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Abstract
We study the extensibility problem for a pair of derivations associated with an abelian extension
of Leibniz n-algebras, and derive an exact sequence of the Wells type.
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1 Introduction
Leibniz n-algebras were introduced in [9] as the non-skew symmetric version of Nambu algebras
[10, 18] or Lie n-algebras [12]. For n = 2, the Leibniz 2-algebras are ordinary Leibniz algebras
[16]. Thus, the concept of Leibniz n-algebra is a simultaneous generalization of Lie, Leibniz, and
Lie n-algebras. In this generalizing framework, it is natural to ask for the extension of results in
Leibniz or Lie algebras categories to the category of Leibniz n-algebras.

Based on Leibniz cohomology [17], the Quillen cohomology of a Leibniz n-algebra is computed
via the explicit cochain complex in [9]. Further (co)homological investigations of Leibniz n-algebras
are treated in [4, 5, 6]. In particular, in [5] we introduced crossed modules of Leibniz n-algebras
and describe the second cohomology as the set of equivalence classes of crossed extensions. In
[6], we provided the Hopf type formulas for the higher homology of Leibniz n-algebras, studied in
[4]. All these investigations exploit the remarkable properties of the so-called Daletskii-Takhtajan’s
functor from the category of Leibniz n-algebras to the category of Leibniz algebras, which is further
explored in our recent paper [7].

In the presented work, we aimed to study the extensibility problem for derivations associated
with an abelian extension of Leibniz n-algebras. In the case of groups, such an extensibility problem
of automorphisms goes back to Baer [1]. Important progress was achieved by Wells in extensions
of abstract groups [21], where a map, later called a Wells map, is defined and an exact sequence,
also called a Wells exact sequence, connecting various automorphism groups is constructed. The
Wells map and the extensibility of a pair of automorphisms associated with an (abelian) extension
were studied in the context of various algebraic structures [3, 11, 13, 14, 15, 19]. In parallel, the
extensibility of derivations associated with an abelian extension of Lie algebras, associative algebras
and algebras with bracket have been studied in [2], [20] and [8], respectively.

Organization
After the introductory Section 1, the paper is organized into two more sections. Section 2 recalls
basic definitions on Leibniz n-algebras, construction of cohomology complex and description of
the zero and the first cohomologies via derivations and abelien extensions, respectively. The main
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results are presented in Section 3. Namely, the extensibility problem for derivations of Leibniz
n-algebras associated with an abelian extension is stated and investigated, the Wells map is con-
structed (Definition 3.5), which is used to determine the necessary and sufficient condition for the
extensibility of a pair of derivations associated to a given abelian extension of Leibniz n-algebras
(Theorem 3.7). The Wells exact sequence connecting various vector spaces of derivations is also
obtained (Theorem 3.9).

Conventions and notation.
Throughout the paper we fix a ground field K. All vector spaces and algebras are K-vector spaces
and K-algebras, and linear maps are K-linear maps as well. Hom and ⊗ denote HomK and ⊗K,
respectively. For the composition of two maps f and g, we write simply gf . For the identity map
on a set X we use the notation idX . For any equivalence relation on a set X we write cl(x) to
denote the equivalence class of an element x ∈ X.

2 Preliminaries
2.1 Leibniz n-algebras
A Leibniz n-algebra [9] is a vector space L equipped with an n-linear bracket [−, · · · , −] : L×n → L
satisfying the following fundamental identity

[[x1, . . . , xn], y1, . . . , yn−1] =
∑

1≤i≤n

[x1, . . . , xi−1, [xi, y1, . . . , yn−1], xi+1, . . . , xn] (2.1)

for all x1, . . . , xn, y2, . . . , yn ∈ L.
A homomorphism of Leibniz n-algebras L → L′ is a linear map preserving the n-ary bracket.

