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Abstract

We extend the notion of semidirect product from semi-abelian to ideally exact context, and
illustrate it by considering the case of unital commutative rings.
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1 Introduction
The categorical notion of semidirect product defined via monadicity of a certain kernel functor was
first considered in [4], and then more systematically re-introduced in the context of semi-abelian
categories (in the sense of [6]) in [1]. The purpose of the present paper is to suggest extending
this context from semi-abelian to “ideally exact” just as it was done for the theory of ideals in
[5]. As a simple motivation for such extension, one might ask, should not split epimorphisms of
unital rings always be ‘the same’ as semidirect product projections? Note that although non-unital
(=not-necessarily-unital) rings are more general than unital ones, describing the category of their
split epimorphisms is a different rather than a more general problem. In the last section here we
consider the even simpler case of commutative rings, aiming, however, not to obtain new results
but only to illustrate what was done at the categorical level.

The theory of semidirect products is indeed related with the theory of ideals. In a semi-abelian
category X , every split epimorphism α : A → B with a fixed section β : B → A determines
an internal action ξ of B on the kernel X of α (in the sense of [1]) and a canonical isomorphism
B ⋉ (X, ξ) → A. More generally, in an ideally exact category A , we do the same by using an
adjunction (F,U, η, ε) : X → A with a semi-abelian X and taking X ∈ X to be the kernel of
U(α). One can then think of X as an ideal of A as in the case of A being the category of unital
rings and U being the forgetful functor ‘from unital to non-unital’. Accordingly, our semidirect
products depend on the choice of U and we call them U -semidirect products. There is, however, a
canonical choice with X = (A ↓ 0), which is (not the same but) equivalent to what one might call
the best choice in the case of unital rings, as mentioned at the very end of Section 3.

In order to express its main message most clearly, the paper is made very short; in particular we
omitted: (a) the monoidal-categorical counterpart of what is done in [1] in the semi-abelian case;
(b) the explicit presentation of semidirect product via the left adjoint of the comparison functor
involved, which is also done in [1] in the semi-abelian case; and (c) some other straightforward cal-
culations. However, the main monadicity theorem that allowed us to introduce semidirect products
is proved in detail in Section 2.

Advanced Studies: Euro-Tbilisi Mathematical Journal 17(3) (2024), pp. 93–100.
DOI: 10.32513/asetmj/1932200824031
Tbilisi Centre for Mathematical Sciences.
Received by the editors: 4 September 2024.
Accepted for publication: 16 September 2024.



94 G. Janelidze

2 The monadicity theorem
Let (F,U, η, ε) : X → A an adjunction in which the category A has pushouts. For a fixed object
B in A we construct the induced adjunction

(F ′, U ′, η′, ε′) : Pt(U(B)) → Pt(B)

as follows:
• Pt(B) is the Bourn’s category of points over B, that is, the category of triples (A,α, β) in

which α : A → B and β : B → A are morphisms in A with αβ = 1B ;

• similarly, Pt(U(B)) is the category of triples (X,φ, ψ) in which φ : X → U(B) and ψ :
U(B) → X are morphisms in X with φψ = 1U(B);

• F ′ : Pt(U(B)) → Pt(B) is defined by

F ′(X,φ, ψ) = (B +FU(B) F (X), [1B , εBF (φ)], ι1),

using the pushout
B +FU(B) F (X) F (X)ι2oo

B

ι1

OO

FU(B)
εB

oo

F (ψ)

OO

• U ′ : Pt(B) → Pt(U(B)) is defined by U(A,α, β) = (U(A), U(α), U(β));

• η′
(X,φ,ψ) : (X,φ, ψ) → (U(B+FU(B) F (X)), U([1B , εBF (φ)]), U(ι1)) is defined as the compos-

ite of
X

ηX // UF (X)
U(ι2) // U(B +FU(B) F (X));

• ε′
(A,α,β) = [β, εA] : (B +FU(B) FU(A), [1B , εBFU(α)], ι1) → (A,α, β).

