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Abstract

For an ideal a in a Noetherian ring R contained in the Jacobson radical of R, it is shown that
if M is a finitely generated a-relative Cohen-Macaulay R-module, then AnnR(Hcd(a,M)

a (M)) =
AnnR(M). As an application of this result, we show that if M is a finitely generated a-
relative Cohen-Macaulay filtered R-module with the cohomological dimension filtration M =
{Mi}0≤i≤c, then for each 0 ≤ i ≤ c, AnnR(Hi

a(M)) = AnnR(Mi/Mi−1), where c = cd(a, M).
These generalize the main results of [9, Theorem 3.3] and [5, Theorem 2.11]. Also, we shall
provide some new characterizations of the attached primes of top local cohomology module
H

cd(a,M)
a (M) and give a short proof of the main results of [1, Theorem 2.2] and [13, Theorem

2.7]. Finally, it is shown that if M and N are arbitrary R-modules (not necessarily finitely
generated) such that AttR(M) ⊆ AttR(N), then cd(a, R/ AnnR(M)) ≤ cd(a, R/ AnnR(N)).
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1 Introduction
Let R denote an arbitrary commutative Noetherian ring (with identity) and a an ideal of R. The
interesting notion of Cohen-Macaulay R-modules which is the most deep influential parts in com-
mutative algebra, has several nice extensions. The elegant concept of Cohen-Macaulay filtered
modules introduced by Stanley [17], over a standard graded k-algebra (k is a field), and Schenzel
[15] over a local ring. Specifically, for a finitely generated module M over a local ring (R,m),
Schenzel introduced the dimension filtration M = {Mi}d

i=0 of submodules of M ; which is defined
by the property that Mi is the biggest submodule of M such that dim Mi ≤ i, for all i = 0, 1, . . . , d,
where d = dim M . In this case, Schenzel has called M is a Cohen-Macaulay filtered (or sequen-
tially Cohen-Macaulay) module, whenever Mi/Mi−1 is either zero or a Cohen-Macaulay module of
dimension i, for all 0 ≤ i ≤ d.

More recently the authors and M. Sedghi in [4] introduced the notion of cohomological dimension
filtration of M , which is a generalization of the concept of dimension filtration introduced by
Schenzel. Namely, for an ideal a of R and a finitely generated R-module M with finite cohomological
dimension c := cd(a, M), let Mi denote the largest submodule of M such that cd(a, Mi) ≤ i, for all
0 ≤ i ≤ c. Because of the maximal condition of a Noetherian R-module, it easily follows from [8,
Theorem 2.2] that the submodules Mi of M are well-defined and that Mi−1 ⊆ Mi for all 1 ≤ i ≤ c.

On the other hand, Zakeri and Zargar in [18] introduced the notion of a relative Cohen-Macaulay
module. A finitely generated R-module M is said to be a relative Cohen-Macaulay w.r.t. a (or
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a-relative Cohen-Macaulay), if there is precisely one non-vanishing local cohomology module of M .

Now, the above concepts motivate the following definition:

Definition 1.1. Let R be a Noetherian ring, a an ideal of R and let M be a finitely generated R-
module with the cohomological dimension filtration M = {Mi}0≤i≤c, where c = cd(a, M). We say
that M is an a-relative Cohen-Macaulay filtered or (sequentially a-relative Cohen-Macaulay) module,
whenever Mi := Mi/Mi−1 is either zero or an a-relative Cohen-Macaulay module of cohomological
dimension i, for all 1 ≤ i ≤ c.

One purpose of the present paper is to determine the annihilators of local cohomology modules
Hi

a(M) (i ∈ N0), whenever M is an a-relative Cohen-Macaulay filtered module. Namely, as a
main result in the Section 2, first we determine the annihilator of the top local cohomology module
H

cd(a,M)
a (M). More precisely, we shall prove the following theorem:

Theorem 1.2. Let R be a Noetherian ring and a an ideal of R contained in its Jacobson radical.
Let M be an a-relative Cohen-Macaulay R-module. Then

AnnR(Hcd(a,M)
a (M)) = AnnR(M).

