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Abstract

We study the extensibility problem for a pair of derivations associated with an abelian extension
of Leibniz n-algebras, and derive an exact sequence of the Wells type.
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1 Introduction

Leibniz n-algebras were introduced in [9] as the non-skew symmetric version of Nambu algebras
[10, 18] or Lie m-algebras [12]. For n = 2, the Leibniz 2-algebras are ordinary Leibniz algebras
[16]. Thus, the concept of Leibniz n-algebra is a simultaneous generalization of Lie, Leibniz, and
Lie n-algebras. In this generalizing framework, it is natural to ask for the extension of results in
Leibniz or Lie algebras categories to the category of Leibniz n-algebras.

Based on Leibniz cohomology [17], the Quillen cohomology of a Leibniz n-algebra is computed
via the explicit cochain complex in [9]. Further (co)homological investigations of Leibniz n-algebras
are treated in [4, 5, 6]. In particular, in [5] we introduced crossed modules of Leibniz n-algebras
and describe the second cohomology as the set of equivalence classes of crossed extensions. In
[6], we provided the Hopf type formulas for the higher homology of Leibniz n-algebras, studied in
[4]. All these investigations exploit the remarkable properties of the so-called Daletskii-Takhtajan’s
functor from the category of Leibniz n-algebras to the category of Leibniz algebras, which is further
explored in our recent paper [7].

In the presented work, we aimed to study the extensibility problem for derivations associated
with an abelian extension of Leibniz n-algebras. In the case of groups, such an extensibility problem
of automorphisms goes back to Baer [1]. Important progress was achieved by Wells in extensions
of abstract groups [21], where a map, later called a Wells map, is defined and an exact sequence,
also called a Wells exact sequence, connecting various automorphism groups is constructed. The
Wells map and the extensibility of a pair of automorphisms associated with an (abelian) extension
were studied in the context of various algebraic structures [3, 11, 13, 14, 15, 19]. In parallel, the
extensibility of derivations associated with an abelian extension of Lie algebras, associative algebras
and algebras with bracket have been studied in [2], [20] and [8], respectively.

Organization

After the introductory Section 1, the paper is organized into two more sections. Section 2 recalls
basic definitions on Leibniz n-algebras, construction of cohomology complex and description of
the zero and the first cohomologies via derivations and abelien extensions, respectively. The main

Advanced Studies: Euro-Tbilisi Mathematical Journal 17(3) (2024), pp. 79-91.
DOI: 10.32513/asetmj/1932200824030
Thbilisi Centre for Mathematical Sciences.

Received by the editors: 21 May 2024.
Accepted for publication: 6 2024.



80 E. Khmaladze

results are presented in Section 3. Namely, the extensibility problem for derivations of Leibniz
n-algebras associated with an abelian extension is stated and investigated, the Wells map is con-
structed (Definition 3.5), which is used to determine the necessary and sufficient condition for the
extensibility of a pair of derivations associated to a given abelian extension of Leibniz n-algebras
(Theorem 3.7). The Wells exact sequence connecting various vector spaces of derivations is also
obtained (Theorem 3.9).

Conventions and notation.

Throughout the paper we fix a ground field K. All vector spaces and algebras are K-vector spaces
and K-algebras, and linear maps are K-linear maps as well. Hom and ® denote Homg and ®g,
respectively. For the composition of two maps f and g, we write simply ¢gf. For the identity map
on a set X we use the notation idx. For any equivalence relation on a set X we write cl(z) to
denote the equivalence class of an element z € X.

2 Preliminaries
2.1 Leibniz n-algebras

A Leibniz n-algebra [9] is a vector space £ equipped with an n-linear bracket [—,--- , =] : L*" — L
satisfying the following fundamental identity

[[xh'"7xn]7yla"'ayn—1] = Z [xlw-')xi—la [xi7y1a"'ayn—l];xi+1;"'axn] (21)
1<i<n

forall z1,...,2n,Y2,.-.,yn € L.