Next, assuming also that X is pointed and has finite coproducts, and in particular a zero object 0
(using the same symbol as for zero morphisms), let

(F ′′, U ′′, η′′, ε′′) : X → Pt(U(B))

be the adjunction, considered in [4] and in several subsequent papers in the case of U = 1X ; it has:
• F ′′ : X → Pt(U(B)) defined by F ′′(X) = (U(B) +X, [1, 0], ι1) (here and below we omit the

index at 1);

• U ′′ : Pt(U(B)) → X defined by U ′′(X,φ, ψ) = Ker(φ);

• with the kernel of [1, 0] : U(B) + X → U(B) written as U(B) ♭X = (U(B) ♭X, κB,X), η′′
X :

X → U(B) ♭X defined via the commutative diagram

X

η′′
X

�� ι2 &&

0

**
U(B) ♭X

κB,X

// U(B) +X
[1,0]
// U(B)
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• ε(X,φ,ψ) = [ψ, ker(φ)] : (U(B) + Ker(φ), [1, 0], ι1) → (X,φ, ψ).

Finally, we introduce the composite adjunction

(FB , UB , ηB , εB) = (F ′, U ′, η′, ε′)(F ′′, U ′′, η′′, ε′′) : X → Pt(B),

and the purpose of this section is:

Theorem 2.1. Let (F,U, η, ε) : X → A be an adjunction satisfying the following conditions:

(a) the category X is semi-abelian in the sense of [6];

(b) the category A is Barr exact;

(c) the functor U : A → X reflects isomorphisms and preserves regular epimorphisms.

Then the category A is ideally exact in the sense of [5], and the functors U and UB (for any object
B in A ) are monadic.

Proof. We observe:

(i) Since X is semi-abelian and U : A → X reflects isomorphisms, A is Bourn protomodular
by the result of Example 3 in Section 6 of [2].

(ii) This makes Pt(B) protomodular by the result of Example 4 in Section 6 of [2].

(iii) As follows from (i) and (ii), A and Pt(B) are Mal’tsev categories by Proposition 17 in [3].

(iv) Since U is a right adjoint that preserves regular epimorphisms and A is Barr exact, (iii)
implies that U preserves reflexive coequalizers.

(v) Since U reflects isomorphisms, (iv) implies that U is monadic.

(vi) (v) implies that A is ideally exact by Theorem 3.1 and Definition 3.2 of [5].

(vii) (vi) implies that A has finite colimits (by Theorem 3.3 of [5]), and so the functors F ′ :
Pt(U(B)) → Pt(B) and FB = F ′F ′′ : X → Pt(B) are well defined for each B in A .

(viii) U ′ : Pt(B) → Pt(U(B)) preserves reflexive coequalizers by (iv).

(ix) Similarly, U ′′ : Pt(U(B)) → X preserves coequalizers of refrexive relations (see Theorem
3.4(a) in [4]).

(x) Since U reflects isomorphisms, U ′ also does.

(xi) Since X is Bourn protomodular, U ′′ reflects isomorphisms.

As follows from (viii)-(xi), the functor UB = U ′′U ′ preserves coequalizers of refrexive relations and
reflects isomorphisms, which makes it monadic. q.e.d.
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3 Dependent and canonical semidirect products
Let (F,U, η, ε) : X → A be a fixed adjunction satisfying conditions (a)-(c) of Theorem 2.1; in
particular, the category A is ideally exact.

For an object B in A , let TB = (TB , ηB , µB) be the monad on X corresponding to the
adjunction

(FB , UB , ηB , εB) : X → Pt(B),
let X B be the category of TB-algebras, and let

(FB , UB , ηB , εB) : X B → Pt(B),

be the comparison equivalence. We introduce:

Definition 3.1. Given objects B in A and (X, ξ) in X B, we write

F
B(X, ξ) = (B ⋉U (X, ξ), πB,X,ξ, ιB,X,ξ)

and say that
B ⋉U (X, ξ) = (B ⋉U (X, ξ), πB,X,ξ, ιB,X,ξ)

is the U -semidirect product of B and (X, ξ).