The result in Theorem 1.2 is proved in Proposition 2.3. As a consequence of Theorem 1.2 we
show that if M is an a-relative Cohen-Macaulay filtered R-module with the cohomological dimension
filtration M = {Mi}0≤i≤c, then for each 0 ≤ i ≤ c

AnnR(Hi
a(M)) = AnnR(Mi/Mi−1).

These generalize the main results of [9, Theorem 3.3] and [5, Theorem 2.11].
One of the basic problems concerning local cohomology is to finding the set of attached primes

of the top local cohomology module H
cd(a,M)
a (M). In the Section 3, we will provide several charac-

terizations of the attached primes of top local cohomology module H
cd(a,M)
a (M) and we present a

much shorter proof of the main results of [1, Theorem 2.2] and [13, Theorem 2.7]. More precisely,
we shall show the following:

Theorem 1.3. Let R be a Noetherian ring and a an ideal of R. Let M be a finitely generated
R-module such that c := cd(a, M) is finite. Then

AttR Hc
a(M) = {p ∈ Supp M | AnnR(Hc

a(M/pM)) = p}
= {p ∈ Supp M | AnnR(Hc

a(R/p)) = p}
= {p ∈ Supp M | p = max(B(a, p; M))}
= {p ∈ Supp M | p = max(B(a, p; R/ AnnR M))}.

Here B(a, p; M) := {c| c is an ideal of R and Hc
a(M/cM) ∼= Hc

a(M/pM)}.

The result in Theorem 1.3 is proved in Theorem 3.3. As a consequence of Theorem 1.3, we give
a short proof of the main result of [13, Theorem 2.2]. Namely, we show that:

Corollary 1.4. If M is a finitely generated module over a Noetherian ring, then every maximal
element of the set {p ∈ Supp M | cd(a, R/p) = cd(a, M)} (with respect to inclusion) belongs to
AttR H

cd(a,M)
a (M)
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Finally, in this section, we prove the following theorem that improves the main result of [5,
Theorem 3.13]. Note that the R-module M may not be finitely generated.

Theorem 1.5. Let R be a Noetherian ring and a an ideal of R. Let M be an arbitrary R-module
(not necessarily finitely generated) such that cd(a, R/ AnnR M) := c is finite. Then

AttR Hc
a(M) ⊆ {p ∈ AttR M | cd(a, R/p) = c}.

Recall that a prime ideal p of R is said to be an attached prime of an R-module L, if there exists
a submodule K of L such that p = AnnR(L/K) or equivalently p = AnnR(L/pL). We denote by
AttR L ( resp. mAttR L) the set of attached primes of L (resp. the set of minimal attached primes
of L).

When L is representable in the sense of [10] (e.g. Artinian or injective), our definition of AttR L
coincides with that of Macdonald and Sharp’s definition (see [10] or [16]). Also, in this section as
an extension of [8, Theorem 2.2], we show the following result.

Theorem 1.6. Let R be a Noetherian ring and a an ideal of R. Let M and N be two arbitrary
R-modules (not necessarily finitely generated) such that AttR(M) ⊆ AttR(N). Then

cd(a, R/ AnnR(M)) ≤ cd(a, R/ AnnR(N)).

One of our tools for proving Theorem 1.6 is the following.

Proposition 1.7. Let a denote an ideal of a Noetherian ring R and let M be an arbitrary R-module
(not necessarily finitely generated) such that cd(a, R/ AnnR M) is finite. Then

cd(a, R/ AnnR M) = sup{cd(a, R/p)| p ∈ AttR M}.

Throughout this paper, R will always be a commutative Noetherian ring with non-zero identity
and a will be an ideal of R. For any R-module L, the ith local cohomology module of L with
support in V (a) is defined by

Hi
a(L) := lim−→

n≥1
Exti

R(R/an, L);

and the cohomological dimension of L with respect to a is defined as

cd(a, M) := sup{i ∈ Z| Hi
a(M) ̸= 0}.

For any unexplained notation and terminology we refer the reader to [6] and [11].

