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Abstract
The purpose of this paper is to give, in the context of enriched category theory, some equivalent
conditions characterising simultaneously reflective and coreflective full subcategories of the
category of functors on a given small category. In particular, it is proved that such subcategories
are (equivalent to) functor categories.
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1 Preliminaries
Throughout the paper, we fix a locally small, complete and cocomplete closed symmetric monoidal
category (V ,⊗, I) with internal-hom [−,−]. In what follows, whenever we use the terms "category",
"functor", "natural transformation", etc., we shall mean "V -category", "V -functor", "V "-natural
transformation, unless otherwise specified. Our standard reference for enriched category theory is
[6]. For a small category A , let [A ,V ] be the category whose objects are functors F : A → V and
whose hom-objects are defined by [A ,V ](F,G) =

∫
a
[F (a), G(a)].

1.1. (Co)monads and (co)algebras. A monad T on a given category A is an endofunctor
T : A → A equipped with natural transformations η : 1 → T and µ : T 2 → T satisfying

µ · Tµ = µ · µT and µ · ηT = µ · Tη = 1.

Given a monad T = (T, µ, η) on a category A , an object a ∈ Obj(A ) with a morphism h : T (a) → a
is called a T-algebra if h ◦ ηa = 1 and h ◦ T (h) = h ◦ µa. Morphisms of T-algebras are defined as
morphisms in A making the evident diagrams commute. We write A T for the Eilenberg–Moore
category of T-algebras, and write UT : A T → A for the underlying object functor.

If T is the monad generated on A by an adjoint pair η, ε : F ⊣ U : B → A (so that, T =
(UF,UεF, η), then there is the comparison functor KT : B → A T which assigns to each object b ∈
B the T-algebra (U(b), U(εb)), and to each morphism f : b → b′ the morphism U(f) : U(b) → U(b′),
and for which UTKT = U and KTF = FT. The functor u is called monadic if the comparison
functor KT is an equivalence of categories.

∗This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) (Grant №FR-
23-271).

Advanced Studies: Euro-Tbilisi Mathematical Journal 17(3) (2024), pp. 101–111.
DOI: 10.32513/asetmj/1932200824032
Tbilisi Centre for Mathematical Sciences.
Received by the editors: 2 May 2024.
Accepted for publication: 10 September 2024.



102 B. Mesablishvili

Given two monads T and T′ on A , a morphism of monads τ : T → T′ is a natural transfor-
mation τ : T → T ′ such that τ ◦ η = 1 and µ′ ◦ (ττ) = τ ◦µ. For any monad morphism τ : T → T′,
the assignment (a, h) 7−→ (a, h ◦ τa) yields a functor A τ : A T′ → A T making the diagram

A T′

UT′
!!

A τ
// A T

UT′
}}

A

commute.
The dual notions are those of a comonad, coalgebra, comonadicity, and comonad morphism,

respectively.

1.2. Adjoint strings. An adjoint string

K1 k // K2

l

⊥yy

r

⊥
ee

(1.1)

consists of functors k : K1 → K2 and l, r : K2 → K1 that form adjunctions l ⊣ k ⊣ r. Thus,
any functor admitting left and right adjoint functors can be fit in an adjoint string. An adjoint
string (1.1) is said to be fully faithful if the functor k is fully faithful. An easy application of Beck’s
Theorem (and its dual) shows that if k is conservative (in which case we call (1.1) conservative)
and K1 admits coequalizers (resp. equalizers), then k is monadic (resp. comonadic). We follow
[1] in calling a functor adjoint monadic if it is monadic and comonadic. Thus, the functor k in
the adjoint string (1.1) is adjoint monadic if it is conservative and K1 admits both equalizers and
coequalizers. In particular, when (1.1) is fully faithful, then since any fully faithful functor is
conservative, the functor k is adjoint monadic provided that either K1 or K2 admits equalizers
and coequalizers. Note that the last condition on K2 guarantees that K1, being (equivalent to) a
reflective and coreflective subcategory of K2, admits those limits and colimits that exist in K2.

Adjoint strings can be composed in the sense that if

K1 k // K2

l

⊥xx

r

⊥ee
k′ // K3

l′

⊥xx

r′

⊥ee

are (conservative, fully faithful) adjoint strings, then so also is

K1 k′k // K3

ll′

⊥xx

rr′

⊥ee
.

