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Abstract

Effective codescent morphisms of n-quasigroups and of n-loops are characterized. To this end,
it is proved that, for any n ≥ 1, every codescent morphism of n-quasigroups (resp. n-loops) is
effective. This statement generalizes our earlier result on quasigroups (resp. loops). Moreover,
it is shown that the variety of n-quasigroups (resp. n-loops) satisfies the strong amalgamation
property, and the elements of the amalgamated free products of n-quasigroups (resp. n-loops)
have unique normal forms. The latter two statements generalize the corresponding old results
on quasigroups (resp. loops) by T. Evans.
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1 Introduction
The notion of an effective (co)descent morphism in a category is one of the main notions of
Grothendieck’s descent theory. In view of the results on effective codescent morphisms of com-
mutative rings by A. Joyal and M. Tierney (an unpublished work, [13], [10]) and Boolean algebras
by M. Makkai (an unpublished work), G. Janelidze posed the problem of characterizing such mor-
phisms in varieties of universal algebras. This problem was considered in our papers [16], [17], [18],
[14], [19]. In [18], we proved that all codescent morphisms of quasigroups (resp. loops) are effective.
In the present paper, we generalize this result to the case of n-quasigroups (resp. n-loops), for
arbitrary n ≥ 1. This generalization, together with the criterion for a monomorphism of a reg-
ular category with pushouts and the strong amalgamation property to be a codescent morphism,
found in [16], leads to a characterization of effective codescent morphisms of n-quasigroups (resp.
n-loops).

We also show that, for any n ≥ 1, the variety of n-quasigroups (resp. n-loops) satisfies the strong
amalgamation property, and the elements of the amalgamated free products of n-quasigroups (resp.
n-loops) have unique normal forms. These statements generalize the corresponding old results on
quasigroups (resp. loops) by T. Evans.

2 The convergent representations of the varieties of n-quasigroups and
n-loops

We follow the notation used in the monograph [2] by V. D. Belousov. Namely, for natural numbers
i and j, the symbol xj

i denotes the sequence xi, xi+1, ..., xj if i < j; it denotes the symbol xi if
i = j, and denotes the empty sequence if i > j. The symbol m

e denotes the sequence e, e, ..., e (m
times) if m ≥ 1, and denotes the empty sequence if m = 0.
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Let n be a natural number. Recall [2] that an n-quasigroup is defined as a set Q equipped with
an n-ary operation f such that, for arbitrary a1, a2, ..., an ∈ Q and i (1 ≤ i ≤ n), there is a unique
element b ∈ Q with

f(ai−1
1 , b, an

i+1) = ai. (2.1)

An n-quasigroup Q is called an n-loop [2] if there is an element e ∈ Q such that, for any i
(1 ≤ i ≤ n), the identity

f(i−1
e , x,

n−i
e ) = x (2.2)

is satisfied in Q.
One can easily verify that the category of n-quasigroups (with morphisms being mappings

preserving f) is the variety of universal algebras where the signature consists of the n-ary operation
symbols f, gi, while the identities are

f(xi−1
1 , gi(xn

1 ), xn
i+1) = xi. (2.3)

and
gi(xi−1

1 , f(xn
1 ), xn

i+1) = xi (2.4)

(1 ≤ i ≤ n). Similarly, the category of n-loops is the variety of universal algebras where the
signature, in addition to the n-ary operation symbols f, gi, contains one nullary operation e, while
the identities are (2.2)-(2.4) (1 ≤ i ≤ n).

Obviously, 2-quasigroups are precisely quasigroups, and 2-loops are precisely loops. Observe
also that 1-quasigroups are precisely sets equipped with permutations, while 1-loops are just sets.

Let C be a category with pushouts, and p : B → E be its morphism. The morphism p induces
the change-of-cobase functor

p∗ : B/C → E/C

between the coslice categories; it sends a morphism φ : B → C to the pushout of φ along p. As is
well-known, this functor has a right adjoint. Recall that p is called a codescent morphism (resp. an
effective codescent morphism) if the functor p∗ is precomonadic (resp. comonadic) [9].

In [16], we gave the necessary and sufficient condition for a morphism of a variety of universal
algebras with the strong amalgamation property to be a codescent morphism. In [18], we gave
the sufficient condition for any codescent morphism of a variety of universal algebras with the
amalgamation property to be effective. Applying this sufficient condition, in the joint paper with
G. Samsonadze [14], we related the problem of characterizing effective codescent morphisms in
varieties of universal algebras to the notion of confluency that is one of the central notions in term
rewriting theory. Below we recall some definitions from this theory (for more details, we refer the
reader to the book [1] by F. Baader and T. Nipkow).