The respective category of Leibniz n-algebras will be denoted by nLb.
For n = 2, the identity (2.1) is equivalent to the Leibniz identity

[[x, y], z] = [[x, z], y] + [x, [y, z]],

so a Leibniz 2-algebra is simply a Leibniz algebra [16] and it is a Lie algebra if the condition
[x, x] = 0 is fulfilled for all x ∈ L. In general, if the n-ary bracket is skew-symmetric, that is

[xσ(1), . . . , xσ(n)] = sgn(σ)[x1, . . . , xn],

for all σ ∈ Sn, then L is a Lie n-algebra or Filippov algebra [12, 18]. Here Sn stands for the
permutation group on n elements, and sgn(σ) ∈ {−1, 1} denotes the signature of σ.

To a given Leibniz algebra L, one assigns the Leibniz n-algebra with the same underlying vector
space L endowed with the n-ary bracket defined by

[x1, x2, . . . , xn] = [x1, [x2, . . . , [xn−1, xn] · · · ]]

(see [9]). This assignment is functorial and provides the so-called forgetful functor

Lb → nLb, L 7→ L.

Conversely, the so-called Daletskii-Takhtajan’s functor [10]

Dn : nLb → Lb
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assigns to a Leibniz n-algebra L the Leibniz algebra Dn(L) with the underlying vector space L⊗n−1

and with the bracket operation given by

[x1 ⊗ · · · ⊗ xn−1, x′
1 ⊗ · · · ⊗ x′

n−1] =
∑

1≤i≤n−1
x1 ⊗ · · · ⊗ [xi, x′

1, . . . , x′
n−1] ⊗ · · · ⊗ xn−1 .

A subalgebra L′ of a Leibniz n-algebra L is called an n-sided ideal if [x1, . . . , xn] ∈ L′ as soon
as xi ∈ L′ for some i, 1 ≤ i ≤ n. For any two n-sided ideals L′ and L′′ of a Leibniz n-algebra L, we
denote by [L′, L′′, Ln−2] the commutator ideal of L, that is, the n-sided ideal of L spanned by the
brackets [x1, . . . , xn], where necessarily xi ∈ L′ and xj ∈ L′′ for some i and j, 0 ≤ i, j ≤ n, i ̸= j.
Clearly [L′, L′′, Ln−2] ⊆ L′ ∩ L′′.

The centre of a Leibniz n-algebra L is the n-sided ideal

Z(L) = {x ∈ L | [x1, . . . , xi−1, x, xi+1, . . . , xn] = 0 for all xj ∈ L, j = 1, . . . , î, . . . , n} .

An abelian Leibniz n-algebra is a Leibniz n-algebra with the trivial n-bracket. It is clear that a
Leibniz n-algebra L is abelian if and only if L = Z(L).

2.2 Cohomology of Leibniz algebras
In this section we recall from [9] the main facts on the cohomological investigation of Leibniz
n-algebras.

Let L be a Leibniz n-algebra. A representation of L (or L-representation) is a vector space M
together with n linear maps (n actions of L on M)

[−, . . . , −] : L⊗i ⊗M ⊗ L⊗n−1−i → M , 0 ≤ i ≤ n − 1

satisfying 2n − 1 equations, which are obtained from (2.1) by letting exactly one of the variables
x1, . . . , xn, y1, . . . , yn−1 be in M and all the others in L. In particular, forgetting the Leibniz
n-algebra structure of L, it can be considered as a representation of L.

Of course, this notion for n = 2 coincides with the definition of a representation of a Leibniz
algebra, considered in [17], where the cohomology HL∗(L, M) of a Leibniz algebra L with coefficients
in its representation M is computed to be the cohomology of the Leibniz cochain complex CL∗(L, M)
given by

CLm(L, M) = Hom(L⊗m, M) , m ≥ 0

with the coboundary operator ∂m : CLm(L, M) → CLm+1(L, M) defined by

(∂mf)(x1, . . . , xm+1) = [x1, f(x2, . . . , xm+1)] +
∑

2≤i≤m+1
(−1)i[f(x1, . . . , x̂i, . . . , xm+1), xi]

+
∑

1≤i<j≤m+1
(−1)j+1f(x1, . . . , xi−1, [xi, xj ], xi+1, . . . , x̂j , . . . , xm+1) .