2 Relative Cohen-Macaulay filtered modules
The main aim of this section is to determine the annihilators of local cohomology modules Hi

a(M)
(i ∈ N0), whenever M is an a-relative Cohen-Macaulay filtered module. The main result of this
section are Proposition 2.3 and Theorem 2.6. Firstly, we will determine the annihilator of the top
local cohomology module H

cd(a,M)
a (M). The following lemmas are needed in the proof of the main

results.

Lemma 2.1. Let R be a Noetherian ring and a an ideal of R. Let M and N be finitely generated
R-modules such that Supp N ⊆ Supp M . Then

cd(a, N) ≤ cd(a, M).
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Proof. See [8, Theorem 2.2]. q.e.d.

Before bringing the next lemma which is a characterization of an a-relative Cohen-Macaulay
filtered module, we recall that TR(a, M) denotes the largest submodule of M such that

cd(a, TR(a, M)) < cd(a, M).

It is easily follows from Lemma 2.1 that

TR(a, M) =
⋃

{N | N ≤ M and cd(a, N) < cd(a, M)}.

Lemma 2.2. Let R be a Noetherian ring and M a non-zero finitely generated R-module. Then,
for any ideal a of R contained in its Jacobson radical, the following conditions are equivalent:

(i) M is an a-relative Cohen-Macaulay module.
(ii) M is an a-relative Cohen-Macaulay filtered module and TR(a, M) = 0.

Proof. In order to show the implication (i) =⇒ (ii), suppose that M is an a-relative Cohen-Macaulay
module. It is clear that M is an a-relative Cohen-Macaulay filtered module. Now, for the proof
of TR(a, M) = 0, suppose the contrary is true. Then there exists p ∈ AssR(TR(a, M)); and so in
view of [12, Proposition 2.11] we have cd(a, R/p) = cd(a, M). Hence [14, Corollary 2.2] yields that
cd(a, TR(a, M)) = cd(a, M), which is a contradiction.

In order to prove the implication (ii) =⇒ (i), suppose that M is an a-relative Cohen-Macaulay
filtered module with the cohomological dimension filtration M = {Mi}0≤i≤c. Then, in view of [4,
Proposition 2.6(i)], we have cd(a, Mc−1) ≤ c − 1, for all p ∈ AssR Mc−1, and so cd(a, Mc−1) < c.
Hence Mc−1 ⊆ TR(a, M)), and thus Mc−1 = 0. Therefore M is an a-relative Cohen-Macaulay
module, as required. q.e.d.

The following proposition which is an extension of the main results of [9, Theorem 3.3] and [5,
Theorem 2.11], will be needed in the proof of Theorem 2.6.

Proposition 2.3. Let R be a Noetherian ring and a an ideal of R contained in its Jacobson radical.
Let M be an a-relative Cohen-Macaulay R-module. Then

AnnR(Hcd(a,M)
a (M)) = AnnR(M).

Proof. Put c := cd(a, M). Then as AnnR(M) ⊆ AnnR(Hc
a(M)) it is enough for us to show that

AnnR(Hc
a(M)) ⊆ AnnR(M). To do this, let x ∈ R such that xHc

a(M) = 0, and we show that
xM = 0. Our strategy is to show that Hc

a(xM) = 0. To do this, it is sufficient for us to show that
Hc

aRp
(xMp) = 0, for all p ∈ Spec R. Note that we may assume that p ∈ Supp M ∩ V (a). Now, if

cd(aRp, Mp) < c, then in view of Lemma 2.1, cd(aRp, xMp) < c and the assertion holds. Hence we
may assume that cd(aRp, Mp) = c. Then, as

c = grade(a, M) ≤ grade(aRp, Mp) ≤ cd(aRp, Mp),

it follows that Mp is an aRp-relative Cohen-Macaulay Rp-module. Therefore in view of [5, Theorem
2.11] we have Hc

aRp
(xMp) = 0. Consequently, Hc

a(xM) = 0. Hence cd(a, xM) < c, and so as by
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Lemma 2.2, TR(a, M) = 0, we deduce that xM = 0, as required. q.e.d.