Let F be a signature, i.e., a set of operation symbols equipped with arities. Let X be a countable
set with F∩X = ∅. We assume that the reader is familiar with the notions of a F-term (or simply
a term) over X, the size of a term, a position in a term, and the subterm of a term t at a position p.
We denote the latter subterm by t|p, and denote the term obtained from t by replacing the subterm
t|p by a term t′ by the symbol t[t′]p.

As usual, we identify positions in a term with nodes in the corresponding tree, and use the
well-known rule of enumerating them with strings of natural numbers. For instance, the tree and
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the enumeration of nodes for the term t = f(x1, x2, g3(x1, x2, x3, x4), x4) is the following:

f

ss zz "" ,,
1 x1 2 x2 g3

uu || %% **

4 x4

31 x1 32 x2 33 x3 34 x4

If, for instance, p = (3), then t|p = g3(x1, x2, x3, x4). The node f corresponds to the root position
of t.

Let T (F, X) be the set of all terms over X, and σ be a substitution (i.e., a mapping
σ : X → T (F, X) such that the set {x | σ(x) ̸= x} is finite). Since T (F, X) has the structure of an
F-algebra and is free over the set X, there is a unique F-homomorphism σ̂ : T (F, X) → T (F, X)
such that its restriction on X is σ.

An oriented identity is a formal expression of the form l = r, where l and r are terms (the
order of the terms matters). In this paper, when no confusion might arise, ‘identity’ means an
oriented identity.

We denote the set of variables that occur in at least one of terms t1, t2, ..., tn by V ar(t1, t2, ..., tn).
Let Σ be a set of identities. A pair (F, Σ) is called a term rewriting system (or, for short, a

system) if l is not a variable and V ar(r) ⊆ V ar(l), for any identity l = r from Σ. Sometimes, when
no confusion might arise, we use ‘term rewriting system’ (or ‘system’) for Σ.

Let (F, Σ) be a term rewriting system. One introduces the following binary relation → on the
set T (F, X) of terms: t→ t′ if the condition (C) below is satisfied.

(C) there exists an identity l = r from Σ, a substitution σ and a position p of t such that
t|p = σ̂(l) and t′ = t[σ̂(r)]p.

Roughly speaking, t → t′ means that the term t′ can be obtained from t by replacing some
subterm, and this replacement is compliant with some identity from Σ. At that, we are permitted
to use identities only in one direction – from left to right.

We use the symbol ∗−→ for the reflexive transitive closure of →.
A term rewriting system is called terminating if there is no infinite sequence of terms

t1 → t2 → ...

A term rewriting system is called confluent if, for any terms t, t1, t2 with t1
∗←− t

∗−→ t2, there is
a term t′ such that t1

∗−→ t′ ∗←− t2 (in that case, the terms t1 and t2 are called joinable):

t

∗

��

∗

��
t1

∗
��

t2

∗
��

t′
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Further, recall that a unifier of terms t and t′ is defined as a substitution σ such that σ̂(t) = σ̂(t′).
A unifier σ is called most general if any unifier σ′ of these terms can be represented as the compostion
σ′ = δ̂σ, for some substitution δ. If two terms have at least one unifier, then they have also the
most general unifier; it is unique up to renaming (i.e. an injective substitution ϱ with ϱ(X) ⊆ X)
[1].

Let ι1 : l1 = r1 and ι2 : l2 = r2 be identities from Σ. Let us rename their variables so that

V ar(l1, r1) ∩ V ar(l2, r2) = ∅.

Let p be a position of l1 such that l1|p is not a variable and the terms l1|p and l2 are unifiable. Let
σ be the most general unifier of l1|p and l2. The pair of terms

(σ̂(r1), σ̂(l1)[σ̂(r2)]p)

is called the critical pair determined by the identities ι1 and ι2 (at the position p of l1).
Observe that the term σ̂(l1) is in the relation → with both terms σ̂(r1) and σ̂(l1)[σ̂(r2)]p par-

ticipating in the critical pair:

σ̂(l1)

{{ &&
σ̂(r1) σ̂(l1)[σ̂(r2)]p

(2.5)

Moreover, the latter two terms are obviously joinable if p is a root position of ι1 and ι2 is a renamed
copy of ι1.

Theorem 2.1. [1] Let a term rewriting system (F, Σ) be terminating. Then it is confluent if and
only if all critical pairs arisen from the identities of Σ (including the critical pairs determined by
identities and their renamed copies) are joinable.