In this case, k′k adjoint monadic provided that both k and k′ are conservative and K1 admits both
equalizers and coequalizers. In particular, the composite of two adjoint monadic functors is again
adjoint monadic.
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1.3. Discrete categories. To any set X one associates the discrete category |X| with object-set
X and |X|(x, x′) equal to the initial object 0 of V unless x = x′ in which case it is the tensor unit
I. Note that for any small category A and for any map f : X → Obj(A ), there is a unique functor
f : |X| → A such that f(x) = f(x) for all x ∈ X.

For a small category A , we write |A | for the discrete category associated with set Obj(A )
and write iA : |A | → A for the identity-on-objects functor associated with the identity map
Obj(A ) → Obj(A ).
1.4. The bicategory of bimodules. Given small categories A and B, recall that an (A ,B)–
bimodule (also called distributors, or profunctors) is a functor Bop ⊗ A → V . We shall write
φ : A⇝B to indicate that φ is an (A ,B)–bimodule. A morphism between two (A ,B)–bimodules
φ and φ is just a natural transformation φ ⇒ φ. So the (A ,B)–bimodules and natural trans-
formations between them with the usual composition of natural transformations, form a category
BimodV (A ,B). Small categories, bimodules and morphisms of bimodules constitute a monoidal
bicategory BimodV , in which

• Objects are small categories A , B, C , ...

• 1–cells are bimodules, while 2–cells are natural transformations between bimodules. Thus,
for each pair A ,B of objects, BimodV (A ,B) is the category [Bop ⊗ A ,V ].

• Horizontal composition of 1–cells is described in term of coend formulae. Given 1–cells φ :
A⇝B, and φ : B⇝C , one defines their horizontal composition φ ⊙ φ : A⇝C by the coend
formula (φ ⊙ φ)(c, a) =

∫ b
φ(c, b)⊗φ(b, a); the units for the horizontal composition are the

bimodules 1A : A⇝A given by the functor A (−,−) : A op ⊗ A → V .

• Vertical composition of 2-cells is the usual vertical composition of natural transformations.

• The tensor product in BimodV is the usual one for categories, and the unit for this tensor
product is the category I with one object ∗ and with I(∗, ∗) = I.

For a bimodule φ : A⇝B, we write φ† : A → [Bop,V ] for the functor that corresponds under the
isomorphism

[Bop ⊗ A ,V ]0 ≃ [A , [Bop,V ]]0 (1.2)
of ordinary categories to the functor φ : Bop ⊗ A → V . The same notation will be used for
the inverse operation; so that, for a functor ψ : A → [Bop,V ], we will write ψ† : A⇝B for the
corresponding (A ,B)–bimodule.
1.5. The biclosedness of BimodV . The most important property of BimodV is that it is a
biclosed bicategory, which means that for any bimodule φ : A⇝B and any small category C , there
are adjunctions

BimodV (A ,C ) ⊥

[φ,−]

55 BimodV (B,C )
−⊙ φ

uu

and

BimodV (C ,B) ⊥

{φ,−}

55 BimodV (C ,A ).
φ ⊙−

uu
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In particular, since BimodV (A , I) = [A ,V ] and BimodV (B, I) = [B,V ], any bimodule φ :
A⇝B induces the adjunction

[A ,V ] ⊥

−⊙ φ

(( [B,V ].
[φ,−]

hh

Moreover, the assignment
φ 7−→ − ⊙ φ

produces an equivalence between the category BimodV (A ,B) and the category of functors from
[A ,V ] to [B,V ] that have a right adjoint, and this last category is the same (see [6, Theorem
4.51]) as the category Cocts([A ,V ], [B,V ]) of cocontinuous (i.e., colimit-preserving) functors from
[A ,V ] to [B,V ]. Thus, one has an equivalence of categories

BimodV (A ,B) φ 7−→− ⊙ φ−−−−−−−→ Cocts([A ,V ], [B,V ]). (1.3)

The inverse of this equivalence is the functor (− ◦ YA op)†, where YA op the Yoneda embedding
A op → [A ,V ].

1.6. The monoidal category of endo-bimodules. For each small category A , the category
BimodV (A ,A ) of (A ,A )-endo-bimodules is a (usually non-symmetric) monoidal category, the
tensor product being the composition ⊙ of 1-cells. The unit for this tensor product is given by the
bimodule 1A : A⇝A . A monoid in this monoidal category is called a monad on A in the bicategory
BimodV . We shall write MndV (A ) for the category of monads on A . When A = B, the category
Cocts([A ,V ], [A ,V ]) is a strict (again non-symmetric) monoidal category with tensor product of
two functors being their composition and the unit being the identity functor on [A ,V ], and the
equivalence (1.3) with A = B becomes a strong monoidal equivalence of monoidal categories,
thus restricting to an equivalence between MndV (A ) and the category of cocontinuous monads on
[A ,V ], i.e., monads whose functor-part is cocontinuous.