Before bringing the next result recall that the finiteness dimension fa(M) of M relative to a is
defined as:

fa(M) := inf{i ∈ N0| Hi
a(M) is not finitely generated},

(see [6, Definition 9.1.3]).

Proposition 2.4. Let R be a Noetherian ring and a an ideal of R. Let M be an a-relative Cohen-
Macaulay filtered R-module with the cohomological dimension filtration M = {Mi}0≤i≤c. Set
g := grade(a, M) and c := cd(a, M). Then the following conditions hold:

(i) Hi
a(M/Mj) = 0, for all 0 ≤ i ≤ j.

(ii) Hi
a(M/Mj) ∼= Hi

a(Mi/Mi−1), for all 0 ≤ j < i.
(iii) Hi

a(M) ∼= Hi
a(Mi/Mi−1), for all i ≥ 1.

(iv) Hi
a(M) ∼= Hi

a(Mj), for all 0 ≤ i ≤ j.
(v) grade(a, Mj) = g, for all j ≥ g.
(vi) Mg is an a-relative Cohen-Macaulay module and cd(a, Mg) = g.
(vii) Mi = 0, for all 0 ≤ i ≤ g − 1, whenever a is contained in the Jacobson radical of R.
(viii) fa(M) = g, whenever g ≥ 1.

Proof. In order to show (i), we argue by descending induction on j. If j = c the assertion is
clear. Suppose now that k is a non-negative integer such that 0 ≤ i ≤ k and we have proved that
Hi

a(M/Mj) = 0 for each j ≥ k + 1. Hence by inductive assumption we have Hi
a(M/Mk+1) = 0.

On the other hand, since the R-module Mk+1/Mk is a-relative Cohen-Macaulay such that
grade(a, Mk+1/Mk) = k + 1 it follows from 0 ≤ i ≤ k that Hi

a(Mk+1/Mk) = 0. Now, by using
the exact sequence

0 −→ Mk+1/Mk −→ M/Mk −→ M/Mk+1 −→ 0,

we deduce that Hi
a(M/Mk) = 0, and this completes the inductive step.

Also, in order to prove (ii), we argue by descending induction on j. We can (and do) assume
that c ≥ 1. If j = c − 1 then i = c, and so the assertion is clear. Now, let k be a non-negative
integer such that 0 ≤ k < i and we have proved that

Hi
a(M/Mj) ∼= Hi

a(Mi/Mi−1)

for each j ≥ k + 1. Since k < i, there are two cases to consider:

Case 1. If i > k + 1, then in view of the inductive assumption we have

Hi
a(M/Mk+1) ∼= Hi

a(Mi/Mi−1),

and since cd(a, Mk+1/Mk) = k + 1, it follows that

Hi
a(Mk+1/Mk) = Hi+1

a (Mk+1/Mk) = 0.

Therefore, using the exact sequence

0 −→ Mk+1/Mk −→ M/Mk −→ M/Mk+1 −→ 0,
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we get Hi
a(M/Mk) ∼= Hi

a(Mi/Mi−1), as required.
Case 2. If i = k + 1, then in view of the part (i), we have

Hk
a (M/Mk+1) = Hk+1

a (M/Mk+1) = 0.

Now, from the exact sequence

0 −→ Mk+1/Mk −→ M/Mk −→ M/Mk+1 −→ 0,

we obtain that
Hk+1

a (M/Mk) ∼= Hk+1
a (Mk+1/Mk),

and this completes the proof of (ii).

For prove (iii), let i ≥ 1. Then by (ii) we have

Hi
a(M/M0) ∼= Hi

a(Mi/Mi−1).

Now, the assertion follows easily from the exact sequence

0 −→ M0 −→ M −→ M/M0 −→ 0.

Also, (iv) follows easily from (i) and the exact sequence

0 −→ Mj −→ M −→ M/Mj −→ 0.

In order to show (v), let g ≤ j. Then, it follows from (iv) that Hg
a (Mj) ∼= Hg

a (M) ̸= 0 and also,
for each i < g we have Hi

a(Mj) ∼= Hi
a(M) = 0. So grade(a, Mj) = g, for all j ≥ g.