The Quillen cohomology nHL∗(L, M) of a Leibniz n-algebra L with coefficients in a representa-
tion M of L is computed in [9] as the cohomology of an explicit cochain complex nCL∗(L, M). An
essential fact for the construction of the complex nCL∗(L, M) is that if M is a representation of a
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Leibniz n-algebra L, then Hom(L, M) can be considered as a representation of the Leibniz algebra
Dn(L) using the following linear maps

[−, −] : Hom(L, M) ⊗ Dn(L) → Hom(L, M) ,

[−, −] : Dn(L) ⊗ Hom(L, M) → Hom(L, M)

given by

[f, x1 ⊗ · · · ⊗ xn−1](x) = [f(x), x1, . . . , xn−1] − f [x, x1, . . . , xn] ,

[x1 ⊗ · · · ⊗ xn−1, f ](x) = f [x, x1, . . . , xn] − [f(x), x1, . . . , xn−1] − · · · − [x, x1, . . . , f(xn−1)] .

Then the complex nCL∗(L, M) is defined to be CL∗(Dn(L), Hom(L, M)). Thus

nHL∗(L, M) = H∗(nCL∗(L, M)) = HL∗(Dn(L), Hom(L, M)) .

Note that for n = 2 we have 2CLm(L, M) ∼= CLm+1(L, M) for all m ≥ 0 and hence

2HLm(L, M) ∼= HLm+1(L, M) .

Now we specify the cochains and coboundary maps of n CL∗(L, M) in low dimensions, which
will be useful later.
- nCL0(L, M) consists of all linear maps g : L → M,
- nCL1(L, M) consists of all linear maps f : L⊗n → M,
- nCL2(L, M) consists of all linear maps L⊗2n−1 → M,
with the coboundary maps

(∂0g)(x1, . . . , xn) = g[x1, . . . , xn] −
∑

1≤i≤n

[x1, . . . , g(xi), . . . , xn] , (2.2)

(∂1f)(x1, . . . , xn, y1, . . . , yn−1)

= f([x1, . . . , xn], y1, . . . , yn−1) −
∑

1≤i≤n

f(x1, . . . , [xi, y1, . . . , yn−1], . . . , xn) (2.3)

+ [f(x1, . . . , xn), y1, . . . , yn−1] −
∑

1≤i≤n

[x1, . . . , f(xi, y1, . . . , yn−1), . . . , xn] ,

2.3 nHL0 and nHL1

Given a Leibniz n-algebra L and its representation M, nHL0(L, M) and nHL1(L, M) are described
in [9] via derivations and abelian extensions of Leibniz n-algebras, respectively. For future reference,
we should briefly recall the relevant concepts related to these results.

A derivation from a Leibniz n-algebra L into a representation M of L is a linear map d : L → M
such that

d[x1, . . . , xn] =
∑

1≤i≤n

[x1, . . . , d(xi), . . . , xn],
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for all x1, . . . , xn ∈ L. Let Der(L, M) denote the vector space of all derivations from L to M. In
the case when M = L, we denote Der(L, L) by Der(L). We have the following isomorphism of
vector spaces [9]

nHL0(L, M) ∼= Der(L, M).

Let

0 −→ M σ−→ E π−→ L −→ 0
be a short exact sequence of Leibniz n-algebras, where M is a representation of L considered as
an abelian Leibniz n-algebra. Take a linear section s of π, i. e. a linear map s : L → E such that
πs = idL. Then there is an induced L-representation structure on M defined in the standard way
by taking the n-ary bracket in E , that is

[x1, . . . , xi−1, m, xi+1, . . . , xn] = σ−1[
s(x1), . . . , s(xi−1), σ(m), s(xi+1), . . . , s(xn)

]
, (2.4)

for x1, · · · , xn ∈ L and i ∈ {1, · · · , n}. Since M is abelian, it is clear that the definition does not
depend on the linear section s.