1.7. Bimodules induced by functors. Every functor j : A → B between small categories
induces two bimodules B(−, j) : A⇝B and B(j,−) : B⇝A , defined by B(−, j)(b, a) = B(b, j(a))
and B(j,−)(a, b) = B(j(a), b). It is well known that there is an adjunction

ηj , εj : B(−, j) ⊣ B(j,−) : B⇝A (1.4)

in BimodV . Here the unit ηj : A → B(j,−) ⊙ B(−, j) is the natural transformation whose
component (ηj)a, a′ at (a, a′) ∈ Obj(A ) × Obj(A ) is the morphism

j a, a′ : A (a, a′) → B(j(a), j(a′)) = (B(j,−) ⊙ B(−, j))(a, a′),

while the component
(εj)b, b′ : (B(−, j) ⊙ B(j,−))(b, b′) → B(b, b′)

of εj : B(−, j) ⊙ B(j,−) → B at (b, b′) ∈ Obj(B) × Obj(B) is the morphism induced by the
composition in B.

As B(j,−) is right adjoint to B(−, j) in BimodV , the triple (B(j,−) ⊙ B(−, j), µj , ηj), where
µj = B(j,−) ⊙ εj ⊙ B(−, j), is a monad on B, i.e., a monoid in the monoidal category BimodV (B,B).
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Since B(j,−)⊙B(−, j) is simply the (B,B)–bimodule B(j, j), defined by B(j, j)(b, b′) = B(j(b), j(b′)),
it follows that B(j, j) has the structure of a monoid in BimodV (B,B). The unit of this monoid
is A (−,−) j−,−−−−→ B(j, j) and the multiplication B(j, j) ⊙ B(j, j) µj−→ B(j, j) is the morphism
induced by the composition in B.

Since any homomorphism of bicategories preserve adjunctions, the adjunction (1.4) induces, for
any small category C , an adjunction

ηj = − ⊙ ηj , εj = − ⊙ εj : − ⊙ B(−, j) ⊣ − ⊙ B(j,−) : BimodV (B,C ) → BimodV (A ,C ).

Moreover, by (right) closedness of BimodV , the functor −⊙B(j,−) also has a right adjoint, namely,
[B(j,−),−]. Therefore, any functor j : A → B between small categories gives rise to an adjoint
string

BimodV (B, I) = [B,V ] j∗ // BimodV (A , I) = [A ,V ] ,

j!

⊥
vv

j∗

⊥
hh (1.5)

where j∗ = −⊙B(j,−), j! = −⊙B(−, j) and j∗ = [B(j,−),−]. Note that the functor j∗ is simply
precomposition with j.

Before we go further, a remark is in order.

Remark 1.8. By Subsection 1.2, the functor j∗ in the adjoint string (1.5) having complete and
cocomplete domain is adjoint monadic if and only if it is conservative, as it surely is when j is
surjective on objects. Thus, for any surjective-on-objets j, the functor j∗ is adjoint monadic.

For B = |A| and j = iA , we obtain, in particular, the following adjoint string

[A ,V ] (iA )∗ // [|A |,V ] ,

(iA )!

⊥
ww

(iA )∗

⊥
gg (1.6)

in which the functor (iA )∗ is conservative, since iA is identity-on-objects. Since the category
[A ,V ] is complete and cocomplete, limits and colimits there being formed point-wise, it follows
from Remark 1.8 that the functor (iA )∗ is adjoint monadic.

