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Abstract

Compactness and paracompactness have been explored within the framework of partial metric
spaces. It has been demonstrated that while a partial metric space may not be paracompact,
induced partial metric spaces are indeed paracompact. Additionally, it has been shown that
the compactness of a partial metric space can be analyzed through the pairwise compactness
of the bitopological space induced by that partial metric.
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1 Introduction and preliminaries
There are some mappings which fails to be a metric for assuming non zero value in its diagonal of
its domain. One such witness is p(x, y) = max{x, y} for all x, y ∈ R+. In 1994 S. G. Matthews
[7] defined partial metric spaces as a generalization of metric spaces using such mappings to study
denotational semantics of dataflow network. In last two decades many authors have studied topo-
logical properties of partial metric spaces[7][11][17][15]. J. C. Kelley [6] introduced the concept of
bitopological spaces. Fletcher et al. [4] defined pairwise compactness. Inspired by the study of
asymmetric normed spaces [3] in this paper we have introduced a bitopological notion using partial
metric and studied compactness of partial metric spaces via pairwise compactness. Some interesting
findings have emerged in [18, 19, 20, 21, 23, 24]. Let us recall some definitions. As in [7],[11],[15] a
mapping p : X × X −→ [0, ∞), where X is a non empty set, is said to be partial metric if whenever
x, y, z ∈ X the following conditions hold:

(a1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);

(a2) p(x, y) = p(y, x);

(a3) p(x, y) ⩾ p(x, x);

(a4) p(x, y) ⩽ p(x, z) + p(z, y) − p(z, z)
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and the ordered pair (X, p) is called a partial metric space. In a partial metric space (X, p),
Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} forms a basis for a topology τp. In a partial metric space
(X, p), the functions dw, dp : X × X −→ R+ given by dw(x, y) = 2p(x, y) − p(x, x) − p(y, y) and

dp(x, y) = max{p(x, y) − p(x, x), p(x, y) − p(y, y)}
= p(x, y) − min{p(x, x), p(y, y)}

are metrics on X. In [15] we define diameter of a set A in a partial metric space (X, p) by
diam(A) = sup{p(x, y) − p(x, x) : ∀x, y ∈ A}.

A sequence {xn} in a partial metric space (X, p) is convergent to x ∈ X if lim
n→∞

p(xn, x) = p(x, x).
A sequence {xn} in (X, p) is a Cauchy sequence if lim

n,m→∞
p(xn, xm) exists. A partial metric space

is said to be complete if every Cauchy sequence in (X, p) is convergent.

Theorem 1.1. [1] (a) A sequence {xn} is a Cauchy sequence in (X, p) if and only if {xn} is a
Cauchy sequence in (X, dp).

(b) (X, p) is complete if and only if (X, dp) is complete.
Morever for a sequence {xn} in X, lim

n→∞
dp(xn, x) = 0 if and only if

lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm) = p(x, x).

Theorem 1.2. [8] Let X be regular. Then the following conditions are equivalent. Every open
covering of X has an refinement that is

(i) An open covering of X and countably locally finite.

(ii) A covering of X and locally finite.

(iii) A closed covering of X and locally finite.

(iv) An open covering of X and locally finite.

2 Compactness and pairwise compactness
We now define a new type of open ball in (X, p) by Bp̄(x, ε) = {y ∈ X : p(x, y) < p(y, y) + ε} and
closed ball by Bp̄[x, ε] = {y ∈ X : p(x, y) ⩽ p(y, y) + ε}. Let Bp̄(x, ε1) and Bp̄(y, ε2) be any two
open balls in (X, p) such that z ∈ Bp̄(x, ε1) ∩ Bp̄(y, ε2).
Let δ = min{ε1 + p(z, z) − p(x, z), ε2 + p(z, z) − p(y, z)}. Let z1 ∈ Bp̄(z, δ), then

p(x, z1) − p(z1, z1) ⩽ p(x, z) + p(z, z1) − p(z, z) − p(z1, z1)
< p(x, z) − p(z, z) + δ

⩽ ε1

So z1 ∈ Bp̄(x, ε1). Similarly z1 ∈ Bp̄(y, ε2).
So Bp̄(z, δ) ⊂ Bp̄(x, ε1) ∩ Bp̄(y, ε2). Since X = ∪Bp̄(x, ε1), so this newly defined balls forms a basis
for a topology (τp̄) on X.

