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Abstract

In this paper, we investigate scenarios in which the power of a transcendental entire function
of weight two shares a value with its differential-difference polynomial. Our results extend and
generalize recent findings by Adud and Chakraborty.

2020 Mathematics Subject Classification. 30D30. 30D20, 30D35.
Keywords. value sharing, weighted sharing, shift, difference polynomial.

1 Introduction
In this paper, it’s assumed that the readers have a basic understanding of the fundamental principles
and key theorems in Nevanlinna theory ([12]). A meromorphic function f can be either analytic or
have at most countable number of poles in the complex plane. If f has no poles, then it can be
extended to an entire function. The order and hyper order of a meromorphic function f is denoted
by ρ(f) and ρ2(f) respectively. The hyper order is defined as follow:

ρ2(f) := lim sup
r→∞

log log T (r, f)
log r

.

Consider two non-constant meromorphic functions f and g defined on the complex plane C, and
b ∈ C∪{∞}. When we say that f and g share the value b CM ( counting multiplicities), it indicates
that f − b and g − b are identical zeros with the same multiplicities. Besides that if f and g share
the value b IM ( ignoring multiplicities), it implies that f − b and g − b have same number of zeros
without considering their multiplicities.

A “shift of f(z)” refers to a function f(z+c), where c is non zero complex constant. A polynomial
that involves f(z), it’s derivatives, or shifts is termed as a “differential-difference polynomial”. A
complex homogeneous differential-difference polynomials of f(z) can be written as

ω(f) =
t∑

v=1
dv(f(v)(z + τv))n +

s∑
k=1

lk(f(z + σk))n
,

where n ∈ N, t, s ∈ N and τv, σk are the complex constants and dv, lk are non-zero constants.
In the realm of the uniqueness theory of meromorphic functions, Rolf Nevanlinna’s two signifi-

cant contributions are the five value theorem and the four value theorem. The five value theorem
asserts that if two non-constant meromorphic functions f and g share five distinct values across the
extended complex plane IM, then f ≡ g. Similarly if two meromorphic functions f and g share four
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distinct values in the extended complex plane CM, then f ≡ T ◦ g, where T is a Möbius transforma-
tion.

Later, in ([8]), Gundersen improved the “4 CM” present in the four value theorem to “2 CM +
2 IM”. Moreover, Gundersen ([7]), showed that “4 CM” cannot be related to “4 IM”, while “1 CM
+ 3 IM” remains an open problem till today.
For the uniqueness of the entire functions, if we consider a special situation where g is the first
derivative of f, one usually needs sharing of only two values CM for their uniqueness. In 1977, Rubel
and Yang ([18]) first showed that if a non-constant entire function f and its derivative f′ share two
distinct values a, b CM, then f ≡ f′.

In 1979, Mues and Steinmetz ([17]) observed that in Rubel and Yang’s result, the CM sharing
can be further relaxed to IM sharing. They proved that if a non-constant entire function f and
its derivative f′ share two distinct values a, b IM, then f ≡ f′. It is well known that in Rubel and
Yang’s result, the two value sharing can not be further relaxed. We recall the following example.
Let

f(z) = eez

∫ z

0
e−et

(1 − et)dt.

Here, one can check that f and f′ share 1 CM, but (f′ − 1) = ez(f− 1). In this connection, we recall
a famous conjecture proposed by R. Brück ([2]).

Conjecture. Let f be an entire function and

ρ2(f) := lim sup
r→∞

log log T (r, f)
log r

be the hyper-order of f such that ρ2(f) < ∞ and is not a positive integer. Let a ∈ C. If f and f′

share the value a CM, then
f′ − a

f − a
= c,

where c is a non-zero constant.

Now we discuss some well known definitions from the literature ([12]):

Definition 1.1. Let f be an entire function. If there exists a positive number ρ such that |f(z)| <
erρ for |z| = r > r0. If this inequality is true for a certain ρ then it is true for ρ′ > ρ, thus there
exists an infinite number of ρ > 0 satisfying the inequality.
The lower bound of these ρ is called the “order of f”.
The order of meromorphic function f is denoted by ρ(f) and defined as follow:

ρ(f) := lim sup
r→∞

log T (r, f)
log r

.