A homomorphism of Leibniz n-algebras £ — L' is a linear map preserving the n-ary bracket.
The respective category of Leibniz n-algebras will be denoted by ,Lb.

For n = 2, the identity (2.1) is equivalent to the Leibniz identity

[z, 9], 2] = [l 2], y] + [2, [y, 1],

so a Leibniz 2-algebra is simply a Leibniz algebra [16] and it is a Lie algebra if the condition
[z,2] = 0 is fulfilled for all € £. In general, if the n-ary bracket is skew-symmetric, that is

[To(1)s - To(my] = sgn(o)[@1,. .., 20],

for all o € S,,, then L is a Lie n-algebra or Filippov algebra [12, 18]. Here S,, stands for the
permutation group on n elements, and sgn(o) € {—1, 1} denotes the signature of o.

To a given Leibniz algebra £, one assigns the Leibniz n-algebra with the same underlying vector
space L endowed with the n-ary bracket defined by

(1,22, ..., xn] = [x1, [T2y - oy [Tno1, Tn] -+ ]]
(see [9]). This assignment is functorial and provides the so-called forgetful functor
Lb — ,Lb, L— L.
Conversely, the so-called Daletskii- Takhtajan’s functor [10]

D, :nlb — Lb
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assigns to a Leibniz n-algebra £ the Leibniz algebra D,,(£) with the underlying vector space £&7~1
and with the bracket operation given by

1@ @y 1, 2] @@ (] = > 1@ @[, ah, .2, @ @
1<i<n—1
A subalgebra £’ of a Leibniz n-algebra L is called an n-sided ideal if [z1,...,z,] € L' as soon

as x; € L' for some ¢, 1 < i < n. For any two n-sided ideals £’ and £” of a Leibniz n-algebra L, we
denote by [£', L", £L"2] the commutator ideal of L, that is, the n-sided ideal of £ spanned by the
brackets [z1,...,z,], where necessarily z; € £ and z; € L” for some i and j, 0 < i,j < n, i # j.
Clearly [£', L", LM2) C L'NnL".

The centre of a Leibniz n-algebra L is the n-sided ideal

Z(L)y={z € L] [v1, ., Ti 1,2, Tip1,...,2n) =0 forallw; € L5 =1,...,4,...,n}.

An abelian Leibniz n-algebra is a Leibniz n-algebra with the trivial n-bracket. It is clear that a
Leibniz n-algebra L is abelian if and only if £ = Z(L).

2.2 Cohomology of Leibniz algebras

In this section we recall from [9] the main facts on the cohomological investigation of Leibniz
n-algebras.

Let £ be a Leibniz n-algebra. A representation of L (or L-representation) is a vector space M
together with n linear maps (n actions of £ on M)

[, =] LY @M@ LT s M, 0<i<n—1

satisfying 2n — 1 equations, which are obtained from (2.1) by letting exactly one of the variables
TlyeeeyTyyYly---,Yn—1 be in M and all the others in £. In particular, forgetting the Leibniz
n-algebra structure of £, it can be considered as a representation of L.

Of course, this notion for n = 2 coincides with the definition of a representation of a Leibniz
algebra, considered in [17], where the cohomology HL* (L, M) of a Leibniz algebra L with coefficients
in its representation M is computed to be the cohomology of the Leibniz cochain complex CL* (L, M)
given by

CL™(L, M) = Hom(L®™, M), m >0

with the coboundary operator 8™ : CL" (L, M) — CL™ (L, M) defined by

O @1, tmir) = [0, f@o, - wme) + Y (CD (@, Biy e Zng), 2]

2<i<m+1

+ Z (_1)j+1f(x17---;mifh[xi7$j]7xi+l7'"7@)"'7xm+1) .
1<i<j<m+1

The Quillen cohomology ,HL* (£, M) of a Leibniz n-algebra £ with coefficients in a representa-
tion M of L is computed in [9] as the cohomology of an explicit cochain complex ,CL* (£, M). An
essential fact for the construction of the complex ,CL* (L, M) is that if M is a representation of a
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Leibniz n-algebra £, then Hom(L, M) can be considered as a representation of the Leibniz algebra
D,,(L) using the following linear maps