A sequence {xn} in (X, τp̄) is said to be convergent to x if lim
n→∞

p(xn, x) = lim
n→∞

p(xn, xn) < ∞.
Let us consider the definition of convergence as lim

n→∞
p(xn, x) = lim

n→∞
p(xn, xn) = ∞. Since {xn}

conergent to x, we have xn ∈ Bp̄(x, ε) ∀n ⩾ M for any ε > 0. So p(xn, x) − p(xn, xn) < ε ∀n ⩾ M .
Taking n → ∞ we have ∞ − ∞ < ε which is a contradiction.
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Lemma 2.1. A closed ball in (X, τp) is closed in (X, τp̄) and a closed ball in (X, τp̄) is closed in
(X, τp).

Proof. Let y ∈ Bp
p̄[x, ε]. Then there exists a sequence xn ∈ Bp[x, ε] such that

lim
n→∞

p(xn, y) = lim
n→∞

p(xn, xn) < ∞ (2.1)

p(xn, x) − p(x, x) ⩽ ε (2.2)

Now p(x, y) ⩽ p(x, xn) + p(xn, y) − p(xn, xn).
Using (2.1) and (2.2) in the above relation we have p(x, y) ⩽ p(x, x) + ε.
⇒ y ∈ Bp[x, ε]. Hence Bp

p̄[x, ε] ⊂ Bp[x, ε].
Similarly we can prove the other part of the Lemma. q.e.d.

We say the bitopological space (X, τp, τp̄) induced by partial metric p on X a bipartial space.

Definition 2.1. In (X, τp, τp̄) a sequence {xn} is said to be pairwise convergent to x if for any
ε1, ε2 > 0 there exists a natural number M such that xn ∈ Bp̄(x, ε1) ∩ Bp(x, ε2) ∀n ⩾ M .

Definition 2.2. [4] A cover U of (X, τp, τp̄) is said to be pairwise open if U ⊂ τp ∪ τp̄ with
U ∩ τp and U ∩ τp̄ contains a non empty set.

Definition 2.3. [4] (X, τp, τp̄) is pairwise compact if every pairwise open cover has a finite subcover.

Definition 2.4. (X, τp, τp̄) is said to be pairwise totally bounded if for any ε > 0, X can be covered
by finitely many union of sets of τp and τp̄ of diameter ε.

Definition 2.5. (X, τp, τp̄) is said to be pairwise complete if every Cauchy sequence {xn} in X is
pairwise convergent.

Definition 2.6. (X, τp, τp̄) is said to be pairwise sequentially compact if every sequence {xn} in
X has a pairwise convergent subsequence.

Lemma 2.2. In (X, τp, τp̄) the following conditions are equivalent.

(i) (X, τp, τp̄) is pairwise compact.

(ii) (X, τp, τp̄) is pairwise complete and pairwise totally bounded.

(iii) (X, τp, τp̄) is pairwise sequentially compact.

Proof. (i) ⇒ (ii)
Let {xn} be a Cauchy sequence in X. Then for every k ∈ N there exists nk such that |

p(xn, xnk
) − l |< 1

k for all n > nk.
Let Uk = Bp[xnk

, 1
k ]c ∪Bp̄[xnk

, 1
k ]c. By Lemma 2.1 {Uk} forms an pairwise open cover for X. Then

xn ̸∈ Uk for n > nk. Suppose X =
m⋃

k=1
Uk. Then for n > max{n1, n2, ..., nm}, xn ̸∈ Uk for any

1 ⩽ k ⩽ m. Hence no finite sub collection of {Uk} covers X. Hence {Uk} can not cover X. So
there exists x ∈ X −

∞
∪

k=1
Uk. Hence lim

k→∞
p(xnk

, x) = p(x, x) = lim
k→∞

p(xnk
, xnk

). Since {xn} is a
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Cauchy sequence in X by Theorem 1.1 it also pairwise convergent to x. Hence (X, τp, τp̄) is pairwise
complete.