Definition 1.2. We denote by N(r, b; f| = 1) the counting function of simple b points of f.

Definition 1.3. We denote by N(r, ∞; f| = 1) the counting function of simple poles of f.

Definition 1.4. If m be a positive integer, we denoted by N(r, b; f| ≥ m) the counting function of
those b points of f whose multiplicities are greater than or equal to m, where each b point is counted
only one time.
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Definition 1.5. If m be a positive integer, we denoted by N(r, ∞; f| ≥ m) the counting function
of poles of f whose multiplicities are greater than or equal to m, where each pole is counted only
one time.

Definition 1.6. Let f and g share the value b IM. We denoted by N∗(r, b; f, g) the counting function
of those b points of f whose multiplicities are not equal to the multiplicities of the corresponding b
points of g, where each b points are counted only one time.
Obviously N∗(r, b; f, g) ≡ N∗(r, b; g, f).

Definition 1.7. Let f and g share the value b IM. We denoted by N∗(r, ∞; f, g) the counting
function of poles of f whose multiplicities are not equal to the multiplicities of the corresponding
poles of g, where each poles are counted only one time.
Obviously N∗(r, ∞; f, g) ≡ N∗(r, ∞; g, f).

Definition 1.8. We are denoting by N2(r, b; f) and is defined by

N2(r, b; f) = N(r, b; f) + N(r, b; f| ≥ 2).

Now, we introduce the concept of weighted value sharing. ([16])

Definition 1.9. Let m be a non negative integer or infinity. We denote Em(b, f) the set of all b
points of f where “b” point of multiplicity p is counted p times if p ≤ m and is counted p + 1 times
if p > m, for b ∈ C ∪ {∞}.

If Em(b, f) = Em(b, g), then we say that f, g share the value b with weight m. In other words
if f, g share the value b with weight m, then z0 is a zero of f − b with multiplicity p (≤ m) if and
only if z0 is a zero of g− b with multiplicity p (≤ m). Again z0 is a zero of f− b with multiplicity p
(> m) if and only if z0 is a zero of g − b with multiplicity q (> m) where p need not be equal to q.
We write f, g share (b, m) to mean that f, g share the value b with weight m.
Obviously if f, g share (b, m) then f, g share (b, n) for any integer n , 0 ≤ n < m. Also we denote
f, g share the value b IM or CM if and only if f, g share (b, 0) or (b, ∞) respectively.

Br¨uck’s himself verified the conjecture for a = 0 ([2]) and later Gundersen proved that the
conjecture is true for finite order entire functions ([9]). Recently, many researchers put their at-
tention to consider the complex difference equations and the uniqueness of transcendental entire
functions sharing values with their shifts. Using difference analogues of logarithmic derivative
lemma, Heittokangas et al. established the following theorems:

Theorem A. ([13]) Let f be a non constant meromorphic function such that its order of growth

ρ(f) := lim sup
r→∞

log T (r, f)
log r

< 2,

and let η be a nonzero complex number and a ∈ C. If f(z) and f(z + η) share the values a CM and
∞ CM, then

f(z + η) − a

f(z) − a
= c,

where c is a non-zero constant.
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In the same paper ([13]), Heittokangas et al. provided the example f(z) = ez2 + 1, which shows
that ρ(f) < 2 can’t be relaxed to ρ(f) ≤ 2.

Let f(z) be a nonconstant meromorphic function and η be a nonzero complex constant. Then
f(z + η) is called the shift of f(z). Also, ∆f(z) = f(z + η) − f(z) is called the difference operator of
f(z). Moreover,

∆0
ηf(z) := f(z), ∆1

ηf(z) := ∆f(z), and ∆k
ηf(z) := ∆k−1

η (∆1
η(f(z))), for k ∈ N, k ≥ 2.

In ([4]), Chen proved a difference analogue of the Brück conjecture as follows:

Theorem B. ([4]) Let f(z) be a transcendental entire function of finite order. Also, assume that
f has a finite Borel exceptional value α ∈ C. Let η be a nonzero complex constant such that
f(z + η) ̸≡ f(z). If ∆f(z) and f(z) share a finite value (a ̸≡ α) CM, then

∆f(z) − a

f(z) − a
= a

a − α
.