An abelian extension of a Leibniz n-algebra L by its representation M is a short exact sequence
of Leibniz n-algebras

E : 0 −→ M σ−→ E π−→ L −→ 0,

such that [e1, . . . , en] = 0 in E as soon as ei, ej ∈ M, 1 ≤ i ̸= j ≤ n and the induced L-representation
structure on M coincides with the given one. Two such abelian extensions E and E′ of L by M
are isomorphic if there is a homomorphism of Leibniz n-algebras E → E ′ which, together with the
identity maps on M and L, forms commutative squares.

The set Ext(L, M) is not empty since it contains the class of the abelian extension defined by
the semi-direct product of M and L, i. e.

E0 : 0 −→ M σ0−→ M ⋊ L π0−→ L −→ 0. (2.5)

Here we recall from [5] that the semi-direct product M⋊L is the Leibniz n-algebra with the un-
derlying vector space M ⊕ L and n-ary bracket given by

[(m1, x1), . . . , (mn, xn)] =
( ∑

1≤i≤n

[x1, . . . , xi−1, mi, xi+1, . . . , xn], [x1, . . . , xn]
)
.

σ0 and π0 in the sequence (2.5) are defined by σ0(m) = (m, 0) and π0(m, x) = x. Moreover, this
sequence splits by the homomorphism of Leibniz n-algebras L → M ⋊ L, x 7→ (0, x).

Any abelian extension E : 0 −→ M σ−→ E π−→ L −→ 0 gives rise to a 1-cocycle f ∈ nCL1(L, M)
by choosing a linear section s : L → E of π, and by defining f : L⊗n → M as follows

f(x1, · · · , xn) = σ−1(
[s(x1), · · · , s(xn)] − s[x1, · · · , xn]

)
, (2.6)

for all x1, · · · , xn ∈ L. This gives a well-defined bijection between the set of equivalence classes
Ext(L, M) of such abelian extensions of L by M and the first cohomology of L with coefficients in
M [9], i.e.

Ext(L, M) ∼= nHL1(L, M).
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Let us note that this bijection maps the class of the trivial extension E0 to the zero element
in nHL1(L, M). Moreover, it allows us to endow the set Ext(L, M) with a vector space structure
induced from the one of nHL1(L, M). The respective addition in Ext(L, M) is defined by the
well-known “Baer sum” of extensions and the scalar multiplication is defined for any λ ∈ K by
λ cl(E) = cl (λ E), where λ E : 0 → M λσ−→ E π−→ L → 0.

3 Derivations of abelian extensions of Leibniz n-algebras
3.1 Extensibility of derivations
In this section, we formulate and solve the extensibility problem of derivations associated with an
abelian extension of Leibniz n-algebras.

Definition 3.1. Let 0 −→ M σ−→ E π−→ L −→ 0 be an abelian extension of a Leibniz n-algebra
L by its representation M. A pair (dM, dL) ∈ Der(M) × Der(L) is called extensible if there is a
derivation dE ∈ Der(E) such that dEσ = σdM and πdE = dLπ.

Let us remark that, here M is considered as an abelian Leibniz n-algebra and hence, a derivation
dM ∈ Der(M) is just a linear map, and Der(M) = EndK(M).

Lemma 3.2. Let M be a representation of a Leibniz n-algebra L. Consider M as an abelian
Leibniz n-algebra. Let dL ∈ Der(L) and dM ∈ Der(M). Then (dM, dL) ∈ Der(M⋊L) if and only
if the following equality holds for all i ∈ {1, · · · , n}, xj ∈ L and m ∈ M

dM[x1, . . . , xi−1, m, xi+1, . . . , xn] =
∑

1≤j ̸=i≤n

[x1, . . . , dL(xj), . . . , xi−1, m, xi+1, . . . , xn]

+ [x1, . . . , xi−1, dM(m), xi+1, . . . , xn] (3.1)

Proof. The proof requires only direct calculations. q.e.d.

