
Twisted Commutators and Internal Crossed Modules∗†

Bo Shan Deval1 and Tim Van der Linden2

1,2Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, chemin du cyclotron 2
bte L7.01.02, B–1348 Louvain-la-Neuve, Belgium
E-mail: bo.deval@uclouvain.be1, tim.vanderlinden@uclouvain.be2

Abstract
We introduce a notion of relative commutator—an important special case being commutat-
ors twisted by an action—as a straightforward modification of the definition of the Higgins
commutator, establish its relation with a new notion of commutativity—also obtained as a
modification of the usual notion—and show how we can use it to characterise internal crossed
modules in the context of a semi-abelian category.
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1 Introduction
The aim of this article is to initiate a theory of commutativity twisted by an action. The wish
for such a development arose in a recent investigation in semi-abelian cohomology (on the relation
between [RVdL16] and [SVdL21]) where in order to better understand a certain higher-dimensional
commutator, a decomposition into simpler commutators would be helpful. The situation there does,
however, involve non-trivial actions, which calls for an appropriate categorical “twisted commutator
theory”. Our purpose here is not to go into those more involved applications, but rather to develop
basic foundations, which we then apply to a simple test case: we characterise internal crossed
modules in a semi-abelian category (in the sense of [JMT02] and [Jan03]) by means of twisted
commutators.

The definition of a twisted Higgins commutator is a straightforward modification of the usual
definition [Hig56; MM10b] and agrees with it in the case of a trivial action. In a fixed semi-abelian
category, we let an object B act on an object X via ξ : B5X Ñ X. (Details on how such a map
codifies an action are recalled in Section 2; essential for us here is the equivalence between actions
and split extensions via a semi-direct product construction.) We consider the induced split short
exact sequence (SSES)

0 X X ¸ξ B B 0k d

e
(1.1)

and the following couniversal property: we may ask under which conditions two given morphisms
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f and g as in the diagram
X X ¸ξ B B

Y

k

f
φf,g

e

g

induce a morphism φf,g such that φf,g˝k “ f and φf,g˝e “ g. It is clear that this condition—which
agrees with the condition that f and g commute in the ordinary sense of [Huq68; Bou02] when ξ
is a trivial action—may be characterised in terms of equivariance of f and g with respect to the
action ξ and the conjugation action of X on itself (see, for instance, [HL13, Proposition 4.4]), but
we here follow an alternative approach.

We may mimic the definition of the Higgins commutator as follows (though the Huq commutator
would work equally well). We consider the solid part of the diagram below, where the top short
exact sequence is induced by taking the kernel of the map xk, ey out of the coproduct of X and B.

0 X ˛ξ B X `B X ¸ξ B 0

rf, gsξ Y

ιk,e xk,ey

xf,gy
φf,g

This kernel X ˛ξ B is the twisted cosmash product of X and B, induced by ξ; it “consists of”
twisted formal commutator words in X and B. The dotted arrows form the image factorisation
of the composite xf, gy ˝ ιk,e, so that the dashed arrow φf,g exists and satisfies φf,g ˝ k “ f and
φf,g ˝ e “ g if and only if the thus defined commutator rf, gsξ vanishes.

In Section 2, we investigate this definition in detail, recalling known definitions and results,
proving fundamental properties, comparing with related results in the literature. This is then
applied in Section 3 where we characterise Janelidze’s internal crossed modules [Jan03] in terms of
twisted commutators. Our main result here is Theorem 3.16 which states that in a semi-abelian
category satisfying a certain condition denoted (SH), if B : X Ñ B is an arrow and ξ an action of
B on X inducing the SSES (1.1), then the couple pB, ξq is an internal crossed module if and only if
the twisted commutators rB, 1Bsξ and rk, e ˝ BscX,X vanish.