Lemma 2.2. The system (2.3)-(2.4) is confluent if and only if n = 1.

Proof. First observe that for any i and j (1 ≤ i, j ≤ n), the subterm l1|p of the left-hand term l1 of
identity (2.4) at the position p = (i) and the left-hand term l2 of the identity

f(yj−1
1 , gj(yn

1 ), yn
j+1) = yj (2.6)

are unifiable. Their most general unifier is given as follows: xj 7→ gj(yn
1 ) and xk 7→ yk, for k ̸= j.

Assume now that 1 ≤ i < j ≤ n. Then diagram (2.5) takes the form

gi(yi−1
1 , f(yj−1

1 , gj(yn
1 ), yn

j+1), yj−1
i+1 , gj(yn

1 ), yn
j+1)

ss
��

yi gi(yi−1
1 , yj , yj−1

i+1 , gj(yn
1 ), yn

j+1)

The terms in the obtained critical pair obviously are not joinable with respect to the system
(2.3)-(2.4). Theorem 2.1 implies that this system is not confluent. The ”if” part of the claim is
immediate. q.e.d.
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The arguments given in the proof of Lemma 2.2. imply that, in the variety of n-quasigroups
with n ≥ 2, the identity

gi(xi−1
1 , xj , xj−1

i+1 , gj(xn
1 ), xn

j+1) = xi (2.7)
is satisfied if i < j, and the identity

gi(xj−1
1 , gj(xn

1 ), xi−1
j+1, xj , xn

i+1) = xi (2.8)

is satisfied if i > j.
Lemma 2.3. Let n ≥ 2. The system (2.3)-(2.4) with 1 ≤ i, j ≤ n, (2.7) with 1 ≤ i < j ≤ n and
(2.8) with 1 ≤ j < i ≤ n is a confluent representation of the variety of n-quasigroups.
Proof. To account all critical pairs, note that the left-hand terms l1 and l2 of identities (2.4) and
(2.7) do not unify, for any i < j. Indeed, if σ were their unifier, then the size k1 of the subterm t|(i)
of the term t = σ̂(l1) would be greater than the size k2 of the subterm t|(j). On the other hand,
k1 < k2 since t = σ̂(l2), and we arrive to the contradiction.

Consider now, for instance, the case where ι1 is identity (2.3), p = (i), and ι2 is the renamed
copy of (2.7) (where xk’s are replaced by yk’s); i < j. The most general unifier of l1|p and l2 sends
xi to yj , sends xj to gj(y1, ..., yn), and sends all other xk’s to yk’s. It is easy to see that diagram
(2.5) takes the form

f(yi−1
1 , gi(yi−1

1 , yj , yj−1
i+1 , gj(yn

1 ), yn
j+1), yj−1

i+1 , gj(yn
1 ), yn

j+1)

ss
��

yj f(yj−1
1 , gj(yn

1 ), yn
j+1)

We obtain the critical pair that obviously is joinable due to identity (2.3). Similarly, one can verify
that all other critical pairs are joinable. q.e.d.

We are going now to deal with the variety of n-loops (n ≥ 1).
Lemma 2.4. (i) Let n be an arbitrary natural number. The system (2.2)-(2.4) (1 ≤ i ≤ n) is not
confluent.

(ii) Let n > 1. The union of the system given in Lemma 2.3 with the system (2.2) (1 ≤ i ≤ n)
is not confluent.
Proof. Let ι1 be identity (2.2), ι2 be identity (2.3), and p be the root position of l1. The most
general unifier of l1 and l2 sends xj to e, for j ̸= i, and sends x to gi(ei−1, xi, en−i). Then diagram
(2.5) takes the form

f(i−1
e , gi(

i−1
e , xi,

n−i
e ), n−i

e )

uu
''

gi(
i−1
e , xi,

n−i
e ) xi

We see that the terms in the critical pair that arises from this overlap is not joinable with respect
to the system (2.2)-(2.4). If n > 1, these terms are not joinable also with respect to the system
mentioned in the claim (ii). q.e.d.
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Equating the terms in the critical pair arisen in the proof of Lemma 2.4, we arrive to the identity

gi(
i−1
e , x,

n−i
e ) = x. (2.9)

Therefore, it is satisfied in the variety of n-loops, for any n ≥ 1 and any i (1 ≤ i ≤ n).

Lemma 2.5. The system (2.2)-(2.4), (2.9) (1 ≤ i ≤ n) is confluent if and only if n = 1. If n > 1,
then the union of the system given in Lemma 2.4(ii) with system (2.9) (1 ≤ i ≤ n) is not confluent.