According to (v) we have grade(a, Mg) = g. On the other hand we know that grade(a, Mg) ≤
cd(a, Mg) ≤ g. So, the assertion (vi) follows.

By (vi) and Lemma 2.2, we have Mg−1 = TR(a, Mg) = 0. So, the assertion (vii) follows.
According to (iv) we have Hg

a (M) ∼= Hg
a (Mg). On the other hand by (v), cd(a, Mg) = g. Thus

Hg
a (M) is not finitely generated. So, the assertion (viii) follows. q.e.d.

Corollary 2.5. Let R be a Noetherian ring and a an ideal of R contained in its Jacobson radical.
Let M be an a-relative Cohen-Macaulay filtered module with the cohomological dimension filtration
M = {Mi}0≤i≤c. Suppose that cd(a, M) := c and grade(a, M) = 0. Then

AnnR(H0
a(M)) = AnnR(M0).

Proof. In view of Proposition 2.4 (iv) we have H0
a(M) ∼= H0

a(M0). Now, the assertion follows from
Proposition 2.3. q.e.d.

We are now in a position to state and prove the second main result of this section.

Theorem 2.6. Let R be a Noetherian ring and a an ideal of R contained in its Jacobson radical. Let
M be an a-relative Cohen-Macaulay filtered R-module with the cohomological dimension filtration
M = {Mi}0≤i≤c. Set c := cd(a, M) and M−1 := 0. Then for all 0 ≤ i ≤ c,

AnnR(Hi
a(M)) = AnnR(Mi/Mi−1).
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Proof. If i = 0, the assertion follows by Corollary 2.5. Now, let 1 ≤ i ≤ c. Then in view of
Proposition 2.4 (iii), we have Hi

a(M) ∼= Hi
a(Mi/Mi−1). Thus, when Mi = Mi−1, there is nothing to

prove. We therefore suppose henceforth in this proof that Mi/Mi−1 is a non-zero relative Cohen-
Macaulay module with respect to a such that cd(a, Mi/Mi−1) = i. Now, the assertion follows from
Proposition 2.3. q.e.d.

Corollary 2.7. Let R be a Noetherian a-relative Cohen-Macaulay filtered ring, where a is an ideal
of R contained in its Jacobson radical. Then

AnnR(Hcd(a,R)
a (R)) = TR(a, R).

Proof. The assertion follows by Theorem 2.6. q.e.d.

Corollary 2.8. Let R be a Noetherian ring and a an ideal of R contained in its Jacobson radi-
cal. Let M be an a-relative Cohen-Macaulay filtered R-module with the cohomological dimension
filtration M = {Mi}0≤i≤c. Set g := grade(a, M) and c := cd(a, M). Then

AnnR(Hg
a (M)) = AnnR(Mg).

Proof. If g = 0, the assertion follows by Corollary 2.5. So, we may assume that g ≥ 1. Then, the
result follows from Theorem 2.6 and Proposition 2.4(vii). q.e.d.

3 Attached prime ideals
In this section we will generalize the main results of [5, Theorem 3.13] and [8, Theorem 2.2]. Also,
we present a much shorter proof of the main theorems of [1, Theorem 2.2] and [13, Theorems 2.2
and 2.7]. To this end, we begin:

Definition 3.1. Let a and b be two ideals of a Noetherian ring R and suppose that M is a finitely
generated R-module. We define

B(a, b; M) := {c| c is an ideal of R and H
cd(a,M)
a (M/cM) ∼= H

cd(a,M)
a (M/bM)}.

Note that the set B(a, b; M) is non-empty and the Noetherianness of R ensures that it has a
maximal element. In fact the following proposition shows that this set has a largest element.

Proposition 3.2. Let a and b be ideals of a Noetherian ring R and suppose that M is a finitely
generated R-module. Then the sets B(a, b; M) and

Σ := {c| c is an ideal of R and H
cd(a,M)
a (M/(c + b)M) ∼= H

cd(a,M)
a (M/bM)}.

have the largest elements of the same with respect to inclusion.