2 Relative Commutativity and Commutators
In this section, we work towards the definition of a commutator twisted by an action. We start
by extending the definition of a commuting pair of arrows to commutativity relative to a chosen
cospan and analysing the commutator that results from this. We then focus on the special case
of the cospan of monomorphisms in a split extension, which will provide us with the commutator
twisted by the action corresponding, through the semi-direct product equivalence, to the given split
extension.
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2.1 Relative Commutativity
In a pointed category with finite products, we say that two coterminal arrows f : X Ñ Y and
g : B Ñ Y (Huq-)commute [Huq68] or cooperate [Bou02, Definition 4.10]

X X ˆB B

Y

p1X ,0q

f
φf,g

p0,1Bq

g

whenever there exists an arrow φf,g : X ˆB Ñ Y , called a cooperator of f and g, such that φf,g ˝

p1X , 0q “ f and φf,g ˝ p0, 1Bq “ g.
The goal of this subsection is to generalise this notion of commutativity by replacing the arrows

p1X , 0q and p0, 1Bq in the definition above by an arbitrary cospan. We will also show that we keep
some of the properties of the classical situation. Note that the following notion has already been
explored by Martins-Ferreira under the name of admissible pair in [MF10].

Definition 2.1. Consider a cospan X A Bk s in an arbitrary category. We say that two arrows
f : X Ñ Y and g : B Ñ Y with the same codomain pk, sq-commute or commute relatively to pk, sq
whenever there exists an arrow φf,g : A Ñ Y such that φf,g ˝ k “ f and φf,g ˝ s “ g.

X A B

Y

k

f
φf,g

s

g

This arrow φf,g is called a pk, sq-cooperator of f and g. When there is no ambiguity, we will drop
the pk, sq.

Example 2.2. Here are some examples of commutativity relative to some particular cospans.

— If A is a zero object, then two arrows commute relatively to the cospan X 0 B if and
only if both of them are trivial arrows.

X 0 B

Y

f g

— Let B “ A “ X and k “ s “ 1X . Then two arrows pk, sq-commute if and only if they are
equal.

A A A

Y

f
φf,g

g
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— Subtraction structures were introduced in [BJ09] and we will show here that this notion can
be expressed as a commutativity condition. More generally, we say that an arrow f : X Ñ Y
in a pointed category admits a subtractor along g : Y Ñ Z [Sha23, Section 1] whenever there
is an arrow φ : Y ˆX Ñ Z, called a subtractor of f along g, making

Y Y ˆX X

Z

p1Y ,0q

g
φ

pf,1X q

0

commute—i.e. if 0 and g commute relatively to Y Y ˆX X
p1Y ,0q pf,1X q with φ being a co-

operator. If g is the identity on Y , we simply say that φ is a subtractor of f .

Remark 2.3. In what follows, we will generally work in a finitely complete context and consider
the commutativity relative to an extremally epic cospan, i.e. a cospan X A Bk s such that, if
there exists a factorisation

M

X A B

m

k

k1

s

s1

of this cospan through a monomorphism m : M Ñ A, then this m is necessarily an isomorphism.
In particular, this implies that this cospan is epic [BB04, Proposition A.4.3] so, in this case, the
cooperator is necessarily unique. (For example, this is the case for the classical commutativity
in a unital context, i.e. in a pointed finitely complete category where all cospans of the form
X X ˆB B

p1X ,0q p0,1Bq are extremally epic.)

Before going to the next subsection where we introduce commutators, let us show some com-
position and cancellation properties of this relative commutativity (see [BB04, Section 1.3] for
analogous results for classical commutativity).

Proposition 2.4. Consider the following diagram.

X A B

Y

Z

k

f

h˝f

s

g

h˝gh

If f and g commute relatively to pk, sq, then h ˝ f and h ˝ g also commute. Moreover, the converse
holds in a finitely complete context if h is monic and the cospan is extremally epic. The link
between their respective cooperators is given by φh˝f,h˝g “ h ˝ φf,g.

Proof. The first statement is easily proved by checking the given formula for the cooperators. Thus,
let us show the second statement. Assume that h is monic and h ˝ f and h ˝ g pk, sq-commute. We
will show that the cooperator φh˝f,h˝g factorises through h as φh˝f,h˝g “ h ˝ φ. Since h is monic,
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this will imply that φ is a cooperator for f and g, finishing the proof. Consider the following
commutative squares.

X A B A

Y Z Y Z

k

f φh˝f,h˝g

s

g φh˝f,h˝g

h h

By [BB04, Proposition A.4.3], there is a diagonal arrow φ : A Ñ Y making the four triangles
commute, which is the cooperator of f and g as desired. q.e.d.

Proposition 2.5. Consider the following diagram.