Proof. For ”only if” part of the first claim, let 1 ≤ i < j ≤ n. Let ι1 be identity (2.4), p = (i), and
ι2 be the identity

f(
j−1
e , y,

n−j
e ) = y.

The most general unifier of l1|p and l2 sends xj to y, and sends xk to e, for k ̸= j. Therefore,
diagram (2.5) takes the form

gi(
i−1
e , f(

j−1
e , y,

n−j
e ),

j−i−1
e , y,

n−j
e )

vv
**

e gi(
i−1
e , y,

j−i−1
e , y,

n−j
e )

The terms e and gi(
i−1
e , y,

j−i−1
e , y,

n−j
e ) obviously are not joinable with respect to any system

considered above. The ”if” part of the claim is trivial. q.e.d.

In view of the proof of Lemma 2.5, consider the identity

gi(
i−1
e , x,

j−i−1
e , x,

n−j
e ) = e, (2.10)

for any i < j, and the identity
gi(

j−1
e , x,

i−j−1
e , x,

n−i
e ) = e, (2.11)

for any j < i. The arguments of the above-mentioned proof imply that these identities are satisfied
in the variety of n-loops, for any n ≥ 2. Similarly to Lemma 2.3, one can verify the following

Lemma 2.6. Let n ≥ 2. The system (2.2)-(2.4) with 1 ≤ i ≤ n, (2.7) with 1 ≤ i < j ≤ n, (2.8)
with 1 ≤ j < i ≤ n, (2.9) with 1 ≤ i ≤ n, (2.10) with 1 ≤ i < j ≤ n, and (2.11) with 1 ≤ j < i ≤ n
is a confluent representation of the variety of n-loops.

3 Effective codescent morphisms in the varieties of n-quasigroups and
n-loops

In [14], we considered the following conditions on a signature F and a set Σ of identities over F:

(*) for any identity l = r from Σ, no variable occurs in r more often than in l, and moreover,
the size of l is greater than that of r;
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(**) if the set F0 of constants from F is not empty, then, for any non-trivial algebra A from
the variety determined by F and Σ, the mapping F0 → A sending a constant to its value in A is
injective;

(***) for any identity l = r from Σ, any subterm l′ of l which is neither a variable nor a constant,
we have V ar(l′) = V ar(l).

Before continue, let us agree on the terminology.
Let V be the variety of universal algebras determined by (F, Σ). Let I be a non-empty set,

and Ai be a V-algebra, for any i ∈ I. Let B be a subalgebra of each Ai with the embedding
mi : B ↣ Ai. We assume that Ai ∩Aj = B, for i ̸= j (and also that Ai ∩ F = ∅).

Let A be the colimit of the diagram (mi : B ↣ Ai)i∈I . Similarly to [18] and [14], we use the
term ”free product of algebras Ai with the amalgamated subalgebra B” for A (even in the case
where the canonical homomorphisms ni : Ai → A are not monomorphic).

Recall that a variety C is said to satisfy the strong amalgamation property if, for any diagram
(mi : B ↣ Ai)i∈I , all canonical homomorphisms ni are monomorphisms and ni(Ai) ∩ nj(Aj) =
nimi(B), for any distinct i and j. This definition is equivalent to the similar one where only the
case with card(I) = 2 is considered (see, e.g., [7]).

One introduces the binary relation ⇝ on the set of F-terms over the set ∪
i∈I

Ai as follows: t⇝ t′

if either the above-mentioned condition (C) is satisfied (for X = ∪
i∈I

Ai) or t′ can be obtained from
t by replacing some subterm – a subterm such that all its variables (being elements of algebras)
belong to one and the same algebra Ai – by the value of this subterm in Ai.

The condition (*) implies that any element α of the free product A of (Ai)i ∈ I with the
amalgamated subalgebra B can be written as an irreducible term over the set ∪

i∈I
Ai, i.e., a term

τ such that τ ⇝ τ ′ for no term τ ′ over the same set. The term τ is called a normal form of the
element α [14]. In general, an element α may have more than one normal form.

Theorem 3.1. [14] Let a variety V of universal algebras be represented by a confluent term rewrit-
ing system (F, Σ) that satisfies the conditions (*)-(***). Then

(a) every codescent morphism of V is effective;
(b) the variety V satisfies the strong amalgamation property;
(c) the elements of amalgamated free products in V have unique normal forms.