Let U be a pairwise open cover of X of diameter ε. Then it has a finite subcover. Hence
(X, τp, τp̄) is pairwise totally bounded.

(ii) ⇒ (iii)
Let (X, τp, τp̄) is pairwise complete and pairwise totally bounded. Then X can be covered by

finitely many union of sets of τp and τp̄ of diameter less than 1. Let {xn} be a sequence in X.
Then any one of the set say B1 contains infinitely many elements of {xn}. Choose n1 ∈ N such
that xn1 ∈ B1. Again since B1 is pairwise totally bounded, B1 can be covered by finitely many
union of sets of τp and τp̄ diameter less than 1

2 . Pick one of the set say B2 which contains infinitely
many elements of {xn}. Choose n2 > n1 such that xn2 ∈ B2. Continuing in this way we have
construct a sequence {Bk} of diameter less than 1

k such that Bk+1 ⊂ Bk ∀k ∈ N and xnk
∈ Bk.

For j, l ⩾ k by construction of {Bk} we have xnj
, xnl

∈ Bk. So p(xnj
, xnl

) − p(xnj
, xnj

) < 1
k and

p(xnj
, xnl

) − p(xnl
, xnl

) < 1
k . Hence dp(xnj

, xnl
) < 1

k . Thus by Theorem 1.1 {xnj
} is a Cauchy

sequence in X. Since (X, τp, τp̄) is pairwise complete {xnj
} is a pairwise convergent subsequence.

Hence (X, τp, τp̄) is pairwise sequentially compact.

(iii) ⇒ (i)
Since (X, τp, τp̄) is pairwise sequentially compact, by Theorem 1.1 (X, dp) is sequentially compact

and hence compact. Let A be a pairwise open cover for (X, τp, τp̄) . Every member of A is open in
(X, dp). So A forms an open cover for (X, dp) and since (X, dp) is compact it has a finite subcover.
Hence (X, τp, τp̄) is pairwise compact. q.e.d.

Theorem 2.1. (X, τp) is compact if (X, τp, τp̄) is pairwise compact.

Proof. Given (X, τp, τp̄) is pairwise compact. Then from Lemma 2.2 we can say (X, τp, τp̄) is
pairwise sequentially compact and by Theorem 1.1 (X, dp) is sequentially compact and consequently
compact. Let A be an open cover for (X, τp). Every member of A is open in (X, dp), so A forms an
open cover for (X, dp). Since (X, dp) is compact it has a finite subcover. Hence (X, τp) is compact.
Similarly we can show that (X, τp̄) is compact. q.e.d.

Lemma 2.3. In a sequentially compact partial metric space (X, p) every sequence contains a
Cauchy subsequence.

Proof. Let {xn} be a sequence in X, so it has a subsequence say {xnk
} that converges to a ∈ X.

Hence {xnk
} contains a Cauchy subsequence as well as {xn}. q.e.d.

Theorem 2.2. In a partial metric space (X, p) the following conditions are equivalent.

(i) (X, p) is compact.

(ii) (X, p) is limit point compact.

(iii) (X, p) is sequentially compact.
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Proof. (i) ⇒ (ii) and (ii) ⇒ (iii) is obvious. We will prove the last part of the theorem.
(iii) ⇒ (i)
First we show that if X is sequentially compact then Lebesgue number Lemma holds for X. Let

A be an open covering for X. Let there is no δ > 0 such that each set of diameter less than δ has
an element of A containing it. For each positive integer n there exists a set of diameter less 1

n that
is not contained in any element of A. Let Cn be such a set. Let xn ∈ Cn ∀n ∈ N. By hypothesis
{xn} has a convergent subsequence {xni} converges to a. Since a ∈ A, for some A ∈ A there exists
a ε > 0 such that Bp(a, ε) ⊂ A. Choose i so that 1

ni
< ε

2 . Then Cni
lies in ε

2 neighbourhood of xni
.