In ([15]), Huang and Zhang studied a parallel result corresponding to Theorem A as follows:

Theorem C. ([15]) Let f(z) be a transcendental entire function of order of growth,

ρ(f) := lim sup
r→∞

log T (r, f)
log r

< 2,

and let η be a nonzero complex number and k ∈ N. Assume that ∆k
ηf(z) ̸≡ 0. If f(z) and ∆k

ηf(z)
share 0 CM, then

∆k
c f(z) = cf(z),

for some non-zero constant c.

A homogeneous complex differential-difference polynomial of f(z) is a polynomial expression
that involves f(z), its derivatives, and shift operators.

A complex homogeneous differential-difference polynomials of f(z) can be written as

ω(f) =
t∑

v=1
dv(f(v)(z + τv))n +

s∑
k=1

lk(f(z + σk))n
,

where n ∈ N, t, s ∈ N and τv, σk are the complex constants and dv, lk are non-zero constants.
Recently Adud & Chakraborty ([1]) established the following result:

Theorem D. ([1]) Let f be a transcendental entire function and the order of f,

ρ(f) := lim sup
r→∞

log T (r, f)
log r

< 2,

and ω(f) be a complex homogeneous differential-difference polynomials defined by

ω(f) =
t∑

v=1
dv(f(v)(z + τv))n +

s∑
k=1

lk(f(z + σk))n
,

where n ∈ N, t, s ∈ N and τv, σk are the complex constants and dv, lk are non-zero constants.
If fn and ω(f) share 0 CM, then ω(f) = c fn for some non zero constant c.
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Question 1.1. What will occur if fn and ω(f) share a non-zero value CM in Theorem D? Addi-
tionally, is it possible to generalize the requirement of counting multiplicity sharing to the weighted
sharing?

In this paper, we will explore the aforementioned questions, specifically examining the case
where fn and ω(f) share the value a with weight two. Subsequently, we will investigate the scenario
where two differential- difference polynomials share a value a with weight two.

2 Main results
Theorem 2.1. Let f(z) be a transcendental entire function of finite order and ω(f) be defined by

ω(f) =
t∑

v=1
dv(f(v)(z + τv))n +

s∑
k=1

lk(f(z + σk))n, where n ≥ 2, t, s ∈ N, τv, σk are the complex

constants and dv, lk are non-zero constants, be a homogeneous differential-difference polynomial
with non zero constants. Let ω(f) and fn share the value a with weight two, where (a ̸= 0, ∞). If

T (r) > N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f),

where T (r)= max{T (r, fn), T (r, ω(f)}, then

ω(f) ≡ fn

or,
ω(f)fn ≡ 1.

Next, we will explore the case when two specific types of differential-difference polynomials share
a value with weight 2.

Theorem 2.2. Let f(z) be a transcendental entire function of finite order and ω(f) is defined by

ω(f) =
t∑

v=1
dv(f(v)(z + τv))n+

s∑
k=1

lk(f(z + σk))n and Ω(f) =
p∑

j=1
mj(f(j)(z + µj))n+

q∑
l=1

nl(f(z + γl))n,

where n (≥ 2), t, s, p, q ∈ N; τv, σk, µj , γl are constants and dv, lk, mj , nl are non-zero constants.
Let ω(f) and Ω(f) share the value a with weight two, where (a ̸= 0, ∞). If

T (r) > N2(r, 0; ω(f)) + N2(r, 0; Ω(f)) + S(r, f),

where T (r)= max{T (r, Ω(f)), T (r, ω(f)},
then

ω(f) ≡ Ω(f)
or,

ω(f)Ω(f) ≡ 1.

3 Some auxiliary Lemmas
The difference analogues of lemma of logarithmic derivative was proved by Chiang and Feng ([3]:
Corollary 2.5]) as well as Halburd and Korhonen ([10]: Theorem 2.1), ([11]: Theorem 5.6). This
lemma plays a crucial role in considering the difference analogues of Nevanlinna theory. Here, we
recall the different version of lemma of logarithmic derivative due to Halburd and Korhonen ([11]:
Theorem 5.6).
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Lemma 3.1. ([11]) Let f(z) be a transcendental meromorphic function of finite order. Then

m

(
r,
f(z + c)
f(z)

)
= S(r, f).