From Lemmas 2.3, 2.6 and Theorem 3.1 we obtain

Theorem 3.2. Let n be an arbitrary natural number.
(a) Every codescent morphism of n-quasigroups (resp. n-loops) is effective;
(b) the variety of n-quasigroups (resp. n-loops) satisfies the strong amalgamation property;
(c) the elements of amalgamated free products in the variety of n-quasigroups (resp. n-loops)

have unique normal forms.

Note that, for n = 2, the claim (a) of Theorem 3.2 was first given in [18] (see also [14]), while the
claims (b) and (c) were first given in the paper [5] by T. Evans (see also [11] and [18]). For n = 1,
the claims (a) and (b) are obvious. Indeed, both the variety of 1-quasigroups (being isomorphic to
the category SetZ of functors from the group Z of integers, viewed as a category, to the category
of sets) and the variety of 1-loops are topoi, and the dual category of a topos is (Barr-)exact [3].
For 1-quasigroups, the claim (b) immediately follows also from the main result of [15].
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Recall

Theorem 3.3. [8] Let C be a category with pushouts and equalizers. A morphism p is a codescent
morphism if and only if it is a couniversal regular monomorphism. i.e. a morphism whose any
pushout is a regular monomorphism.

It is easy to observe that any monomorphism is regular in a variety with the strong amalgamation
property.

Theorem 3.4. [16] Let a variety V of universal algebras satisfy the strong amalgamation property.
Then a monomorphism A↣ A′ of V is a codescent morphism if and only if it satisfies the congruence
extension property, i.e., for any congruence R on A, there is a congruence R′ on A′ such that
R′ ∩ (A×A) = R.

Note that congruences mentioned in the congruence extension property in Theorem 3.4 can be
congruences with respect to any representation of the variety (while normal forms mentioned in
Theorem 3.1(c) are ones with respect to the considered representation (F, Σ)). Therefore, Theo-
rem 3.2(a), Theorem 3.2(b) and Theorem 3.4 imply

Theorem 3.5. Let n be an arbitrary natural number. A monomorphism Q↣ Q′ of n-quasigroups
(resp. n-loops) is an effective codescent morphism if and only if it satisfies the F-congruence
extension property, where F = {f} ∪ {gi | 1 ≤ i ≤ n} (and all operation symbols are n-ary).

Note that, for n = 2, the set of F-congruences on a quasigroup (resp. a loop) Q do not coincide
with that of {f}-congruences on Q [11], [4]. The former congruences are referred to as normal
congruences in literature. Note also that not any monomorphism of quasigroups (resp. loops)
satisfies the normal-congruence extension property [11], [12].

Let n = 1. Then any monomorphism is an effective codescent morphism in both the category of
1-quasigroups and the category of 1-loops since they are topoi. Theorem 3.5 implies that, in these
varieties, any monomorphism satisfies the F-congruence extension property (this can be easily seen
immediately). Observe also that, not any {f}-congruence on a 1-quasigroup is an F-congruence
(for an example, consider a 1-quasigroup (Z, f) with f(k) = k + 1, for any k ∈ Z. Let θ be the
equivalence relation on (Z, f) with the following equivalence classes: {k} (k < 1), and N. The
relation θ is obviously a congruence with respect to the signature {f}, but is not a congruence with
respect to the one F = {f, f−1}). Nevertheless, we have

Proposition 3.6. Let Q be a finite 1-quasigroup. Then any {f}-congruence on Q is an F-
congruence.

Proof. Let θ be an {f}-congruence on Q. Let Ca denote the θ-class of an element a ∈ Q. One
obviously has

f(Ca) ⊆ Cf(a). (3.1)
Inequality (3.1) implies that we have the increasing chain of natural numbers:

card(Ca) ≤ card(Cf(a)) ≤ card(Cf2(a)) ≤ ...

Since Q is finite, this chain stabilizes at some step k ≥ 0 (assuming that f0 = idQ). Inequality
(3.1) implies that, for any m ≥ k, we have

f(Cfm(a)) = Cfm+1(a). (3.2)
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Assume now that k ≥ 1. Since Q is finite and no distinct θ-classes have non-empty intersection,
(3.2) implies that there is the smallest l ≥ k with

f(Cf l(a)) = Cf l(a).

Since l ≥ 1 and f is a bijection, we arrive to the contradiction. Therefore, k = 0, and we have

f(Ca) = Cf(a).

q.e.d.

Finally note that, for loops, the normal-congruence extension property mentioned in Theo-
rem 3.5 is equivalent to the ideal extension property since the variety of loops is ideal-determined
[6]. This fact leads to the problem of finding all values of n such that the variety of n-loops is
ideal-determined.
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