Let y ∈ Cni
.

p(a, y) − p(a, a) ⩽ p(a, xni
) + p(xni

, y) − p(xni
, xni

) − p(a, a)

<
ε

2 + ε

2 = ε.

⇒ y ∈ Bp(a, ε). Hence Cni ⊂ Bp(a, ε) ⊂ A, which is a contradiction. Thus Lebesgue number
Lemma holds. Now we prove the final part of the proof.

Let X be a sequentially compact. We proceed by contradiction. Let there exists an ε > 0 such
that X can not be covered by finitely many union of ε open balls. Let x2 ∈ X ∖ Bp(x1, ε). In a
similar way we can choose x3 ∈ X ∖ Bp(x1, ε) ∪ Bp(x2, ε). Proceeding in this way we have
xn+1 /∈ Bp(x1, ε) ∪ Bp(x2, ε) ∪ ... ∪ Bp(xn, ε)
⇒ xn+1 /∈ Bdp(x1, ε) ∪ Bdp(x2, ε) ∪ ... ∪ Bdp(xn, ε)
⇒ dp(xn+1, xi) ⩾ ε ∀i = 1, 2, .., n. So {xn} is not a Cauchy sequence in (X, dp) and consequently it
can not have a Cauchy subsequence and by Theorem 1.1 {xn} can not have a Cauchy subsequence
in (X, p). So, by Lemma 2.3 (X, p) is not sequentially compact. This is a contradiction. Hence
(X, p) is totally bounded.

Finally we show if X is sequentially compact then X is compact. Let A be an open covering
of X. Since X is sequentially compact, the open covering A has a Lebesgue number δ. Let ε = δ

3 ,
then each ball of diameter at most δ

3 lies in an element of A. q.e.d.

Theorem 2.3. A compact partial metric space has a Lebesgue number.

3 Paracompactness of induced partial metric space
Let (X, p) be a partial metric space and dp be the induced metric on X. Let p1(x, y) = dp(x, y) +
p(x, y) ∀x, y ∈ X. Then p1 is a partial metric on X.

Lemma 3.1. A closed set in (X, p) is closed in (X, dp).

Proof. Let A be a closed set in (X, p). Let x ∈ Ādp , the there exists a sequence {xn} in A such
that lim

n→∞
dp(xn, x) = 0. i.e., lim

n→∞
p(xn, x) = p(x, x) = lim

n→∞
p(xn, xn). So x ∈ Āp = A as A is closed

in (X, p). Hence Ādp ⊂ A q.e.d.

Let y ∈ Bp1(x, ε)
⇒ p(x, y) − p(x, x) + dp(x, y) < ε
⇒ y ∈ Bp(x, ε) ∩ Bdp

(x, ε).
⇒ Bp1(x, ε) ⊂ Bp(x, ε) ∩ Bdp(x, ε).
Let x, y be any two distinct point of X. Since (X, dp) is T2 there exists r1, r2 > 0, such that
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Bdp(x, r1) ∩ Bdp(y, r2) = φ.
Now Bp1(x, r1) ∩ Bp1(y, r2) ⊂ Bp(x, r1) ∩ Bdp

(x, r1) ∩ Bp(y, r2) ∩ Bdp
(y, r2) = φ.

Hence (X, p1) is T2.
Now we will show that (X, p1) is regular. Let dp1(x, y) be the induced metric by p1(x, y).

Then dp1(x, y) = 3dp(x, y) ∀x, y ∈ X. Let C be a closed set in (X, p1). Then by Lemma 3.1, C
is closed in (X, dp1) as well as in (X, dp). Since (X, dp) is regular there exists r1 > 0 such that
Bdp

(x, r1) ∩ V = φ where V = ∪
c∈C

Bdp
(c, r1c). Let W = ∪

c∈C
Bp1(c, r1c).