X 1 A1 B1

X A B

Y

k1

x

s1

y

k

f

s

g

If k ˝ x and s ˝ y commute relatively to pk1, s1q and f and g commute relatively to pk, sq, then f ˝ x
and g ˝ y commute relatively to pk1, s1q with the cooperator φf˝x,g˝y “ φf,g ˝ φk˝x,s˝y.

X 1 A1 B1

X A B

Y

k1

x φk˝x,s˝y

s1

y

k

f
φf,g

s

g

Proof. Again, this follows directly from the formula for the cooperators. q.e.d.

Remark 2.6. Let us remark that, in the classical case, the Huq-commutativity condition for k ˝ x
and s˝y is automatically satisfied, their cooperator being the induced arrow xˆy : X 1ˆB1 Ñ XˆB.

Remark 2.7. A left-cancellation property analogous to [BB04, Proposition 1.6.4] might also make
sense, but the necessary assumptions are less straightforward and we will not need such a result in
this paper.

2.2 Relative Commutators
We will now define a notion of relative commutator which, as in the classical case, is a tool that
allows us to detect when two arrows commute in the relative sense, or more generally measure “how
close they are to commuting” when this is not the case. In this subsection, we work in the context of
a normal category C , i.e. a pointed regular category where every regular epimorphism is a normal
epimorphism. We will construct the relative commutator via an image factorisation, so we need
the regularity, while normality is needed to show that a certain regular epimorphism is the cokernel
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of its kernel, in order to ensure the correspondence between commutators and commutativity (see
Theorem 2.11).

As a reminder, in a unital normal category, the (Higgins) commutator rf, gs of two arrows
f : X Ñ Y , g : B Ñ Y with the same codomain [MM10b, Definition 5.1; Hig56] is the image

0 X ˛B X `B X ˆB

rf, gs Y

ιX,B xp1X ,0q,p0,1Bqy

xf,gy

of the composite xf, gy ˝ ιX,B where ιX,B is the kernel of the canonical arrow xp1X , 0q, p0, 1Bqy : X`

B Ñ X ˆB. This commutator was designed to vanish exactly when the arrows f and g commute.
We will use a similar procedure to define the commutator relative to a cospan—which we will

require to be extremally epic, in order to recover the detection of commutativity; note that it was
for the same reason that we gave the definition of the Higgins commutator in a unital context.
Similarly to Theorem 2.1, the idea is to replace the arrows p1X , 0q and p0, 1Bq in the diagram above
by an arbitrary extremally epic cospan.

Definition 2.8. Let X A Bk s be an extremally epic cospan and f : X Ñ Y , g : B Ñ Y two
arrows with the same codomain. The pk, sq-commutator rf, gsk,s of f and g is the image of the
composite xf, gy ˝ ιk,s where ιk,s is the kernel of the arrow xk, sy : X ` B Ñ A. By convention
and by coherence with the classical situation, we write ιX,B for ιp1X ,0q,p0,1Bq. The kernel object of
xk, sy : X `B Ñ A is called the pk, sq-cosmash product of X and B and is denoted X ˛k,s B.

0 X ˛k,s B X `B A

rf, gsk,s Y

ιk,s xk,sy

xf,gy

Remark 2.9. The twisted cosmash product appears in independent recent work of Duvieusart:
see [Duv23].

Before we show that these relative commutators detect the relative commutativity, here is a
result that tells us that the commutators are preserved by direct images. For an analogous result
for the classical commutator, see [Sha17, Lemma 3.4]. The proof given there is less simple than
ours, since it concerns commutators of subobjects, which apparently introduces some technicalities.

Proposition 2.10. Given the diagram

X A B

Y

Z

k

f

s

g

h
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with X A Bk s extremally epic, we have the formula

rh ˝ f, h ˝ gsk,s “ hprf, gsk,sq

where the latter object is the direct image of rf, gsk,s along h.

Proof. The formula follows from the diagram

X ˛k,s B X `B

rf, gsk,s Y

hprf, gsk,sq Z

xf,gy

h

—where the dotted and dashed arrows are constructed as the image factorisation of the correspond-
ing squares—by the essential uniqueness of the image factorisation and the fact that, in a regular
context, regular epimorphisms compose [BB04, Corollary A.5.4]. q.e.d.

Let us observe how these commutators detect commutativity relative to an extremally epic
cospan.

Proposition 2.11. Two arrows f : X Ñ Y and g : B Ñ Y commute relatively to an extremally
epic cospan X A Bk s if and only if their pk, sq-commutator rf, gsk,s is trivial.