[, -] : Hom(£, M) ® D,,(L) = Hom(L, M) ,
[—, =] : Dp(£) ® Hom(L, M) — Hom(L, M)

given by

[fiz1® - Q@an_1](x) =[f(x), 21, .., Tn-1] — flx,21,...,2T0],
[$1®"'®$n_1,f](x) :f[xaxlv"'axn]f[f(x)axla"'vxn—l} - [xaxla"',f(mn—l)] .

Then the complex ,,CL* (£, M) is defined to be CL*(D,,(£), Hom(L, M)). Thus
WHL* (L, M) = H*(,CL* (£, M)) = HL*(D,,(£), Hom(L, M)) .
Note that for n = 2 we have ,CL™ (£, M) = CL™ (£, M) for all m > 0 and hence
QHL™(L, M) = HL™ T (L, M).

Now we specify the cochains and coboundary maps of , CL*(£, M) in low dimensions, which
will be useful later.
- nCL%(L, M) consists of all linear maps g : £ — M,
- nCLl(ﬁ,M) consists of all linear maps f : L& — M,
- wCL3(L, M) consists of all linear maps £2*"~1 — M,
with the coboundary maps

@) (@1, xn) = glor, o xn] = D (w1 g(@i), 2] (2.2)

(O ) (@1, Ty Y1s ey Yno1)

= f(lz1, ol yt s yne1) = Y @ [y el ) (2.3)
1<i<n
+ [f(xlv"'axn)aylv”'»ynfl]_ Z [xlw"af(xiaylau'aynfl);"'axn]7
1<i<n

2.3 ,HL’ and ,HL'
Given a Leibniz n-algebra £ and its representation M, ,HL?(£, M) and ,HL' (£, M) are described
in [9] via derivations and abelian extensions of Leibniz n-algebras, respectively. For future reference,
we should briefly recall the relevant concepts related to these results.

A derivation from a Leibniz n-algebra £ into a representation M of L is a linear map d : £L — M

such that
dlzy, .. xp) = > (w1, d(@:), .2,

1<i<n
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for all z1,...,2, € L. Let Der(£, M) denote the vector space of all derivations from £ to M. In
the case when M = L, we denote Der(L, L) by Der(£). We have the following isomorphism of
vector spaces [9]

HLY(L, M) = Der (L, M).

Let

0—M-T 5L -0

be a short exact sequence of Leibniz n-algebras, where M is a representation of £ considered as
an abelian Leibniz n-algebra. Take a linear section s of 7, i. e. a linear map s : £ — £ such that
ms = idz. Then there is an induced L-representation structure on M defined in the standard way
by taking the n-ary bracket in £, that is

(@1, T, M T, - ] = 0 [s(21), .. s(@im1), 0(m), (i), -, ()], (2.4)

for #1,--- ,xn, € L and i € {1,--- ,n}. Since M is abelian, it is clear that the definition does not
depend on the linear section s.
An abelian extension of a Leibniz n-algebra L by its representation M is a short exact sequence
of Leibniz n-algebras
E:0— M-S 5L —0,

such that [e,...,e,] =0in € assoon as e;,e; € M, 1 <14 # j < n and the induced L-representation
structure on M coincides with the given one. Two such abelian extensions E and E’ of £ by M
are isomorphic if there is a homomorphism of Leibniz n-algebras & — £’ which, together with the
identity maps on M and £, forms commutative squares.

The set Ext(L, M) is not empty since it contains the class of the abelian extension defined by
the semi-direct product of M and L, i. e.