For any Leibniz n-algebra L and its representation M, let us denote by

D(M, L) =
{

(dM, dL) ∈ Der(M) × Der(L) | dM and dL satisfy equation (3.1)
}

.

Let us remark that D(M, L) is a vector subspace of Der(M⋊L) by Lemma 3.2.

Now we define a map

θ : D(M, L) × nCL1(L, M) −→ nCL1(L, M) (3.2)

as follows. For any (dM, dL) ∈ D(M, L) and any 1-cochain f ∈ nCL1(L, M) we set

θ
(
(dM, dL), f

)
= fθ,

where fθ : L⊗n → M is given by

fθ(x1, . . . , xn) = dMf(x1, . . . , xn) −
∑

1≤i≤n

f(x1, . . . , dL(xi), . . . , xn). (3.3)
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Lemma 3.3. Let us fix (dM, dL) ∈ D(M, L), then we have:

(i) If f ∈ nCL1(L, M) is a 1-cocycle, then fθ is a 1-cocycle as well.

(ii) If f and f ′ are two cohomologous cocycles, then fθ and f ′
θ are cohomologous as well.

Proof. (i) We need to check that (∂1fθ)(x1, . . . , xn, y1, . . . , yn−1) = 0, by (2.3) this means

fθ([x1, . . . , xn], y1, . . . , yn−1) + [fθ(x1, . . . , xn), y1, . . . , yn−1]

=
∑

1≤i≤n

(
fθ(x1, . . . , [xi, y1, . . . , yn−1], . . . , xn) + [x1, . . . , fθ(xi, y1, . . . , yn−1), . . . , xn]

)
,

whenever the same conditions hold for f . This requires routine calculations using the equations
(3.1) and (3.3).

(ii) If f and f ′ are cohomologous cocycles, by (2.2) there is a linear map g : L → M such that

(f − f ′)(x1, . . . , xn) = g[x1, . . . , xn] −
∑

1≤i≤n

[x1, . . . , g(xi), . . . , xn].

Then using only the definition of fθ in (3.3), straightforward computations show that the linear
map dMg − gdL : L → M satisfies the condition

fθ − f ′
θ = ∂0(dMg − gdL).

This completes the proof. q.e.d.

Remark 3.4. As a consequence of Lemma 3.3, note that the map θ in (3.2) induces a bilinear map

Θ : D(M, L) × nHL1(L, M) −→ nHL1(L, M).

Using Lemma 3.3 we state the following definition.

Definition 3.5. Let E : 0 −→ M σ−→ E π−→ L −→ 0 be an abelian extension of a Leibniz n-algebra
L by its representation M and f ∈ nCL1(L, M) be the induced 1-cocycle as in (2.6). The map

ω : D(M, L) −→ nHL1(L, M), ω(dM, dL) = Θ
(
(dM, dL), cl(f)

)
= cl(fθ)

is called the Wells map associated to the given abelian extension E.

Remark 3.6. Note that if the abelian extension E is split, that is, there is a homomorphism of
Leibniz n-algebras s : L → E such that πs = idL, then fθ = f = 0 and so ω is the trivial map.

Theorem 3.7. Let E : 0 −→ M σ−→ E π−→ L −→ 0 be an abelian extension of a Leibniz n-
algebra L by its representation M. A pair (dM, dL) ∈ Der(M) × Der(L) is extensible if and only
if (dM, dL) ∈ D(M, L) and w(dM, dL) = 0.