Lemma 3.2. ([3]: Corollary 2.5) Let f(z) be a meromorphic function of finite order ρ(f). For each
ε > 0, then

T (r, f(z + c)) = T (r, f) + O(rρ(f)−1+ε) + O(log r).
Thus if f is a transcendental meromorphic function of finite order ρ(f), then T (r, f(z +c)) = T (r, f)+
S(r, f).

Lemma 3.3. ([7]) Let f be a transcendental meromorphic function of finite order. Then

m

(
r,
f(k)(z + c)
f(z + d)

)
= S(r, f),

for all z satisfies |z| = r /∈ E, E is a set with finite logarithmic measure, where c and d are complex
constants and k is a non-negative integer.

Lemma 3.4. Let f be a transcendental meromorphic function of finite order and let ω(f) be a
homogeneous differential-difference polynomial. Then

S(r, ω(f)) = S(r, f).

Proof. Now S(r,ω(f))
T (r,f) = S(r,ω(f))

T (r,ω(f))
T (r,ω(f))

T (r,f) . By logarithmic derivative, we have T (r,ω(f))
T (r,f) is bounded

quantity as r tends to ∞.
So S(r,ω(f))

T (r,f) tends to zero as r tends to ∞.
Hence

S(r, ω(f)) = S(r, f).
q.e.d.

4 Proof of main Theorems
4.1 Proof of Theorem 2.1
Proof. Since ω(f) and fn(z) share (a, 2), thus F = ω(f)

a and G = fn(z)
a share (1, 2).

Let
H =

(
F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G − 1

)
.

Then it can be written as H = M ′

M − 2 N ′

N , where M = F ′

G′ and N = F−1
G−1 .

Let we assume H ̸≡ 0.
Since F and G share (1, 2), then using the 1st fundamental theorem we have,

N (r, 1; F| = 1) ≤ N (r, 0; H)
≤ T (r, H) + o(1)
= m(r, H) + N(r, H) + o(1)
= N(r, H) + S(r, F) + S(r, G)
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Therefore,
N(r, 1; F| = 1) ≤ N(r, H) + S(r, f) (4.1)

Here we can easily verify that the possible poles of H can come from,
(i) multiple zeros of F and G.
(ii) zeros of F ′ which do not come zeros from F(F − 1).
(iii) zeros of G′ which do not come zeros from G(G − 1).
(iv) zeros of F − 1 and G − 1 with different multiplicities.
Therefore,

N(r, H) ≤ N(r, 0; F| ≥ 2) + N(r, 0; G| ≥ 2) + N0(r, 0; F ′) + N0(r, 0; G′) + N∗(r, 1; F , G), (4.2)

where N0(r, 0; F ′) is the reduced counting function of those zeros of F ′ which are not coming from
the zeros of F(F − 1) and N0(r, 0; G′) is the reduced counting function of those zeros of G′ which
are not coming from the zeros of G(G − 1).
By the 2nd fundamental theorem, we have

(2 − 1)T (r, F) ≤ N(r, 0; F) + N(r, 1; F) − N0(r, 0; F ′) + S(r, F).

Therefore,
T (r, F) ≤ N(r, 0; F) + N(r, 1; F) − N0(r, 0; F ′) + S(r, f) (4.3)

Since F and G share 1 with weight 2 then,

N(r, 1; F) = N(r, 1; F| = 1) + N(r, 1; G| ≥ 2) (4.4)

From(4.1), (4.2), (4.3), (4.4) we have,

T (r, F) (4.5)
≤ N(r, 0; F) + N(r, 0; F| ≥ 2) + N(r, 0; G| ≥ 2) + N0(r, 0; G′)

+N(r, 1; G| ≥ 2) + N∗(r, 1; F , G) + S(r, f). (4.6)

Since F and G share 1 with weight 2, then

N∗(r, 1; F , G) ≤ N(r, 1; G| ≥ 3)

N0(r, 0; G′) + N(r, 1; G| ≥ 2) + N∗(r, 1; F , G) + N(r, 0; G) − N(r, 0; G) ≤ N(r, 0; G′) (4.7)
By using the 1st fundamental theorem and lemma of logarithmic derivative and Lemma 3.1, we
have