Eo:0 — M B MxL ™S L—0. (2.5)

Here we recall from [5] that the semi-direct product M x L is the Leibniz n-algebra with the un-
derlying vector space M @ L and n-ary bracket given by

[(ml,xl),...,(mn,xn)] = ( Z [371,...,xi,l,mi,xi+1,...,xn],[xh...,xn]).
1<i<n

oo and 7 in the sequence (2.5) are defined by o¢(m) = (m,0) and mo(m,z) = x. Moreover, this
sequence splits by the homomorphism of Leibniz n-algebras £L — M x L, z — (0, ).

Any abelian extension E : 0 — M -2 £ "5 £ — 0 gives rise to a 1-cocycle f € ,CL* (L, M)
by choosing a linear section s : £ — £ of 7, and by defining f : £&" — M as follows

f(mla"' "rn) = U_l([s(xl)v"' ,S(Z‘n)} - 5[:1;1"" 7xn])’ (26)

for all z1,---,z, € L. This gives a well-defined bijection between the set of equivalence classes
Ext(L, M) of such abelian extensions of £ by M and the first cohomology of £ with coefficients in
M [9], ie.

Ext(£, M) = ,HL' (L, M).
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Let us note that this bijection maps the class of the trivial extension Ey to the zero element
in ,HL' (£, M). Moreover, it allows us to endow the set Ext(L£, M) with a vector space structure
induced from the one of ,HL'(L£, M). The respective addition in Ext(£, M) is defined by the
well-known “Baer sum” of extensions and the scalar multiplication is defined for any A € K by

Acl(E) = cl (AE), where AE: 0 = M 2% & T5 £ — 0.

3 Derivations of abelian extensions of Leibniz n-algebras
3.1 Extensibility of derivations

In this section, we formulate and solve the extensibility problem of derivations associated with an
abelian extension of Leibniz n-algebras.

Definition 3.1. Let 0 — M -2+ & 5 £ — 0 be an abelian extension of a Leibniz n-algebra
L by its representation M. A pair (da,dz) € Der(M) x Der(L£) is called extensible if there is a
derivation dg € Der(€) such that dgo = odp and wdg = dem.

Let us remark that, here M is considered as an abelian Leibniz n-algebra and hence, a derivation
da € Der(M) is just a linear map, and Der(M) = Endg(M).

Lemma 3.2. Let M be a representation of a Leibniz n-algebra £. Consider M as an abelian
Leibniz n-algebra. Let dz € Der(£) and daq € Der(M). Then (daq,ds) € Der(M x L) if and only
if the following equality holds for all ¢ € {1,--- ,n}, ; € £ and m € M

d./\/l['rla"'7xi—1;mami+1a"'axn]: Z [xla--'adﬁ(xj)v"'7xi—1am7xi+la"'7xn]
1<j#i<n
—|—[a:l,...,xi_l,dM(m),a:i+1,...,xn] (31)
Proof. The proof requires only direct calculations. Q.E.D.

For any Leibniz n-algebra £ and its representation M, let us denote by
D(M, £) = {(da,d) € Der(M) x Der(L) | daq and d satisfy equation (3.1)}.
Let us remark that D(M, L) is a vector subspace of Der(M x £) by Lemma 3.2.

Now we define a map
6 :D(M, L) x ,CLY (L, M) — ,CLY (L, M) (3.2)
as follows. For any (daq,d.) € D(M, £) and any 1-cochain f € ,,CL*(£, M) we set
0((drm,dz), f) = fo,
where fo : L — M is given by

folwr, ) = dpf (@, wn) = Y flan,. . de(@),. .. zn). (3.3)

1<i<n
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Lemma 3.3. Let us fix (da, dz) € D(M, L), then we have:
(i) If f € ,CLY(L, M) is a 1-cocycle, then fy is a I1-cocycle as well.
(if) If f and f’ are two cohomologous cocycles, then fp and fj are cohomologous as well.