Next, given an arbitrary ideally exact category A , we will make a special choice for the adjunc-
tion (F,U, η, ε) : X → A , in fact as in [5], where it is shown that all the conditions we need are
satisfied. Writing 0 for an initial object in A (since there will be no confusion with a zero object
in X ) and !A : 0 → A for the unique morphism from 0 to any given object A in A , we take:

• X = (A ↓ 0);

• F : (A ↓ 0) → A to be the forgetful functor (=the underlying object functor) defined by
F (X,χ) = X;

• U : A → (A ↓ 0) defined by U(A) = (0 ×A, π1);

• η(X,χ) = ⟨χ, 1X⟩ : (X,χ) → (0 ×X,π1);

• εA = π2 : 0 ×A → A.

A bit long but straightforward calculation shows that in this case the adjunction (FB , UB , ηB , εB) :
X → Pt(B) has:

• FB : (A ↓ 0) → Pt(B) is defined by FB(X,χ) = (B +X, [1B , !Bχ], ι1);

• UB : Pt(B) → (A ↓ 0) is defined by UB(A,α, β) = (0 ×B A, π1);

• for an object (X,χ) in (A ↓ 0), ηB(X,χ) =

X

χ
��

⟨χ,ι2⟩ // 0 ×B (B +X)

π1

yy0
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• for an object (A,α, β) in Pt(B), εB(A,α,β) =

B + (0 ×B A)
[1B ,!Bπ1]

%%

[β,π2] // A

α
��

B

ι1

ee
β

??

Definition and Remark 3.2. For this special choice of the adjunction (F,U, η, ε), it convenient
to present the semidirect product of B and ((X,χ), ξ) as

B ⋉ ((X,χ), ξ) = (B ⋉ ((X,χ), ξ), πB,(X,χ),ξ, ιB,(X,χ),ξ)

and call it the canonical semidirect product of B and ((X,χ), ξ). In this case, the last assertion of
Theorem 2.1 follows from Theorem 3.4 of [4], and the object B ⋉ ((X,χ), ξ) is the same as what
would be written as ((X,χ, !X), ξ) ⋊ (B, !B) in the notation of [4] (although (X,χ, !X) was written
as one letter there). Note also that, for a semi-abelian A , the 1A -semidirect products are the same
as the semidirect products in the sense of [1] (which themselves are a special case of the semidirect
products in the sense of [4]).

Remark 3.1. Let A be the category of unital rings. In this ‘classical’ case, one might first of all
think of the following three choices of the functor U : A → X :

(a) what we called the canonical choice, where X = (A ↓ Z) and U is defined by U(A) =
(Z ×A, π1) (we are using the fact that the ring Z of integers is the initial object in A );

(b) what seems to be the best (or most natural) choice, where U is the forgetful functor to the
category of non-unital rings;

(c) taking U to be the forgetful functor to the category of abelian groups, in order to have an
abelian X .

However, the choices (a) and (b) are equivalent in the sense that for X being the category of
non-unital rings we have the commutative diagram

A
A 7→(Z×A,π1)

{{

forgetful

  
(A ↓ Z) equivalence

(X.χ)7→Ker(χ)
// X

4 Semidirect products of commutative rings
In this section we choose the adjunction (F,U, η, ε) : X → A as follows:

• X is the category of non-unital commutative rings, where “non-unital” means that the exis-
tence of the element 1 is not required;

• A is the category of unital commutative rings, where the existence of 1 is required and the
morphisms are required to preserve it;
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• F : X → A is defined by F (X) = Z⋉X (“Dorroh extension”), where Z is the ring of integers,
the underlying abelian group of Z⋉X is the same as of Z×X, and the multiplication of Z⋉X
is defined by

(z, x)(z′, x′) = (zz′, zx′ + z′x+ xx′);

• U : A → X is the forgetful functor;

• ηX : X → Z ⋉X is defined by ηX(x) = (0, x);

• εA : Z ⋉X → A is defined by εA(z, a) = z · 1 + a, where 1 denotes the element 1 of A.