N(r, 0; G′) ≤ N(r, 0; G′

G
) + N(r, 0; G) − N(r, 0; G)

≤ N(r,
G′

G
) + N(r, 0; G) − N(r, 0; G) + S(r, G)

≤ N(r, G) + N(r, 0; G) + N(r, 0; G) − N(r, 0; G) + S(r, G)

So we have
N(r, 0; G′) ≤ N(r, 0; G) + S(r, f) (4.8)
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From (4.7) and (4.8) we have,

N0(r, 0; G′) + N∗(r, 1; F , G) + N(r, 1; G| ≥ 2) ≤ N(r, 0; G) + S(r, f) (4.9)

From (4.5) and (4.9) we have,

T (r, F) ≤ N(r, 0; F| ≥ 2) + N(r, 0; F) + N(r, 0; G| ≥ 2) + N(r, 0; G) + S(r, f).
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
So H = 0.

Then F = AG+B
CG+D , where AD − BC ̸= 0 and A, B, C, D are complex numbers.

Case 1: Let AC = 0. Here, A & C both can not be zero simultaneously.
Sub case 1.1: Let A = 0 & C ̸= 0. Then 1

F = αG + β, where α = C
B , β = D

B .
If 1 is a picard exceptional value of F , then G also.
Then by the 2nd fundamental theorem, we have

T (r, F) ≤ N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
Again if 1 is not a picard exceptional value of F & G, then α + β = 1.
If α ̸= 1, then by the 2nd fundamental theorem, we have

(2 − 1)T (r, F) ≤ N(r, F) + N(r, 0; F) + N(r,
1

1 − α
; F) + S(r, f)

≤ N(r, 0; F) + N(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
Again if α = 1, then FG ≡ 1 i.e.

ω(f)fn ≡ 1.

Sub case 1.2: Let A ̸= 0 & C = 0. So D ̸= 0. Then F = γG + δ, γ = A
D , δ = B

D .
If 1 is a picard exceptional value of F , then G also.
So by the 2nd fundamental theorem, we have

T (r, F) ≤ N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),
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Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
Again if 1 is not a picard exceptional value of F & G, then γ + δ = 1.
If γ ̸= 1 then by the 2nd fundamental theorem, we have

(2 − 1)T (r, F) ≤ N(r, F) + N(r, 0; F) + N(r, 1 − γ; F) + S(r, f)
≤ N(r, 0; F) + N(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
Again if γ = 1, then F ≡ G. i.e.

ω(f) ≡ fn.

Case 2: Let AC ̸= 0. This implies A ̸= 0 & C ̸= 0.
Subcase 2.1: Let B = 0 and D ̸= 0. So 1

F = α1 + β1
G , where α1 = C

A , β1 = D
A .

If 1 is a picard exceptional value of F , then G also.
So by the 2nd fundamental theorem, we have

T (r, F) ≤ N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
Again if 1 is not a picard exceptional value of F & G, then α1 + β1 = 1.
If α1 ̸= 1 then by the 2nd fundamental theorem, we have

(2 − 1)T (r, G) ≤ N(r, ∞; G) + N(r, 0; G) + N(r, 1 − 1
α1

; G) + S(r, G)

≤ N(r, 0; G) + N(r, ∞; F) + S(r, f)
≤ N(r, 0; G)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, F) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
Again if α1 = 1, then

F ≡ 1,

which is not possible.
Subcase 2.2: Let B ̸= 0 and D = 0. So F = γ1 + δ1

G , where γ1 = A
C , δ1 = B

C .
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If 1 is a picard exceptional value of F , then G also.
So by the 2nd fundamental theorem, we have

T (r, F) ≤ N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
Again if 1 is not picard exceptional value of F & G, then γ1 + δ1 = 1.
If γ1 ̸= 1 then by the 2nd fundamental theorem, we have

(2 − 1)T (r, G) ≤ N(r, ∞; G) + N(r, 0; G) + N(r, 1 − 1
γ1

; G) + S(r, f)

≤ N(r, 0; G) + N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, F) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
Again if γ1 = 1, then

F ≡ 1,

which is also not possible.
Subcase 2.3: Let B ̸= 0 and D ̸= 0. Then B

D ̸= 0.
Let

F − B

D
=

G(A − BC
D )

CG + D
.