Proof. (i) We need to check that (0 fp)(21,.. ., Zn,Y1,---,Yn_1) = 0, by (2.3) this means

fe([mlan-7xn]7yla"'7yn71) + [fe(xlw--7$n)ay17"'7yn71]

= Z (fﬂ(xla"';[x’hylv"'aynfl}v“wxn)+[xla'"7f9(xiay17'"7yn71)7"';xn})7
1<i<n

whenever the same conditions hold for f. This requires routine calculations using the equations
(3.1) and (3.3).
(ii) If f and f’ are cohomologous cocycles, by (2.2) there is a linear map g : £ — M such that

(f = )1,y zn) = glag, . zn] — Z (@1, ., 9(x4), .-y ).

1<i<n

Then using only the definition of fp in (3.3), straightforward computations show that the linear
map dymg — gde : L — M satisfies the condition

fo = fo = 0"(dmg — gdc).
This completes the proof. Q.E.D.

Remark 3.4. As a consequence of Lemma 3.3, note that the map 6 in (3.2) induces a bilinear map
0 :D(M, L) x ,HL (L, M) — HL (L, M).
Using Lemma 3.3 we state the following definition.

Definition 3.5. Let E: 0 — M -2 £ -5 £ — 0 be an abelian extension of a Leibniz n-algebra
L by its representation M and f € ,CL' (£, M) be the induced 1-cocycle as in (2.6). The map

w: DM, L) — HLY (L, M),  wdpm,de) = O((dm,de),cl(f)) = cl(fo)
is called the Wells map associated to the given abelian extension E.

Remark 3.6. Note that if the abelian extension E is split, that is, there is a homomorphism of
Leibniz n-algebras s : £ — & such that 7s = idg, then fy = f = 0 and so w is the trivial map.

Theorem 3.7. Let E: 0 — M % £ =5 £ — 0 be an abelian extension of a Leibniz n-
algebra £ by its representation M. A pair (daq,dz) € Der(M) x Der(L) is extensible if and only
if (d,/\/ladﬁ) S D(M,,C) and w(dM,dc) =0.

Proof. Let s : L — & be a linear section of m. Then any element of £ has the form o(m) + s(z),
where m € M and = € £. To simplify notations, we write m instead of o(m) € £.
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First we show that (dag,dz) € Der(M) x Der(L) is extensible if (daq,dz) € D(M, L) and
w(dm,de) = 0((d£,dM), cl(f)) = cl(fy) = 0. Thus, there exists a linear map g : £ — M such that
fo = 9°(g). By using (2.2) and (3.3) we get immediately:

d./\/lf(xla“-;xn)* Z f(mla“-adﬁ(xi)a'“axn) (34)

1<i<n

=glx1,...,Tn] — Z [T1,. ey 9(2)s . o ).
1<i<n
Let us define dg¢ : € — £ by
de(m+ s(z)) = dp(m) — g(z) + sd(2). (3.5)

Obviously dg is a linear map and

dg(m) = dp(m),
wde(m + s(x)) = rdp(m) — wg(x) + wsde(x) = de(z) = dem(m + s(x)).

To see that dg is a derivation, it suffices to check the following identities

dg [s(wl), vy s(@iz1),my s(xig1)y .- s(xn)]
= Y [s(@r),....des(ay),. ... s(zica),m, s(@ign), -, 5(20)]
1<j#i<n
+ [s(ml), ooy S(®iz),de(m), s(zig1), - - -, s(xn)} (3.6)
and
de[s(x1), ... s(zn)] = Y [s(@1),... des(z:),... s(zn)]. (3.7)
1<i<n

Using the fact that de(m) = dap(m) and de(zj) = —g(z;) + sdg(x;), the identity (3.6) easily
follows from (3.1). To prove (3.7), we present the following calculations:
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= dpmf(xr, ..., xn) — g1, ..., xn] + sdefzy, ... 2y
=dmf(x1,...,xn) — glT1, ..., 2] + Z s[xl,...,dg(xi),...,xn)}

(%f)dﬂ4f(x1w..,xn)“gkrh~~~»xn]“12£; J@y,- oo de(@a)s - 20)
_;1; [s(x1), ..., sde(x1),. .., (2]