Proof. Let s : L → E be a linear section of π. Then any element of E has the form σ(m) + s(x),
where m ∈ M and x ∈ L. To simplify notations, we write m instead of σ(m) ∈ E .
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First we show that (dM, dL) ∈ Der(M) × Der(L) is extensible if (dM, dL) ∈ D(M, L) and
w(dM, dL) = θ

(
(dL, dM), cl(f)

)
= cl(fθ) = 0. Thus, there exists a linear map g : L → M such that

fθ = ∂0(g). By using (2.2) and (3.3) we get immediately:

dMf(x1, . . . , xn)−
∑

1≤i≤n

f(x1, . . . , dL(xi), . . . , xn) (3.4)

= g[x1, . . . , xn] −
∑

1≤i≤n

[x1, . . . , g(xi), . . . , xn].

Let us define dE : E → E by

dE(m + s(x)) = dM(m) − g(x) + sdL(x). (3.5)

Obviously dE is a linear map and

dE(m) = dM(m),
πdE(m + s(x)) = πdM(m) − πg(x) + πsdL(x) = dL(x) = dLπ(m + s(x)).

To see that dE is a derivation, it suffices to check the following identities

dE
[
s(x1), . . . , s(xi−1),m, s(xi+1), . . . , s(xn)

]
=

∑
1≤j ̸=i≤n

[s(x1), . . . , dEs(xj), . . . , s(xi−1), m, s(xi+1), . . . , s(xn)]

+
[
s(x1), . . . , s(xi−1), dE(m), s(xi+1), . . . , s(xn)

]
(3.6)

and

dE
[
s(x1), . . . , s(xn)

]
=

∑
1≤i≤n

[
s(x1), . . . , dEs(xi), . . . , s(xn)

]
. (3.7)

Using the fact that dE(m) = dM(m) and dE(xj) = −g(xj) + sdL(xj), the identity (3.6) easily
follows from (3.1). To prove (3.7), we present the following calculations:
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dE [s(x1), . . . , s(xn)] (2.6)= dE
(
f(x1, . . . , xn) + s[x1, . . . , xn]

)
(3.5)= dMf(x1, . . . , xn) − g[x1, . . . , xn] + sdL[x1, . . . , xn]

=dMf(x1, . . . , xn) − g[x1, . . . , xn] +
∑

1≤i≤n

s
[
x1, . . . , dL(xi), . . . , xn)

]
(2.6)= dMf(x1, . . . , xn) − g[x1, . . . , xn] −

∑
1≤i≤n

f(x1, . . . , dL(xi), . . . , xn)

+
∑

1≤i≤n

[
s(x1), . . . , sdL(x1), . . . , s(xi)

]
(3.4)= −

∑
1≤i≤n

[
x1, . . . , g(xi), . . . , xn

]
+

∑
1≤i≤n

[
s(x1), . . . , sdL(xi), . . . , s(xi)

]
(2.4)= −

∑
1≤i≤n

[
s(x1), . . . , g(xi), . . . , s(xn)

]
+

∑
1≤i≤n

[
s(x1), . . . , sdL(xi), . . . , s(xi)

]
(3.5)=

∑
1≤i≤n

[
s(x1), . . . , dEs(xi), . . . , s(xn)

]
.

Conversely, suppose that (dM, dL) ∈ Der(M) × Der(L) is extensible, i. e. there exists dE ∈
Der(E) such that dEσ = σdM and πdE = dLπ, then dM is the restriction of dE on M, dM = dE |M.
Fix again a linear section s : L → E of π. Since sdL(x) − dEs(x) ∈ Ker π for all x ∈ L, we have a
linear map g : L → M defined by

g(x) = sdL(x) − dEs(x). (3.8)

Now we claim that the pair (dM, dL) ∈ D(M, L), i. e. dM and dL satisfy the condition (3.1). In
effect,

dM
[
x1, . . . , xi−1,m, xi+1, . . . , xn

]
= dE

[
s(x1), . . . , s(xi−1), m, s(xi+1), . . . , s(xn)

]
=

∑
1≤j ̸=i≤n

[s(x1), . . . , dEs(xj), . . . , s(xi−1), m, s(xi+1), . . . , s(xn)]