Since G is an entire function thus B
D points of F comes only from the zeros of G.

Then by the 2nd fundamental theorem, we have

(2 − 1)T (r, F) ≤ N(r, ∞; F) + N(r, 0; F) + N(r,
B

D
; F) + S(r, f)

≤ N(r, 0; F) + N(r, 0; G) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f))+N2(r, 0; fn)+S(r, f), where T (r)= max{T (r, fn), T (r, ω(f)}, this contradicts
the given condition.
Hence the theorem is proved. q.e.d.
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4.2 Proof of Theorem 2.2
Proof. Since ω(f) and Ω(f) share (a, 2), then F = ω(f)

a and G = Ω(f)
a share (1, 2).

Let
H =

(
F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G − 1

)
.

Then it can be written as H = M ′

M − 2 N ′

N , where M = F ′

G′ and N = F−1
G−1 .

Let we assume H ̸≡ 0.
Since F and G share (1, 2), then using the 1st fundamental theorem we have,

N (r, 1; F| = 1) ≤ N (r, 0; H)
≤ T (r, H) + o(1)
= m(r, H) + N(r, H) + o(1)
= N(r, H) + S(r, F) + S(r, G)

Therefore,
N(r, 1; F| = 1) ≤ N(r, H) + S(r, f) (4.10)

Here we can easily verify that the possible poles of H can come from,
(i) multiple zeros of F and G.
(ii) zeros of F ′ which do not come zeros from F(F − 1).
(iii) zeros of G′ which do not come zeros from G(G − 1).
(iv) zeros of F − 1 and G − 1 with different multiplicities.
Therefore,

N(r, H) ≤ N(r, 0; F| ≥ 2) + N(r, 0; G| ≥ 2) + N0(r, 0; F ′) + N0(r, 0; G′) + N∗(r, 1; F , G), (4.11)

where N0(r, 0; F ′) is the reduced counting function of those zeros of F ′ which are not coming from
the zeros of F(F − 1) and N0(r, 0; G′) is the reduced counting function of those zeros of G′ which
are not coming from the zeros of G(G − 1).
By the 2nd fundamental theorem, we have

(2 − 1)T (r, F) ≤ N(r, 0; F) + N(r, 1; F) − N0(r, 0; F ′) + S(r, F).

Therefore,
T (r, F) ≤ N(r, 0; F) + N(r, 1; F) − N0(r, 0; F ′) + S(r, f) (4.12)

Since F and G share 1 with weight 2 then,

N(r, 1; F) = N(r, 1; F| = 1) + N(r, 1; G| ≥ 2) (4.13)

From(4.10), (4.11), (4.12), (4.13) we have,

T (r, F) (4.14)
≤ N(r, 0; F) + N(r, 0; F| ≥ 2) + N(r, 0; G| ≥ 2) + N0(r, 0; G′)

+N(r, 1; G| ≥ 2) + N∗(r, 1; F , G) + S(r, f). (4.15)
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Since F and G share 1 with weight 2, then

N∗(r, 1; F , G) ≤ N(r, 1; G| ≥ 3)

N0(r, 0; G′) + N(r, 1; G| ≥ 2) + N∗(r, 1; F , G) + N(r, 0; G) − N(r, 0; G) ≤ N(r, 0; G′) (4.16)

By using the 1st fundamental theorem and lemma of logarithmic derivative and Lemma 3.1, we
have

N(r, 0; G′) ≤ N(r, 0; G′

G
) + N(r, 0; G) − N(r, 0; G)

≤ N(r,
G′

G
) + N(r, 0; G) − N(r, 0; G) + S(r, G)

≤ N(r, G) + N(r, 0; G) + N(r, 0; G) − N(r, 0; G) + S(r, G)

So we have
N(r, 0; G′) ≤ N(r, 0; G) + S(r, f) (4.17)

From (4.16) and (4.17) we have,

N0(r, 0; G′) + N∗(r, 1; F , G) + N(r, 1; G| ≥ 2) ≤ N(r, 0; G) + S(r, f) (4.18)

From (4.14) and (4.18) we have,

T (r, F) ≤ N(r, 0; F| ≥ 2) + N(r, 0; F) + N(r, 0; G| ≥ 2) + N(r, 0; G) + S(r, f).
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.