(3.4) _1; (21, 0s9(2), ) +1<Z<: [s(x:),...,sda(wi)w-wS(wi)]

29 1;2; [S(xl)’_”’g(zi),...,S(xn)_}:r1<Z< [s(z1),...,sdc(zi), ..., s(2;)]

(3.5) 1; 7[3(351), o des(@), . s(@)]. N

Conversely, suppose that (daq,dg) € Der(M) x Der(L) is extensible, i. e. there exists dg €
Der(€) such that dgo = 0daq and wde = dom, then dpg is the restriction of dg on M, dyg = dg|m.
Fix again a linear section s : £L — &£ of m. Since sdz(z) — des(z) € Kern for all x € £, we have a
linear map g : £L — M defined by

g(x) = sdg(x) — des(x). (3.8)

Now we claim that the pair (da,dg) € DM, L), i. e. dyp and dg satisfy the condition (3.1). In
effect,
dm [xl, e X1 Ty xn] =dg¢ [s(xl), cooys(xizr), mys(Tig1), - s(xn)]

= Z [S(.’ﬂl), RN ng(lL'j), AR 5(3:1'—1); m, S(xi—i-l)a RN S(:Cn)]

1<j#i<n

+ [s(z1), ..., 8(wi—1),de(m), s(ziz1), - - -, 8(Tn)]

3.8
N sl sde (@) — 90y, s(@iea) m (i), ()
1<j#i<n
=+ [.’L’l, ey L1, dM(m),l’iJrl, .. ,xn]
= Z [s(x1),...,sde(z5), ..., s(xim1),m, s(xig1), ..., s(Tn)]
1<j#i<n

+ [xlv cee ,:L'iflad./\/l(m)vxﬂrlv cee 7xn]

= Z [Il, .. .,dﬁ(ﬂCj), ey L1, My Tjy 1y - - - ,l’n] —+ [Il, e 7l’i_1,d/\/[(m),.’£i+1, e ,In].
1<j#i<n
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It remains to show that w(da, dz) = 0((dz, dm), cl(f)) = cl(fg) = 0. For this, let’s check that
fo = 3°(g), where g is defined in (3.8). In effect, for any x1,...,z, € £ we have
(2.6)
dels(z1),...,s(zn)] = de(s[zr...,zn] + flz1...,20))
3.8
@5 sdelr .. xn) — gz, 2] Fdmf(@1 .0, 20). (3.9)

On the other hand, since d¢ is a derivation, we get

de[s(z1),...,s(zn)] = Z [s(x1),... des(x;), ..., s(zn)]

38 > [s(acl),...7;d;(aci),...,S(mn)] —1; [s(21), .-, g(mi), .., s(an)] (3.10)
‘226)3(1« (21, s de(@), - ] +1; f_(xl, ,de(zi), .. Tn)

i = 2 [l sten)]
= sdg[z ,xn]+1; fl, ,dp(zi_):- ,mn)—lg [s(z1)s s g(xi), s s(an)]

Comparing the last lines in (3.9) and (3.10), we easily get

folr, . an) = dmf(zr,. ) — Y flon,. .. de(xi), 2n)

1<i<n
(3.9),(3.10)
LA oy = S0 [s(@a), . gla), s(wn)]
1<i<n
(2.4) (2.2)
= glzr..., 2] — Z (21, g(:),20] =" 0%(9) (w1 ..., 3p).
1<i<n
This completes the proof. Q.E.D.

3.2 The Wells sequence for derivations of Leibniz n-algebras

Given an abelian extension E : 0 — M % & =5 £ — 0 of a Leibniz n-algebra £ by its
representation M, we fix a linear section s of 7 and introduce the following notation

Der(€| M) = {dg € Der(€) | de(M) C M}.
One readily checks that any element dg € Der(€ | M) defines two derivations of Leibniz n-algebras
dejpm = dg|m € Der(M)  and  d% = mdes € Der(L).