Proof. First, since k and s are jointly extremally epic, xk, sy is extremally epic so it is a regular
epimorphism by regularity [BB04, Proposition A.4.3, Corollary A.5.4]. Thus, since we are in a
normal context, this arrow is a normal epimorphism; in particular, it is the cokernel of its kernel
ιk,s. What we need to prove now follows from the universal property of this cokernel xk, sy.

0 X ˛k,s B X `B A 0

rf, gsk,s Y

ιk,s xk,sy

xf,gy
φf,g

If f and g commute relatively to pk, sq, we have an arrow φf,g such that

φf,g ˝ xk, sy “ xφf,g ˝ k, φf,g ˝ sy “ xf, gy.

Therefore, we have
xf, gy ˝ ιk,s “ pφf,g ˝ xk, syq ˝ ιk,s “ φf,g ˝ 0 “ 0

so its image rf, gsk,s is trivial.
Conversely, if rf, gsk,s “ 0, then the composite xf, gy˝ιk,s is trivial, so we can apply the universal

property of xk, sy to obtain an arrow φf,g : A Ñ Y such that φf,g ˝xk, sy “ xf, gy. Then φf,g ˝k “ f
and φf,g ˝ s “ g, which finishes the proof. q.e.d.
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Example 2.12. Let us examine the commutators associated to some of the cospans of Theorem 2.2.

— If A is a zero object, then we can choose ιk,s “ 1X`B so our commutator rf, gsk,s is simply
the image Imxf, gy of xf, gy.

0 X `B X `B 0

Imxf, gy Y

xf,gy

— Let B “ A “ X and k “ s “ 1X . The p1X , 1Xq-cosmash product is called the difference
object DpXq of X and its inclusion into X ` X is denoted δX . We have that rf, gs1X ,1X

is
trivial if and only if f “ g—i.e. if they p1X , 1Xq-commute, as follows from Theorem 2.11. So
this commutator can be seen as a measure of the difference between f and g.

0 DpXq X `X X

rf, gs1X ,1X
Y

δX x1X ,1X y

xf,gy

2.3 Commutators Twisted by an Action
A special case of these relative commutators which we will be especially interested in consists of
those commutators relative to a cospan induced by an internal action.

In what follows, whenever we consider internal actions, our category C will always be semi-
abelian in the sense of [JMT02]. Such a category is indeed normal [BB04, Proposition 3.1.23].
Further note that any semi-abelian category is homological in the sense of [BB04, Definition 4.1.1]—
see [BB04, Proposition 5.1.2]—and unital [BB04, Proposition 3.1.18, Proposition 1.8.4]—cf. The-
orem 2.3.

Let us recall what is an internal action. An (internal) action of an object B on an object
X is an arrow ξ : B5X Ñ X making certain diagrams commute, where B5X is constructed by
choosing a coproduct B ` X of B and X then taking a kernel κB,X : B5X Ñ B ` X of the arrow
x1B , 0y : B ` X Ñ B [BJK05, Sections 3.2–3.3; BJ98]. (This construction gives us a bifunctor
5 : C ˆ C Ñ C .) Such an internal action induces a split short exact sequence (SSES)

0 X X ¸ξ B B 0k
p

s
(2.1)

as in the commutative diagram

0 B5X B `X B

0 X X ¸ξ B B 0

κB,X

ξ

x1B ,0y

q

ι1

k“q˝ι2

ι2

p

s“q˝ι1

(2.2)

where ι1, ι2 are the inclusions in the coproduct B ` X and q is constructed as a coequaliser of
κB,X and ι2 ˝ ξ. This construction is part of an equivalence of categories between internal actions



Twisted Commutators and Internal Crossed Modules 33

and SSESs [BJ98, Section 3]. (In fact, even if [BJ98] discusses an equivalence for each fixed acting
object B, these equivalences for every B induce an equivalence on the level of all internal actions
and all SSESs.)
Example 2.13. An action ξ whose induced SSES is of the form

0 X X ˆB B 0p1X ,0q π2

p0,1Bq

(where π2 is the projection of X ˆ B on B) is said to be a trivial action. More explicitly, we have
ξ “ x0, 1Xy ˝ κB,X .
Example 2.14. The conjugation action cX,X of an object X on itself is defined as the action
corresponding to the SSES

0 X X ˆX X 0p1X ,0q π2

∆X

where π2 is the projection on the second factor and ∆X :“ p1X , 1Xq is the diagonal of X. Again,
we have an explicit formula cX,X “ x1X , 1Xy ˝ κX,X .

