

∫ L

0

∫ 1

0
e−2σϱy2 (x, ϱ, t) dϱdx,

satisfies

L′
3(t) ≤ −n1

∫ L

0

∫ 1

0
z2 (x, ϱ, t) dϱdx− n2

∫ L

0
z2 (x, 1, t) dx+ 1

τ

∫ L

0
v2

t dx, (3.19)

L′
4(t) ≤ −m1

∫ L

0

∫ 1

0
y2 (x, ϱ, t) dϱdx−m2

∫ L

0
y2 (x, 1, t) dx+ 1

σ

∫ L

0
p2

tdx, (3.20)
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Proof. Differentiating L3, and using the fifth equation in (2.1), we obtain

L′
3(t) = − 2

τ

∫ L

0

∫ 1

0
e−2τϱzϱ(x, ϱ, t)z (x, ϱ, t) dϱdx

= − 1
τ

∫ L

0

∫ 1

0

d

dϱ

(
e−2τϱz2(x, ϱ, t)

)
dϱdx− 2

∫ L

0

∫ 1

0
e−2τϱz2(x, ϱ, t)dϱdx

≤ −n1

∫ L

0

∫ 1

0
z2 (x, ϱ, t) dϱdx− n2

∫ L

0
z2 (x, 1, t) dx+ 1

τ

∫ L

0
v2

t dx.

Recalling e−s ≤ e−sσ ≤ 1, for all σ ∈ [0, 1], and −e−s ≤ −e−τ2 , for all s ∈ [τ1, τ2], we obtain (3.19).
Similarly, we prove (3.20). q.e.d.

Next, we define a Lyapunov functional L and show that it is equivalent to the energy functional E.

Lemma 3.6. For N sufficiently large, the functional defined by

L (t) := NE (t) + L1(t) + ℓL2(t) + L3(t) + L4(t), ∀t ≥ 0, (3.21)

where ℓ is positive real number to be chosen appropriately later, satisfies

c1E (t) ≤ L (t) ≤ c2E (t) , ∀t ≥ 0, (3.22)

for two positive constants c1 and c2.

Proof. Let
L (t) := L1(t) + ℓL2(t) + L3(t) + L4(t),

we obtain

|L (t)| ≤ ρ

∫ L

0
|vtv| dx+ ρ1

2

∫ L

0
v2dx+ µℓ

∫ L

0
|pt (γv − p)| dx

+
∫ L

0

∫ 1

0

∣∣e−2τϱ
∣∣ z2 (x, ϱ, t) dϱdx+

∫ L

0

∫ 1

0

∣∣e−2σϱ
∣∣ y2 (x, ϱ, t) dϱdx.

Exploiting Young’s, Poincaré’s, Cauchy-Schwarz inequalities, (3.1), and the fact that e−2τϱ ≤ 1,
e−2σϱ ≤ 1 for all ϱ ∈ [0, 1], we obtain

|L (t)| ≤ c

∫ L

0

[
v2

t + p2
t + v2

x + (γvx − px)2
]
dx

+c
∫ L

0

[∫ 1

0
z2 (x, ϱ, t) dϱ+

∫ 1

0
y2 (x, ϱ, t) dϱ

]
dx

≤ cE (t) .

Consequently, |L(t) −NE(t)| ≤ cE(t), which yields

(N − c)E (t) ≤ L (t) ≤ (N + c)E (t) .

By choosing N large enough, we obtain estimate (3.22). q.e.d.
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Now, we prove the main result of this section.

Proof. (Of Theorem 3.1)
By differentiating (3.21) and recalling (3.3), (3.10), (3.14), (3.19) and (3.20), we obtain that

L′ (t) ≤ −
[
C1N − ρ− ℓ− 1

τ

] ∫ L

0
v2

t dx−
[
C2N −

(
µ+ Cµ2

1
β

+ γ2µ2

4

)
ℓ− 1

σ

] ∫ L

0
p2

tdx

−α1

2

∫ L

0
v2

xdx−
[
β

2 ℓ− γ2β2

α1

] ∫ L

0
(γv − p)2

x dx

−
[
C3N + n2 − ρ2

2C

α1

] ∫ L

0
z2 (x, 1, t) dx−

[
C4N +m2 − Cµ2

2
β

ℓ

] ∫ L

0
y2 (x, 1, t) dx

−n1

∫ L

0

∫ 1

0
z2 (x, ϱ, t) dϱdx−m1

∫ L

0

∫ 1

0
y2 (x, ϱ, t) dϱdx, (3.23)

At this point, we need to choose carefully our constants. We select ℓ large enough so that

ℓ >
2γ2β

α1
.

Once ℓ is fixed, we then choose N large enough such that

C1N − ρ− ℓ− 1
τ

> 0, C2N −
(
µ+ Cµ2

1
β

+ γ2µ2

4

)
ℓ− 1

σ
> 0,

C3N + n2 − ρ2
2C

α1
> 0, C4N +m2 − Cµ2

2
β

ℓ > 0,

Finally, we deduce that there exist positive constant c3 such that (3.23) becomes

L′ (t) ≤ −c3E(t), ∀t ≥ 0. (3.24)

Next, combining (3.22) and (3.24), we have

L′ (t) ≤ −η1L (t) , ∀t ≥ 0. (3.25)

where η1 = c3

c2
> 0, A simple integration of (3.25) over (0, t) yields

L (t) ≤ L (0) e−η1t, ∀t ≥ 0. (3.26)

At last, by combining (3.22) and (3.26) we obtain (3.2) with η0 = c2E (0)
c1

, which completes the
proof. q.e.d.
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