Moreover, since wdg(m) = 0 for any m € M, it follows that d% does not depend on the choice of
the section s. Thus, we get a linear map

K : Der(€ | M) — Der(M) x Der(L), k(dg) = (dgjpm, d%).
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It is easy to see that odgjag = deo and dém = mdg, that is, (dg‘M,di) is an extensible pair in
Der(M) x Der(L). Then by Theorem 3.7 we have that (dgjy, d%) € D(M, £) and w(dgjaq, d%) = 0.
Moreover, we have the following result

Lemma 3.8. With the above notations, the following assertions hold:
(i) Im(x) € D(M, £);
(ii) Im(k) = Ker(w).

Proof. (i) There is nothing to prove because as we have shown above k(dg) € D(M, L) for all
dg € Der(€ | M).

(i) Since wr(de) = w(dgap,d%) = 0 for all dg € Der(M, L), we have Im(x) C Ker(w).
So we just need to show that Ker(w) C Im(x). For that, take (dam,ds) € Ker(w). Then
0((dm,de),cl(f)) = 0, where f is the 1-cocycle in ,CL*(L, M) induced by the given extension
E as in (2.6). So, there exists a linear map (0-cochain in ,CL*(£, M)) g : L — M such that
0((dm,de),cl(f)) = cl(8°(g)), i. e. (3.4) holds. We define dg : & — € in the same way as in
(3.5), de(m + s(z)) = dpm(m) — g(x) + sde(z). One can repeat the respective part of the proof
of Theorem 3.7 to show that de¢ € Der(£). Moreover, it is obvious that dg(M) C M and hence,
dg € Der(€ | M). At the same time, dg|p = daq and wdgs = dz, which means that k(dg) = (dg, dg)
and the proof is completed. Q.E.D.

Let us denote by Z°(L, M) the vector space of all O-cocycles in the cochain complex ,CL*(£, M),
i. e. it consists of all linear maps g : £ — M satisfying

glar, .zl = D [z, g(@), ) (3.11)

1<i<n
for all z1,...,x, € L.

Theorem 3.9. Let E: 0 — M -%5 £ ™ £ — 0 be an abelian extension of a Leibniz n-algebra
L by its representation M. Then there is an exact sequence of vector spaces

0 — Z2°%(L, M) = Der(€ | M) 5 D(M, £) == HL (£, M). (3.12)

Proof. Thanks to Lemma 3.8 (ii), it suffices to construct an injection of vector spaces 7 : Z°(L, M) —
Der(€ | M) and show exactness at the term Der(&E | M).

We define 7 as follows. For any g € Z°(L, M), let 7(g9) = dg, where dg : £ — £ is given by
dg(m+s(z)) = g(z), for any m € M, z € L. Clearly dg|pm = 0 and d&(x) = mdgs(z) = mg(z) = 0.
Moreover, using (3.11) it is easy to check that dg is a derivation of Leibniz n-algebras. Hence
7(g) = dg € Der(€ | M) and k(dg) = (0,0), i.e. Im(7) C Ker(x). Obviously Ker(7) = 0, so it is an
injection.

It remains to check that Ker(x) C Im(7). For that, take dg¢ € Der(€| M) such that x(dg) =
(0,0), i. e. dg|lm =0 and mdgs = 0. For any = € £ we get dgs(z) € Ker(r) = M. Thus there is a
linear map g : L — M given by g = dgs. One can easily check that g does not depend on the choice
of the linear section s, it satisfies condition (3.11), i. e. g € Z°(L, M), and o(g) = d¢. Q.E.D.
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Finally, let us note that, if the abelian extension 0 — M -2+ £ 5 £ — 0 is split, i.e. there
is a homomorphism of Leibniz n-algebras s : £ — £ such that ms = id;, then w = 0 by Remark
3.6. Hence, the exact sequence (3.12) gives the following isomorphism of vector spaces

Der(£ | M) = D(M, L) x Z°(L, M).
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