Let us now define commutators twisted by an action. In order to apply the definition of pk, sq-
commutators (Theorem 2.8), we only need that the cospan X X ¸ξ B Bk s is extremally epic,
which is indeed the case since C is a protomodular category (see [JMT02, Section 2.4]). Let us
remark that for a cospan pk, sq to be induced by an action is a property rather than additional
structure. Indeed, whenever it exists, an arrow p : A Ñ B turning this cospan into a SSES is
uniquely determined by the identities p ˝ k “ 0 and p ˝ s “ 1B since k and s are jointly epic. If now
k is the kernel of p, then p is necessarily its cokernel. Note that such an arrow p is a pk, sq-cooperator
of 0 and 1B so the condition that the cospan X A Bk s is induced by an action involves the
pk, sq-commutativity of 0 and 1B .
Definition 2.15. Let ξ : B5X Ñ X be an action and (2.1) its induced SSES. Let f : X Ñ Y ,
g : B Ñ Y be two arrows with the same codomain.

— We say that f and g commute relatively to ξ or ξ-commute when they pk, sq-commute. Their
pk, sq-cooperator is called the ξ-cooperator of f and g (see Theorem 2.1).

— The ξ-commutator of f and g (or commutator twisted by the action ξ) is the pk, sq-commutator
of f and g (see Theorem 2.8). We denote it by rf, gsξ.

Remark 2.16. If ξ is a trivial action, then we regain the definition of the classical commutator:
see Theorem 2.13.
Example 2.17. Let us recall that an arrow f : X Ñ Y admits a subtractor φ along g : Y Ñ Z

(see Theorem 2.2) whenever g and 0: X Ñ Z commute relatively to Y Y ˆX X
p1Y ,0q pf,1X q .

Y Y ˆX X

Z

p1Y ,0q

g
φ

pf,1X q

0
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In fact, we can turn this cospan into the SSES

0 Y Y ˆX X 0p1Y ,0q π2

pf,1X q

so, in a semi-abelian context, this is an example of commutativity twisted by an action. In partic-
ular, if Y “ X and f is the identity on X, then we find the SSES associated with the conjugation
action on X: see Theorem 2.14.

We end this section with an interpretation of commutativity twisted by an action in terms of
equivariance. In the case of commutators twisted by an action ξ, the relative commutativity of two
arrows f and g (Theorem 2.1) can also be expressed as the equivariance of f and g with respect to ξ
and the conjugation action cY,Y of Y on itself. Note that this corresponds to [Jan03, Theorem 1.3]
(since cY,Y ˝ pg5fq “ xg, fy ˝ κB,X by definition of cY,Y ) which provides an alternate proof of this
fact. Recall that Y ¸cY,Y Y “ Y ˆ Y : see Theorem 2.14.

Lemma 2.18. The arrows f : X Ñ Y and g : B Ñ Y commute relatively to ξ if and only if they are
equivariant with respect to ξ and the conjugation action cY,Y of Y on itself. The latter condition
means that the square

B5X X

Y 5Y Y

ξ

g5f f

cY,Y

commutes or, in terms of SSESs via the equivalence mentioned in the start of the subsection, there
exists an arrow ψ : X ¸ξ B Ñ Y ˆ Y such that pf, ψ, gq

0 X X ¸ξ B B 0

0 Y Y ˆ Y Y 0

k

f

p

ψ

s

g

p1Y ,0q

π2

∆Y

is a morphism of SSESs.

Proof. We will show this result from the point of view of SSESs.
If pf, gq is equivariant, we easily check that φf,g “ π1 ˝ψ satisfies the conditions of Theorem 2.1.
Conversely, let us check that ψ “ pφf,g, g ˝pq induces a morphism pf, ψ, gq of SSESs, where φf,g

is given by the pk, sq-commutativity of f and g. The equalities ψ ˝k “ p1Y , 0q ˝ f and g ˝ p “ π2 ˝ψ
are immediate and, for the last one, we compute

ψ ˝ s “
`

φf,g ˝ s, pg ˝ pq ˝ s
˘

“ pg, gq “ ∆Y ˝ g,

which finishes the proof. q.e.d.