So H = 0.
Then F = AG+B

CG+D , where AD − BC ̸= 0 and A, B, C, D are complex numbers.
Case 1: Let AC = 0. Here, A & C both can not be zero simultaneously.
Sub case 1.1: Let A = 0 & C ̸= 0. Then 1

F = αG + β, where α = C
B , β = D

B .
If 1 is a picard exceptional value of F , then G also.
Then by the 2nd fundamental theorem, we have

T (r, F) ≤ N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.
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Again if 1 is not a picard exceptional value of F & G, then α + β = 1.
If α ̸= 1, then by the 2nd fundamental theorem, we have

(2 − 1)T (r, F) ≤ N(r, F) + N(r, 0; F) + N(r,
1

1 − α
; F) + S(r, f)

≤ N(r, 0; F) + N(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.
Again if α = 1, then FG ≡ 1 i.e.

ω(f)Ω(f) ≡ 1.

Sub case 1.2: Let A ̸= 0 & C = 0. So D ̸= 0. Then F = γG + δ, γ = A
D , δ = B

D .
If 1 is a picard exceptional value of F , then G also.
So by the 2nd fundamental theorem, we have

T (r, F) ≤ N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.
Again if 1 is not a picard exceptional value of F & G, then γ + δ = 1.
If γ ̸= 1 then by the 2nd fundamental theorem, we have

(2 − 1)T (r, F) ≤ N(r, F) + N(r, 0; F) + N(r, 1 − γ; F) + S(r, f)
≤ N(r, 0; F) + N(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.
Again if γ = 1, then F ≡ G. i.e.

ω(f) ≡ Ω(f).

Case 2: Let AC ̸= 0. This implies A ̸= 0 & C ̸= 0.
Subcase 2.1: Let B = 0 and D ̸= 0. So 1

F = α1 + β1
G , where α1 = C

A , β1 = D
A .

If 1 is a picard exceptional value of F , then G also.
So by the 2nd fundamental theorem, we have

T (r, F) ≤ N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),
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Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.
Again if 1 is not a picard exceptional value of F & G, then α1 + β1 = 1.
If α1 ̸= 1 then by the 2nd fundamental theorem, we have

(2 − 1)T (r, G) ≤ N(r, ∞; G) + N(r, 0; G) + N(r, 1 − 1
α1

; G) + S(r, G)

≤ N(r, 0; G) + N(r, ∞; F) + S(r, f)
≤ N(r, 0; G)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, F) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.
Again if α1 = 1, then

F ≡ 1,

which is not possible.
Subcase 2.2: Let B ̸= 0 and D = 0. So F = γ1 + δ1

G , where γ1 = A
C , δ1 = B

C .
If 1 is a picard exceptional value of F , then G also.
So by the 2nd fundamental theorem, we have

T (r, F) ≤ N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.
Again if 1 is not picard exceptional value of F & G, then γ1 + δ1 = 1.
If γ1 ̸= 1 then by the 2nd fundamental theorem, we have

(2 − 1)T (r, G) ≤ N(r, ∞; G) + N(r, 0; G) + N(r, 1 − 1
γ1

; G) + S(r, f)

≤ N(r, 0; G) + N(r, 0; F) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, F) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.
Again if γ1 = 1, then

F ≡ 1,

which is also not possible.
Subcase 2.3: Let B ̸= 0 and D ̸= 0. Then B

D ̸= 0.
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Let
F − B

D
=

G(A − BC
D )

CG + D
.

Since G is an entire function thus B
D points of F comes only from the zeros of G.

Then by the 2nd fundamental theorem, we have

(2 − 1)T (r, F) ≤ N(r, ∞; F) + N(r, 0; F) + N(r,
B

D
; F) + S(r, f)

≤ N(r, 0; F) + N(r, 0; G) + S(r, f)
≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f),

Similarly T (r, G) ≤ N2(r, 0; F) + N2(r, 0; G) + S(r, f).
So T (r) ≤ N2(r, 0; ω(f)) + N2(r, 0; fn) + S(r, f), where T (r)= max{T (r, Ω(f), T (r, ω(f)}, this contra-
dicts the given condition.
Hence the theorem is proved. q.e.d.
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