+ [s(x1), . . . , s(xi−1), dE(m), s(xi+1), . . . , s(xn)]
(3.8)=

∑
1≤j ̸=i≤n

[s(x1), . . . , sdL(xj) − g(xj), . . . , s(xi−1), m, s(xi+1), . . . , s(xn)]

+ [x1, . . . , xi−1, dM(m), xi+1, . . . , xn]

=
∑

1≤j ̸=i≤n

[s(x1), . . . , sdL(xj), . . . , s(xi−1), m, s(xi+1), . . . , s(xn)]

+ [x1, . . . , xi−1, dM(m), xi+1, . . . , xn]

=
∑

1≤j ̸=i≤n

[x1, . . . , dL(xj), . . . , xi−1, m, xi+1, . . . , xn] + [x1, . . . , xi−1, dM(m), xi+1, . . . , xn].
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It remains to show that w(dM, dL) = θ
(
(dL, dM), cl(f)

)
= cl(fθ) = 0. For this, let’s check that

fθ = ∂0(g), where g is defined in (3.8). In effect, for any x1, . . . , xn ∈ L we have

dE
[
s(x1), . . . , s(xn)

] (2.6)= dE
(
s[x1 . . . , xn] + f(x1 . . . , xn)

)
(3.8)= sdL[x1 . . . , xn] − g[x1 . . . , xn] + dMf(x1 . . . , xn). (3.9)

On the other hand, since dE is a derivation, we get

dE
[
s(x1), . . . , s(xn)

]
=

∑
1≤i≤n

[
s(x1), . . . , dEs(xi), . . . , s(xn)

]
(3.8)=

∑
1≤i≤n

[
s(x1), . . . , sdL(xi), . . . , s(xn)

]
−

∑
1≤i≤n

[
s(x1), . . . , g(xi), . . . , s(xn)

]
(3.10)

(2.6)= s
( ∑

1≤i≤n

[
x1, . . . , dL(xi), . . . , xn

])
+

∑
1≤i≤n

f(x1, . . . , dL(xi), . . . , xn)

−
∑

1≤i≤n

[
s(x1), . . . , g(xi), . . . , s(xn)

]
= sdL[x1 . . . , xn] +

∑
1≤i≤n

f(x1, . . . , dL(xi), . . . , xn) −
∑

1≤i≤n

[
s(x1), . . . , g(xi), . . . , s(xn)

]
.

Comparing the last lines in (3.9) and (3.10), we easily get

fθ(x1, . . . , xn) = dMf(x1, . . . , xn) −
∑

1≤i≤n

f(x1, . . . , dL(xi), xn)

(3.9),(3.10)= g[x1 . . . , xn] −
∑

1≤i≤n

[
s(x1), . . . , g(xi), s(xn)

]
(2.4)= g[x1 . . . , xn] −

∑
1≤i≤n

[
x1, . . . , g(xi), xn

] (2.2)= ∂0(g)(x1 . . . , xn).

This completes the proof. q.e.d.

3.2 The Wells sequence for derivations of Leibniz n-algebras
Given an abelian extension E : 0 −→ M σ−→ E π−→ L −→ 0 of a Leibniz n-algebra L by its
representation M, we fix a linear section s of π and introduce the following notation

Der(E | M) = {dE ∈ Der(E) | dE(M) ⊆ M}.

One readily checks that any element dE ∈ Der(E | M) defines two derivations of Leibniz n-algebras

dE|M = dE |M ∈ Der(M) and dE
L = πdEs ∈ Der(L).

Moreover, since πdE(m) = 0 for any m ∈ M, it follows that dE
L does not depend on the choice of

the section s. Thus, we get a linear map

κ : Der(E | M) −→ Der(M) × Der(L), κ(dE) = (dE|M, dE
L).
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It is easy to see that σdE|M = dEσ and dE
Lπ = πdE , that is, (dE|M, dE

L) is an extensible pair in
Der(M)×Der(L). Then by Theorem 3.7 we have that (dE|M, dE

L) ∈ D(M, L) and w(dE|M, dE
L) = 0.