So Bp1(x, r1) ∩ W
= Bp1(x, r1) ∩ ( ∪

c∈C
Bp1(c, r1c))

= ∪
c∈C

(Bp1(x, r1) ∩ Bp1(c, r1c))
⊂ ∪

c∈C
(Bp(x, r1) ∩ Bdp(x, r1) ∩ Bp(c, r1c) ∩ Bdp(c, r1c)) = φ.

Hence (X, p1) is regular.

Theorem 3.1. Every induced partial metric space is paracompact.

Proof. Let (X, p) be a induced partial metric space and A be an open covering for X. Choose a
well-ordering < for the collection A. Let us denote the elements of A by U, V, W, .... Let n be a
fixed positive integer, define Sn(U) = {x ∈ X : Bp(x, 1

n ) ⊂ U} and Tn(U) = Sn(U) − ∪
V <U

V . Let

x1 ∈ Tn(U) and x2 ∈ Tn(V ) for U < V then x2 /∈ U . So x2 /∈ Bp(x1, 1
n ). Consequently p(x1, x2) −

p(x1, x1) ⩾ 1
n . Now we define En(U) = ∪

x∈Tn(U)
Bp(x, 1

16n ). Let if possible z ∈ En(U) ∩ En(V ) for

U < V . Then z ∈ Bp(x, 1
16n ) ∩ Bp(y, 1

16n ) for some x ∈ Tn(U) and y ∈ Tn(V ). Now

1
n
⩽ p(x, y) − p(x, x) ⩽ p(x, z) + p(z, y) − p(z, z) − p(x, x)

<
1

4n
+ 1

16n
= 5

16n

This is a contradiction. So, En(U) ∩ En(V ) = φ. Morever if x ∈ En(U) and y ∈ En(V ) for U < V
then x ∈ Bp(z, 1

16n ) and y ∈ Bp(w, 1
16n ) for some z ∈ Tn(U) and w ∈ Tn(V ). Now

1
n
⩽ p(z, w) − p(z, z) ⩽ p(z, x) + p(x, w) − p(x, x) − p(z, z)

⩽ p(z, x) + p(x, y) + p(y, w) − p(y, y) − p(x, x) − p(z, z)

⩽
1

4n
+ 1

4n
+ p(x, y) − p(x, x)

So
p(x, y) − p(x, x) ⩾ 1

2n
(3.1)

Finally we define En = {En(U) : U ∈ A}. We show that En forms locally finite collection of open
set that refines A. Since En(U) ⊂ U for each U ∈ A, En(U) refines A. Let x ∈ X. Let Bp(x, 1

10n )
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intersects En(U) and En(V ) for U < V . Let a ∈ Bp(x, 1
10n ) ∩ En(U) and b ∈ Bp(x, 1

10n ) ∩ En(V ).
Then

p(a, b) − p(a, a) ⩽ p(a, x) + p(x, b) − p(x, x) − p(a, a)

<
4

10n
+ 1

10n
= 1

2n

which contradicts equation 3.1. Thus Bp(x, 1
10n ) can intersects at most one element of En(U). Now

we define E = ∪
n∈Z+

En. We will show that E will also covers X. Let x be a point of X. Let U be
the first element of A that contains x. Since U is open there exists a natural number n such that
Bp(x, 1

n ) ⊂ U . Hence x ∈ Sn(U), since U is the first element of A, x ∈ Tn(U). Thus x also belong
to En(U) of En. Now using Theorem 1.2 we can say (X, p) is paracompact. q.e.d.

4 Conclusion
This study has illuminated the compactness and paracompactness properties of partial metric spaces
using bitopological frameworks. By defining pairwise compactness, we established new types of open
and closed balls that form bases for distinct topologies, allowing for a comprehensive analysis of
convergence and compactness. We demonstrated that partial metric spaces exhibit several key
properties, including the equivalence of various forms of compactness and the applicability of the
Lebesgue number lemma. Furthermore, we proved that every induced partial metric space is para-
compact, reinforcing the robustness of these spaces in accommodating a broad range of topological
behaviors. These findings contribute to a deeper understanding of the structural and functional
aspects of partial metric spaces, paving the way for future research in this area.
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