We can also obtain a kind of converse of this result, i.e. a commutativity condition to characterise
the equivariance of a pair of arrows. For that, we will need a lemma about internal actions, which
tells us that, if we restrict the conjugation action of a semi-direct product to its factors, we recover
the original action.
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Lemma 2.19 ([HL13, Corollary 4.5]). Consider an internal action ξ : B5X Ñ X and

0 X X ¸ξ B B 0k d

e
(1.1)

its induced SSES. Then the square

B5X X

pX ¸ξ Bq5pX ¸ξ Bq X ¸ξ B

ξ

e5k k

cX¸ξB,X¸ξB

is commutative or, equivalently, there exists ψ : X ¸ξ B Ñ pX ¸ξ Bq ˆ pX ¸ξ Bq such that

0 X X ¸ξ B B 0

0 X ¸ξ B pX ¸ξ Bq ˆ pX ¸ξ Bq Y 0

k

k

d

ψ

e

e

p1X¸ξB ,0q

π2

∆X¸ξB

is a morphism of SSESs.

Proof. Using the formula of Theorem 2.14, we compute

cX¸ξB,X¸ξB ˝ pe5kq “ px1X¸ξB , 1X¸ξBy ˝ κX¸ξB,X¸ξBq ˝ pe5kq

“ x1X¸ξB , 1X¸ξBy ˝
`

pe` kq ˝ κB,X
˘

“ xe, ky ˝ κB,X “ k ˝ ξ

as wanted, where the last equality follows from the construction of the induced SSES: see Dia-
gram (2.2). (And the second equality follows from the construction of the bifunctor 5.) q.e.d.

Corollary 2.20. Let ξ : B5X Ñ X, ξ1 : B15X 1 Ñ X 1 be two actions and

0 X X ¸ξ B B 0 ,

0 X 1 X 1 ¸ξ1 B1 B1 0

k
p

s

k1 p1

s1

their induced SSESs. Two arrows f : X Ñ X 1 and g : B Ñ B1 are equivariant with respect to ξ and
ξ1 if and only if k1 ˝ f : X Ñ X 1 ¸ξ1 B1 and s1 ˝ g : B Ñ X 1 ¸ξ1 B1 commute relatively to ξ.
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Proof. By Theorem 2.18, the commutativity of k1 ˝ f and s1 ˝ g relative to ξ is equivalent to the
commutativity of the square below.

B5X X

pX 1 ¸ξ1 B1q5pX 1 ¸ξ1 B1q X 1 ¸ξ1 B1

ξ

ps1
˝gq5pk1

˝fq k1
˝f

c
X1¸

ξ1 B1,X1¸
ξ1 B1

Now, consider the following diagram.

B5X X

B15X 1 X 1

pX 1 ¸ξ1 B1q5pX 1 ¸ξ1 B1q X 1 ¸ξ1 B1

ξ

g5f f

ξ1

s1
5k1 k1

c
X1¸

ξ1 B1,X1¸
ξ1 B1

Since k1 is (split) monic and the bottom square always commutes by Theorem 2.19, the commut-
ativity of the outer rectangle (which is the square above by functoriality of 5) is equivalent to the
commutativity of the top square, which correspond to the equivariance of f and g, finishing the
proof. q.e.d.

Remark 2.21. This corollary implies that, whenever we consider cospans induced by an action
in Theorem 2.5, we can reformulate the pk1, s1q-commutativity condition of k ˝ x and s ˝ y as the
equivariance of x and y with respect to the two actions involved.

3 Internal Crossed Modules
The concept of an internal crossed module extends the idea behind a crossed module from the cat-
egory Grp of groups to arbitrary semi-abelian categories. This hinges upon the classical equivalence
—see for instance [BS76; ML98]—between the category of crossed modules (of groups) and the
category of internal categories in Grp. In [Jan03], internal crossed and precrossed modules were
defined as couples pB, ξq where B : X Ñ B is an arrow and ξ : B5X Ñ X is an action of B on X,
satisfying certain compatibility conditions ensuring that the category of internal crossed modules
(resp. precrossed modules) would be equivalent to the category of internal groupoids (resp. reflexive
graphs). The aim of this section is to express those conditions in terms of twisted commutators.