Proof. In view of [5, Theorem 2.6] the set Σ has a largest element with respect to inclusion, J say.
As b ∈ Σ, it follows that b ⊆ J , and so

H
cd(a,M)
a (M/bM) ∼= H

cd(a,M)
a (M/JM),
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note that J ∈ Σ. Hence J ∈ B(a, b; M). Now, we show that J is a largest element of B(a, b; M).
To this end, let c be an arbitrary element of B(a, b; M). Then, in view of definition we have

H
cd(a,M)
a (M/cM) ∼= H

cd(a,M)
a (M/bM).

Thus c ⊆ AnnR(Hcd(a,M)
a (M/bM)), and so we deduce that

H
cd(a,M)
a (M/bM) ∼= H

cd(a,M)
a (M/bM) ⊗R R/c ∼= H

cd(a,M)
a (M/(c + b)M).

Consequently c ∈ Σ, and thus c ⊆ J . That is, J is the largest element of B(a, b; M), as
required. q.e.d.

We are now ready to state and prove the first main result of this section, which gives us four
characterizations of the attached primes of top local cohomology module AttR H

cd(a,M)
a (M). The

part (ii) presents a much shorter proof of the main results of [1, Theorem 2.2] and [13, Theorem
2.7].

Following we shall use max(B(a, b; M)) to denote the largest element of B(a, b; M).

Theorem 3.3. Let R be a Noetherian ring and a an ideal of R. Let M be a finitely generated
R-module such that c := cd(a, M) is finite. Then the following statements hold:

(i) AttR Hc
a(M) = {p ∈ Supp M | AnnR(Hc

a(M/pM)) = p}.
(ii) AttR Hc

a(M) = {p ∈ Supp M | AnnR(Hc
a(R/p)) = p}.

(iii) AttR Hc
a(M) = {p ∈ Supp M | p = max(B(a, p; M))}.

(iv) AttR Hc
a(M) = {p ∈ Supp M | p = max(B(a, p; R/ AnnR(M))}.

Proof. The statement (i) follows from the fact that

Hc
a(M/pM) ∼= Hc

a(M)/pHc
a(M).

In order to show (ii), let p ∈ AttR Hc
a(M). Then in view of (i) we have p = AnnR(Hc

a(M/pM)).
On the other hand, as

p ⊆ AnnR(Hc
a(R/p)) ⊆ AnnR(Hc

a(M/pM)),

it follows that AnnR(Hc
a(R/p)) = p. Conversely, suppose p ∈ Supp M and that p = AnnR(Hc

a(R/p)).
Then p ∈ AttR Hc

a(R/p) and cd(a, R/p) = c. Moreover, as

Hc
a(M/pM) ∼= Hc

a(R/p) ⊗R M,

it follows from [2, Lemma 2.11] that

AttR Hc
a(M/pM) = AttR Hc

a(R/p) ∩ Supp M.

Now, it easily follows from definition that p ∈ AttR Hc
a(M), as required.

To prove part (iii), let p ∈ AttR Hc
a(M). Then, in view of (i), we have p ∈ Supp M and

AnnR(Hc
a(M/pM)) = p. Now, assume that b is an arbitrary element of B(a, p; M). Then we have

Hc
a(M/pM) ∼= Hc

a(M/bM).,
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and so it follows that b ⊆ AnnR Hc
a(M/pM), and so b ⊆ p. Therefore p = max(B(a, p; M)). In

order to show the opposite inclusion use Proposition 3.2, [5, Theorem 2.6] and part (i).
Finally, in order to show (iv), let p ∈ AttR Hc

a(M). Then, in view of (ii), we have p ∈ Supp M
and AnnR(Hc

a(R/p)) = p. Now, for any b ∈ B(a, p; R/ AnnR(M)) we have

Hc
a(R/p) ∼= Hc

a(R/b + AnnR(M)),

and so b ⊆ AnnR Hc
a(R/p) = p. Hence p = max(B(a, p; R/ AnnR(M))).

The opposite inclusion follows from Proposition 3.2, [5, Theorem 2.6] and part (ii). q.e.d.