Moreover, we have the following result

Lemma 3.8. With the above notations, the following assertions hold:

(i) Im(κ) ⊆ D(M, L);

(ii) Im(κ) = Ker(ω).

Proof. (i) There is nothing to prove because as we have shown above κ(dE) ∈ D(M, L) for all
dE ∈ Der(E | M).

(ii) Since wκ(dE) = w(dE|M, dE
L) = 0 for all dE ∈ Der(M, L), we have Im(κ) ⊆ Ker(ω).

So we just need to show that Ker(ω) ⊆ Im(κ). For that, take (dM, dL) ∈ Ker(ω). Then
θ
(
(dM, dL), cl(f)

)
= 0, where f is the 1-cocycle in nCL∗(L, M) induced by the given extension

E as in (2.6). So, there exists a linear map
(
0-cochain in nCL∗(L, M)

)
g : L → M such that

θ
(
(dM, dL), cl(f)

)
= cl(∂0(g)), i. e. (3.4) holds. We define dE : E → E in the same way as in

(3.5), dE(m + s(x)) = dM(m) − g(x) + sdL(x). One can repeat the respective part of the proof
of Theorem 3.7 to show that dE ∈ Der(E). Moreover, it is obvious that dE(M) ⊆ M and hence,
dE ∈ Der(E | M). At the same time, dE |M = dM and πdEs = dL, which means that κ(dE) = (dL, dE)
and the proof is completed. q.e.d.

Let us denote by Z0(L, M) the vector space of all 0-cocycles in the cochain complex nCL∗(L, M),
i. e. it consists of all linear maps g : L → M satisfying

g[x1, . . . , xn] =
∑

1≤i≤n

[x1, . . . , g(xi), . . . , xn] (3.11)

for all x1, . . . , xn ∈ L.

Theorem 3.9. Let E : 0 −→ M σ−→ E π−→ L −→ 0 be an abelian extension of a Leibniz n-algebra
L by its representation M. Then there is an exact sequence of vector spaces

0 −→ Z0(L, M) τ−→ Der(E | M) κ−→ D(M, L) ω−→ nHL1(L, M). (3.12)

Proof. Thanks to Lemma 3.8 (ii), it suffices to construct an injection of vector spaces τ : Z0(L, M) →
Der(E | M) and show exactness at the term Der(E | M).

We define τ as follows. For any g ∈ Z0(L, M), let τ(g) = dE , where dE : E → E is given by
dE(m + s(x)) = g(x), for any m ∈ M, x ∈ L. Clearly dE |M = 0 and dE

L(x) = πdEs(x) = πg(x) = 0.
Moreover, using (3.11) it is easy to check that dE is a derivation of Leibniz n-algebras. Hence
τ(g) = dE ∈ Der(E | M) and κ(dE) = (0, 0), i.e. Im(τ) ⊆ Ker(κ). Obviously Ker(τ) = 0, so it is an
injection.

It remains to check that Ker(κ) ⊆ Im(τ). For that, take dE ∈ Der(E | M) such that κ(dE) =
(0, 0), i. e. dE |M = 0 and πdEs = 0. For any x ∈ L we get dEs(x) ∈ Ker(π) = M. Thus there is a
linear map g : L → M given by g = dEs. One can easily check that g does not depend on the choice
of the linear section s, it satisfies condition (3.11), i. e. g ∈ Z0(L, M), and σ(g) = dE . q.e.d.
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Finally, let us note that, if the abelian extension 0 −→ M σ−→ E π−→ L −→ 0 is split, i.e. there
is a homomorphism of Leibniz n-algebras s : L → E such that πs = idL, then w = 0 by Remark
3.6. Hence, the exact sequence (3.12) gives the following isomorphism of vector spaces

Der(E | M) ∼= D(M, L) × Z0(L, M).
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