3.1 Definitions
We make the definitions explicit (rephrasing (2.2) and (3.15) in [Jan03]) by means of the equivalence
mentioned in Section 2.3. Let B : X Ñ B be an arrow and ξ : B5X Ñ X an action with induced
SSES

0 X X ¸ξ B B 0k d

e
. (1.1)
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Definition 3.1. A couple pB, ξq as above is an internal precrossed module whenever there exists an
arrow c : X ¸ξ B Ñ B such that c ˝ e “ 1B and c ˝ k “ B.

0 X X ¸ξ B B 0k
d

c
e

Remark 3.2. Since the arrow k can be recovered as a kernel of d, an internal precrossed module

is essentially just a reflexive graph pX ¸ξ B,B, d, c, eq: a diagram of the form C1 C0
d

c
e where

d ˝ e “ 1C0 and c ˝ e “ 1C0 .

Definition 3.3. An internal precrossed module is an internal crossed module if, when we see it as
a reflexive graph (see Theorem 3.2 above), it admits an internal groupoid structure.

Before proceeding with the characterisations of precrossed and crossed modules in terms of
twisted commutators, in the next subsection we first present some definitions and results about
reflexive graphs.

3.2 Reflexive Graphs
In what follows, unless otherwise stated, we will work in a pointed finitely complete category C .
We recall the definition of the normalisation of a reflexive graph as well as some relations between
a given reflexive graph and its normalisation.

Definition 3.4. The normalisation of a reflexive graph C1 C0
d

c
e is the arrow c ˝ k where k is

a kernel of d.

Originally, we considered the normalisation of effective equivalence relations and, in this case,
this normalisation is a normal monomorphism, whence the terminology. It is well known that, in a
semi-abelian category, a reflexive graph is an equivalence relation if and only if its normalisation is
a (normal) monomorphism. Let us recall the proof, which is actually valid in any normal category:

Lemma 3.5. If a reflexive graph C1 C0
d

c
e is a reflexive relation, i.e. if d and c are jointly monic,

then its normalisation c ˝ k, where k : X Ñ C1 is a kernel of d, is monic. Moreover, if we are in a
pointed protomodular context, then the converse is also true.

Proof. Let us first assume that we have a reflexive relation. Then d ˝ k and c ˝ k are jointly monic
since k is a monomorphism. Moreover, d ˝ k is the trivial arrow because k is a kernel of d so the
previous sentence implies that c ˝ k is monic.

Now, let us assume that our category C is protomodular and that c ˝ k is monic. Consider the
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following diagram where all the squares except the bottom right one are pullbacks.

X X Kerpcq Kerpcq 0

X C1 C0

0 C0 C0 ˆ C0

⌟ ⌟
kerpcq

⌟
k c

d pd,cq π2

π1

We check that X X Kerpcq is a kernel of pd, cq (using the universal properties of the two kernels and
the pullback involved) and we will show that this object is trivial, which implies that pd, cq is monic
(meaning that d and c are jointly monic) as needed for [BB04, Proposition 3.1.21]. Since the two
top squares are pullbacks, so is the top rectangle. Therefore, X X Kerpcq is a kernel of c ˝ k. So it
is trivial since c ˝ k is monic, which finishes the proof. q.e.d.

Our second lemma is a characterisation of connected graphs, which is an instance of [Bou01,
Proposition 17] and [Gra02, Proposition 2.2]; see also [RVdL10].

Lemma 3.6. In a homological category C , a reflexive graph C1 C0
d

c
e is connected, i.e. the

arrow pd, cq : C1 Ñ C0 ˆ C0 is a regular epimorphism, if and only if its normalisation c ˝ k, where
k : X Ñ C1 is a kernel of d, is a regular epimorphism.

Proof. Let pd, cq be a regular epimorphism. We check that the following square is a pullback since
k is a kernel of d.

X C1

C0 C0 ˆ C0

⌟
k

c˝k pd,cq

p0,1C0 q

Therefore, since pd, cq is a regular epimorphism and, in a regular category, regular epimorphisms
are pullback-stable, this diagram tells us that c ˝ k is also a regular epimorphism.

For the other direction, consider the following diagram where k and p0, 1C0 q are kernels of d and
π1, respectively. Here d is a cokernel of its kernel k, since it is split by e.