The following result gives a necessary and sufficient condition of an adjoint string to be fully
faithful:

Proposition 1.9. Given an adjoint string (1.5), the functor

j∗ = − ⊙ B(j,−) : [B,V ] → [A ,V ]

is fully faithful if and only if the morphism

εj : B(−, j) ⊙ B(j,−) → B

is an isomorphism.
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Proof. Since a right adjoint functor is fully faithful if and only if the counit of the adjunction
is an isomorphism (e.g., [6, p. 51]), j∗ is fully faithful if and only if the counit εj = − ⊙ εj of the
adjunction j! ⊣ j∗ is an isomorphism, which is clearly the case if and only if εj is so. ⊔⊓

1.10. Factorization system on V -CAT. Recall (for example, from [5]) that there is a factor-
ization system on the category V -CAT of V -categories and V -functors, in which the left class B
consists of those functors which are bijective on objects and the right class F consists of functors
which are full and faithful. So every functor has a (B,F)–factorization. Note that there is a canon-
ical choice of such a factorization: If f : A → B is an arbitrary functor, then f can be factored
as A

ef−→ Im(f) mf−−→ B, where ef is identity on objects and mf is full and faithful. Here Im(f) is
the full image of the functor f . Explicitly, Im(f) is the category whose objects are those of A and
whose hom–object Im(f)(a, a′) for any two objects a, a′ ∈ A , is B(f(a), f(a′)). The composition
law and the identities are the same as in B. The functors ef : A → Im(f) and mf : Im(f) → B
are defined as follows:

(a) ef (a) = a for all a ∈ A , and the morphism

(ef )a, a′ : A (a, a′) → Im(f)(ef (a), ef (a′)) = B(f(a), f(a′))

is fa, a′ for all a, a′ ∈ A ;

(b) mf (a) = f(a) for all a ∈ A and

(mf )a, a′ : Im(f)(a, a′) = B(f(a), f(a′)) → B(f(a), f(a′))

is IdB(f(a), f(a′)) for all a, a′ ∈ Im(f).

2 Main results
We start with the following result, which is a variation of [2, Theorem 4.6]:

Theorem 2.1. Let X be a set and

K κ // [|X|,V ] ,

l

⊥}}

r

⊥
``

be a conservative adjoint string. If the ordinary category K0 admits coequalizers, then there exists
a small category Kκ along with a bijection b : Obj (Kκ) ≃ X and an equivalence of categories
Φ : K → [Kκ,V ] making the diagram

K

κ
##

Φ // [Kκ,V ]

b ∗
yy

[|X|,V ]

commute up to isomorphism. Here b : |X| → Kκ is the functor induced by the bijection b (see,
Subsection 1.3).
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In order to prove our next results, it will be convenient to have available an explicit descriptions
of the category Kκ, and of the functor Φ. In order to do this, consider the monad Tκ on [|X|,V ]
generated by the adjunction l ⊣ κ. Since κ is a right adjoint to l and r is right adjoint to κ,
the functor-part Tκ = κl of the monad Tκ is cocontinuous and hence is, by the equivalence (1.3),
isomorphic to the functor

− ⊙ φκ : [|X|,V ] → [|X|,V ],

where φκ = (Tκ ◦ Y|X|)†. Since Tκ is a monad, the bimodule φκ is a monoid in the monoidal
category BimodV (|X|, |X|) = [|X| ⊗ |X|,V ] (see Subsection 1.6). We can now define the category
Kκ as the category whose objects are the elements of X and whose hom-object Kκ(x, x′) for any
two objects x, x′ ∈ X, is φκ(x, x′). For x, x′, x′′ ∈ X, the composition law

Kκ(x, x′) ⊗ Kκ(x′, x′′) → Kκ(x, x′′)

in Kκ is given by the following composite

φκ(x, x′) ⊗ φκ(x′, x′′) //
∫ x′

φκ(x, x′) ⊗ φκ(x′, x′′) = (φκ ⊙ φκ)(x, x′′) // φκ(x, x′′) ,

where the first morphism is the structural morphism into the coend, while the second one is the
(x, x′′)-component of the multiplication of the monoid φκ. For any x ∈ Obj(Kκ), the identity
element I → Kκ(x, x), is the (x, x)-component of the unit I = |X|(x, x) → φκ(x, x) of the monoid
φκ. As far as a description of the functor Φ is concerned, by [2, Theorem 3.11], there is an
isomorphism of categories Γκ : [|X|,V ]Tκ → [K κ,V ] making the right triangle in the diagram

K

κ

##

Kκ // [|X|,V ]Tκ
Γκ //

UTκ

��

[K κ,V ]

b ∗

yy

[|X|,V ]

commute up to isomorphism. The functor Kκ in the above diagram, which is the Eilenberg-Moore
comparison functor corresponding to the monad Tκ and thus makes the left triangle in the diagram
commute, is an equivalence of categories, since the functor κ, being part of a conservative adjoint
string, is an (adjoint) monadic (see Remark 1.8). Φ can now be described as the composite Γκ ◦Kκ.