As a consequence of Theorem 3.3, the following corollary, which shows that every maximal
element of the set {p ∈ Supp M | cd(a, R/p) = cd(a, M)} (with respect to inclusion) is contained in
AttR H

cd(a,M)
a (M), gives a short proof of the main result of [13, Theorem 2.2].

Corollary 3.4. Let R be a Noetherian ring and a an ideal of R. Let M be a finitely gen-
erated R-module such that c := cd(a, M) is finite. Then every maximal element of the set
{p ∈ Supp M | cd(a, R/p) = c} (with respect to inclusion) belongs to AttR H

cd(a,M)
a (M)

Proof. Let p be a maximal element of {p ∈ Supp M | cd(a, R/p) = c}. According to Theorem
3.3(iv) it is enough to show that p is a largest member of B(a, p; R/ AnnR(M)). To this end, let
b := max B(a, p; R/ AnnR(M)). As p ∈ B(a, p; R/ AnnR(M)), it follows that p ⊆ b. On the other
hand, since Hc

a(R/p) ∼= Hc
a(R/b) we deduce that cd(a, R/b) = c, and so there exists q ∈ V (b) such

that cd(a, R/q) = c. Consequently, the maximality of p yields that p = q, and thus p = b. This
completes the proof. q.e.d.

The following theorem improves [5, Theorem 3.13].

Theorem 3.5. Let R be a Noetherian ring and a an ideal of R. Let M be an arbitrary R-module
(not necessarily finitely generated) such that cd(a, R/ AnnR M) := c is finite. Then

AttR Hc
a(M) ⊆ {p ∈ AttR M | cd(a, R/p) = c}.

Proof. Since by [7, Lemma 1.2], cd(a, M) ≤ cd(a, R/ AnnR M), we can (and do) assume that
cd(a, M) = c. Now, let p ∈ AttR Hc

a(M). By [5, Theorem 3.13], it is enough to show that p ∈
AttR M . To do this it is sufficient for us to show that AnnR(M/pM) = p. Since p ⊆ AnnR(M/pM),
it is enough to show that for each x ∈ AnnR(M/pM) we have x ∈ p. Since x ∈ AnnR(M/pM),
so x ∈ AnnR Hc

a(M/pM). Thus x ∈ AnnR(Hc
a(M)/pHc

a(M)). As AnnR(Hc
a(M)/pHc

a(M)) = p, it
follows that x ∈ p, as required. q.e.d.

Lemma 3.6. Let R be a Noetherian ring and let a be an ideal of R. Let M be an arbitrary
R-module (not necessarily finitely generated) such that cd(a, R/ AnnR M) := c is finite. Then

c = sup{cd(a, R/p)| p ∈ AttR M}.

Proof. Let p ∈ AttR M . Then we have obviously V(p) ⊆ V(AnnR M) and so Supp(R/p) ⊆
Supp(R/ AnnR M). Hence in view of Lemma 2.1 we have

cd(a, R/p) ≤ cd(a, R/ AnnR M),
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and so
sup{cd(a, R/p)| p ∈ AttR M} ≤ c.

On the other hand, according to [7, Theorem 1.3], there is exists p ∈ mAssR(R/ AnnR M) such
that cd(a, R/p) = c. Therefore, in view of [3, Lemma 3.2], there is a p ∈ mAttR M such that
cd(a, R/p) = c. Thus

c ≤ sup{cd(a, R/p)| p ∈ AttR M},

and this completes the proof. q.e.d.

Remark 3.7. Let R be a Noetherian ring, a an ideal of R, and let M be a finitely generated
R-module. Then it is easily follows from [11, Exercise 2.2] that SuppR(M) = AttR(M). Hence, in
view of Lemma 2.1 we have cd(a, M) = cd(a, R/ AnnR(M)).

Now we ready to state the final result of this section which improves [8, Theorem 2.2].

Theorem 3.8. Let R be a Noetherian ring and a an ideal of R. Let M and N be two arbitrary
R-modules (not necessarily finitely generated) such that AttR(M) ⊆ AttR(N). Then

cd(a, R/ AnnR(M)) ≤ cd(a, R/ AnnR(N)).

Proof. The assertion follows from Lemma 3.6. q.e.d.
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