In this case the adjunction (FB , UB , ηB , εB) : X → Pt(B) has (having in mind that the initial
object in A is Z):

• FB : X → Pt(B) defined by

FB(X) = (B ⊗ (Z ⋉X), πX , ι1),

where πX : B ⊗ (Z ⋉X) → B is determined by b ⊗ (z, x) 7→ zb and ι1 is defined by ι1(b) =
b⊗ (1, 0);

• UB : Pt(B) → X defined by UB(A,α, β) = Ker(α), where “Ker” is understood ring-
theoretically, that is Ker(α) = {a ∈ A | α(a) = 0};

• identifying UBFB(X) = Ker(πX : B ⊗ (Z ⋉X) → B) with B ⊗X,

ηBX : X → B ⊗X

defined by ηBX(x) = 1 ⊗ x;

• εB(A,α,β) : (B ⊗ (Z ⋉Ker(α)), πKer(α), ι1) → (A,α, β) determined by

b⊗ (z, a) 7→ β(b)(z · 1 + a) = zβ(b) + β(b)a.

We obtain:

Theorem 4.1. The monad TB = (TB , ηB , µB) corresponding to the adjunction (F,U, η, ε) : X →
A can be described as follows:

(a) TB(X) = B ⊗X;

(b) ηBX : X → B ⊗X is defined by ηX(x) = (0, x);

(c) µBX : B ⊗B ⊗X → B ⊗X is defined by µBX(b⊗ b′ ⊗ x) = bb′ ⊗ x.

Proof. We already have (a) and (b), and it remains to prove (c). According to the description of
εB above, we know that

εBFB(X) : (B ⊗ (Z ⋉Ker(πX)), πKer(πX ), ι1) → (B ⊗ (Z ⋉X), πX , ι1)

is determined by b ⊗ (z, k) 7→ zι1(b) + ι1(b)k, where we assume b ∈ B, z ∈ Z, and k ∈ Ker(πX) ⊆
B ⊗ (Z ⋉X). Now, identifying again
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• Ker(πX) with B ⊗X,

• similarly, Ker(πKer(πX )) with B ⊗ Ker(πX),

• and then further, Ker(πKer(πX )) with B ⊗B ⊗X,

we can say that the map µBX = UB(εBFB(X)) is determined by making the diagram

B ⊗ (Z ⋉Ker(πX))
b⊗(z,k)7→zι1(b)+ι1(b)k // B ⊗ (Z ⋉X)

B ⊗B ⊗X

b⊗b′⊗x 7→b⊗(0,b′⊗(0,x))

OO

µB
X

// B ⊗X

b⊗x 7→b⊗(0,x)

OO

commute. For the top arrow in this diagram, since ι1(b) = b⊗(1, 0) (by the construction of pushouts
in the category of unital commutative rings), we have

b⊗ (0, b′ ⊗ (0, x)) 7→ 0(b⊗ (1, 0)) + (b⊗ (1, 0))(b′ ⊗ (0, x)) = bb′ ⊗ (0, x),

and so µBX(b⊗ b′ ⊗ x) = bb′ ⊗ x holds indeed. q.e.d.

Corollary 4.2. The category X B is the same as the category of commutative B-algebras in the
sense of ring theory, that is, the category of B-modules X equipped with a commutative (non-unital)
ring structure with (bx)x′ = b(xx′) = x(bx′) for all b ∈ B and x, x′ ∈ X. q.e.d.

Further, it is easy to check that the category equivalence

Pt(B) ∼ X B

is nothing but the standard equivalence between the category of augmented unital commutative
B-algebras and the category of non-unital commutative B-algebras. Under this equivalence an
augmented unital B-algebra corresponds to the kernel of its augmentation, while a non-unital B-
algebra X corresponds to the U -semidirect product (B ⋉U (X, ξ), πB,X,ξ, ιB,X,ξ) for which:

• the underlying abelian group of B ⋉U (X, ξ) is the same as of B ×X, and the multiplication
of B ⋉U (X, ξ) is defined by

(b, x)(b′, x′) = (bb′, bx′ + b′x+ xx′),

and so it is a natural generalization of Z ×X from rings to B-algebras;

• πB,X,ξ : B ⋉U (X, ξ) → B is defined by πB,X,ξ(b, x) = b;

• ιB,X,ξ : B → B ⋉U (X, ξ) is defined by ιB,X,ξ(b) = (b, 0).

In particular, when B = Z, B-algebras, unital or not, are the same as rings, unital or not, respec-
tively, and Z ⋉U (X, ξ) = Z ⋉X, where ξ disappears since it is uniquely determined.
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