Remark 2.2. Specializing the above to the case of the adjoint string (1.6), one immediately obtains
that φ(iA )∗ is simply the monoid A (−,−) (in the monoidal category BimodV (|A|, |A|)), while K(iA )∗

is the category A .

The following was proved in [4]:

Theorem 2.3. Any simultaneously reflective and coreflective full subcategory of a functor category
is again a functor category.

Proof. We have to prove that if A is a small category and K a simultaneously reflective
and coreflective full subcategory of [A ,V ], then there is a small category B and an equivalence of
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categories K ≃ [B,V ]. To say that K a simultaneously reflective and coreflective full subcategory
of [A ,V ] is to say that there is an adjoint string

K κ // [A ,V ].

l

⊥ww

r

⊥
gg (1.7)

in which κ is an inclusion of categories. Composing this string with (1.6) gives the following adjoint
string

K (iA )∗◦κ // [|A |,V ],

l◦(iA )!

⊥ww

r◦(iA )∗

⊥
gg (1.8)

in which

• the morphism (iA )∗ ◦ κ, being a composite of two conservative functors, is conservative, and

• the category K , being a reflective and coreflective subcategory of the complete and cocom-
plete category [A ,V ], admits all small limits and colimits.

It then follows from Theorem 2.1 that there exist a small category Kκ and an equivalence of
categories K ≃ [Kκ,V ]. ⊔⊓

We now come to the main result of the paper, which gives some equivalent conditions charac-
terising those categories that are simultaneously reflective and coreflective full subcategories of a
given functor category.

Theorem 2.4. For small category A and a category K , the following conditions are equivalent:

(i) K is equivalent to a simultaneously reflective and coreflective full subcategory of [A ,V ].

(ii) There is a fully faithful adjoint monadic functor K → [A ,V ].

(iii) There is a fully faithful functor K → [A ,V ] whose composite with the functor (iA )∗ :
[A ,V ] → [|A |,V ] is adjoint monadic.

(iv) K is equivalent to [B,V ], where B is a small category together with identity-on-objects func-
tor j : A → B such that the morphism µj (as defined in Subsection 1.7) is an isomorphism.

(v) K is equivalent to [B,V ], where B is a small category together with bijective-on-objects
functor j : A → B such that the morphism µj is an isomorphism.

(vi) K is equivalent to [B,V ], where B is a small category together with surjective-on-objects
functor j : A → B such that the morphism µj is an isomorphism.



On simultaneously reflective and coreflective subcategories of functor categories 109

Proof. Since the canonical inclusion of any simultaneously reflective and coreflective full
subcategory of [A ,V ] is adjoint monadic (see Subsection 1.2), (i) and (ii) are equivalent, while (ii)
implies (iii), since the functor (iA )∗ : [A ,V ] → [|A |,V ] is adjoint monadic by Remark 1.8 and
since the composition of two adjoint monadic functors is evidently again adjoint monadic (see again
Subsection 1.2). The implications (iv) =⇒ (v) =⇒ (vi) are trivial.

(iii)=⇒(ii). Suppose that κ : K → [A ,V ] is a full and faithful functor such that the composite

K
κ−→ [A ,V ] (iA )∗

−−−→ [|A |,V ]

is adjoint monadic. Then K , being monadic and comonadic on the complete and cocomplete
category [|A |,V ], is itself complete and cocomplete. In particular, K (and hence also K0) admits
equalizers and coequalizers. Next, since the functors l ◦ (iA )! and r ◦ (iA )∗ are the left and right
adjoints of (iA )∗ ◦ κ, respectively, and since the functor (iA )∗ is adjoint monadic by Remark 1.8,
one can apply Dubuc’s Adjoint Triangle Theorem ([3]) and its dual to the commutative diagram

K

(iA )∗◦κ
##

κ // [A ,V ]

(iA )∗
yy

[|A |,V ]

to concludes that κ has a left as well as a right adjoint. Since the functor κ, being full and faithful,
is conservative, it follows from Remark 1.8 that κ is monadic and comonadic. Consequently, κ is
an adjoint monadic functor.

(i)=⇒(v). Let K be as in (i). Note first that the category K , being a reflective and coreflective
subcategory of the complete and cocomplete category [A ,V ], admits all small limits and colimits.
In particular, K (and hence also K0) admits equalizers and coequalizers. Next, the condition (i)
is equivalent to saying that there is an adjoint string, as in (1.7), in which κ is fully faithful, and
hence, in particular, conservative. Then the functor (iA )∗ ◦ κ in the adjoint string (1.8), being the
composite of two conservative functors, is conservative and it follows from Theorem 2.1 that K is
equivalent to the category [Kκ̄,V ], where κ̄ is the composite (iA )∗ ◦ κ. Consider now the diagram

K

κ

##

κ // [A ,V ]
(iA )∗

zz

[|A |,V ] ,
l

cc

(iA )!

::

in which l = l ◦ (iA )! and κ = (iA )∗ ◦κ. Clearly, l is left adjoint to κ. Then, according to [3], there
is a morphism of monads τ : T(iA )∗ → Tκ̄. Since r̄ = r ◦ (iA )∗ is right adjoint to κ, the monad Tκ̄

is cocontinuous and since T(iA )∗ is also cocontinuous, it follows from [2, Corollary 3.9] that there



110 B. Mesablishvili

is a bijective-on-objects functor b : K(iA )∗ → Kκ̄ making the bottom rectangle of the diagram

K
κ //

Kκ̄

��

[A ,V ]

K(iA )∗

��

[|A |,V ]Tκ̄

Γκ̄

��

[|A |,V ]τ

// [|A |,V ]T(iA )∗

Γ(iA )∗

��

[Kκ̄,V ]
b∗

// [A ,V ] = [K(iA )∗ ,V ]

commute up to isomorphism. (Recall that A = K(iA )∗ , by Remark 2.2.) Since the top rectangle
of the above diagram commutes (e.g., [8, p. 325]), it follows that the functor κ is full and faithful if
and only the functor b∗ is. But, by Proposition 1.9, b∗ is full and faithful if and only if the morphism
µb : Kκ̄(b, b) ⊙ Kκ̄(b, b) → Kκ̄(b, b) is an isomorphism. Consequently, the functor b : A → Kκ̄

satisfies (v).
(iv)=⇒(i). Let j : A → B be as in (iv). Since K is assumed to be equivalent to [B,V ], it

suffices to prove that the functor j∗ : [B,V ] → [A ,V ] is fully faithful, which by Proposition 1.9,
is equivalent to proving that the morphism εj : B(−, j) ⊙ B(j,−) → B is an isomorphism. But
since j is identity on objects, B(−, j) = B(j,−) = B(j, j). Therefore, εj = µj and hence εj is also
an isomorphism. Thus, j∗ is fully faithful.

(vi)=⇒(iv). Assuming (vi), consider the canonical (identity-on-objects, fully faitful)-factorization
A

ej−→ Im(j) mj−−→ B of the surjective-on-objects functor j : A → B. Since j is surjective on objects,
while ej is identity on objects, it follows from the equality j = mj ◦ ej that mj is surjective on
objects. Since mj is also full and faithful and since a functor is an equivalence of categories if and
only if it is fully faithful and essentially surjective on objects (e.g., [6, p. 51]), it follows that mj is an
equivalence of categories. Then clearly [B,V ] is equivalent to [Im(j),V ] and thus K is equivalent
to [Im(j),V ]. Moreover, since ej is identity on objects, Im(j)(ej , ej) = Im(j)(−,−) = B(j, j). It
then follows that the morphism

µej : Im(j)(ej , ej) ⊙ Im(j)(ej , ej) → Im(j)(ej , ej)

is simply the morphism
µj : B(j, j) ⊙ B(j, j) → B(j, j),

which is an isomorphism by hypothesis. Thus, µj is also an isomorphism. Therefore, the functor
ej : A → Im(j) satisfies (iv). ⊔⊓

Remark 2.5. 1) In each case of (iv)–(vi), the functor j∗ : [B,V ] → [A ,V ] is fully faithful,
exhibiting [B,V ] as equivalent to a full reflective and coreflective subcategory of [A ,V ]. Thus, any
identity-on-objects, bijective-on-objects or surjective-on-objects functor j : A → B such that the
morphism µj is an isomorphism, is connected in the sense of [4, Definition 3.2].
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2) According to [4, Theorem 3.11], the functor j in (vi) can be also constructed as the first
factor of the ( surjective on objects, injective on objects fully faithful)-factorization in V -CAT of the
composite

A op YA op−−−→ [A ,V ] l−→ K ,

where l is the left adjoint of the inclusion functor K → [A ,V ].
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