0 X C1 C0 0

0 C0 C0 ˆ C0 C0

k

c˝k

d

pd,cq

p0,1C0 q π1

We may check that this diagram commutes. Then, by [BB04, Lemma 4.2.5], the morphism pd, cq
is a regular epimorphism, since we have a regular epimorphism on the left and an isomorphism on
the right. q.e.d.
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Before going to the last definitions of this section, here is an alternative characterisation for
connected graphs in an exact Mal’tsev category. (An alternative argument would use the coequaliser
of the support of the given reflexive graph, which is the effective equivalence relation that arises
out of the image factorisation of the morphism pd, cq : C1 Ñ C0 ˆ C0.)

Lemma 3.7. In an exact Mal’tsev category C , a reflexive graph C1 C0
d

c
e is such that the

arrow pd, cq : C1 Ñ C0 ˆ C0 is an epimorphism if and only if the pushout π0pCq of d and c is
trivial. Moreover, when this is the case, the epimorphism pd, cq is regular so this reflexive graph is
connected in the sense of the previous lemma.

Proof. First, note that the pushout of d and c exists by [CKP93, Theorem 5.7] since d and c are
split epimorphisms.

Now, assume that pd, cq is an epimorphism and consider the pushout

C1 C0

C0 π0pCq

c

d i2

i1

⌟

of d and c. Let π1, π2 be the two projections of the product C0 ˆ C0. We compute

pi1 ˝ π1q ˝ pd, cq “ i1 ˝ d “ i2 ˝ c “ pi2 ˝ π2q ˝ pd, cq

so i1 ˝ π1 and i2 ˝ π2 are equal since pd, cq is epic.

C0 ˆ C0 C0

C0 0

π0pCq

π2

π1 i2

i1

⌟

Therefore, i1 and i2 factor through the pushout of π1 and π2, which is trivial since it is the pushout
of a product, so i1 and i2 are trivial arrows. Finally, since i1 and i2 are jointly epic as they form
a pushout, this implies that π0pCq is trivial—a cospan of trivial arrows is jointly epic only if their
codomain is trivial—which finishes the proof of this implication.

For the other direction, since π0pCq is trivial, C0 ˆ C0 is a pullback of i1 and i2 so pd, cq is the
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comparison map between the pushout and this pullback in the diagram below.

C1

C0 ˆ C0 C0

C0 π0pCq “ 0

c

pd,cq

d

⌟
π2

π1 i2

i1

Therefore, by [CKP93, Theorem 5.7] and the fact that d and c are regular epimorphisms as they
are split, pd, cq is a regular epimorphism as announced. q.e.d.

Let us now introduce multiplicative and star-multiplicative graphs [MM10a, Definitions 4.1 and
5.1], needed for Theorem 3.13 below. This theorem is relevant for our characterisation of crossed
modules since, in a semi-abelian category, groupoids are exactly multiplicative graphs [CPP92,
Theorem 2.2; BB04, Proposition 5.1.2].

Definition 3.8. Consider a reflexive graph C1 C0
d

c
e .

— The reflexive graph pC1, C0, d, c, eq is multiplicative when there is an arrow m : C1ˆC0C1 Ñ C1
such that m ˝ p1C1 , e ˝ dq “ 1C1 and m ˝ pe ˝ c, 1C1 q “ 1C1

C1 C1 ˆC0 C1 C1

C1

p1C1 ,e˝dq

m

pe˝c,1C1 q

where C1 ˆC0 C1 is constructed as the pullback

C1 ˆC0 C1 C1

C1 C0

⌟
p1

p0 c

d

and p1C1 , e ˝ dq, pe ˝ c, 1C1 q are the arrows induced by the universal property of this pullback.
This arrow m is called the multiplication of pC1, C0, d, c, eq.
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— Let k : X Ñ C1 be a kernel of d. The reflexive graph pC1, C0, d, c, eq is star-multiplicative
when there is an arrow ζ : C1 ˆC0 X Ñ X such that ζ ˝ pk, 0q “ 1X and ζ ˝ pe˝ c˝k, 1Xq “ 1X

X C1 ˆC0 X X

X

pk,0q

ζ

pe˝c˝k,1X q

(3.1)

where C1 ˆC0 X is constructed as the pullback

C1 ˆC0 X X

C1 C0

⌟
π1

π0 c˝k

d

and pk, 0q, pe ˝ c ˝ k, 1Xq are the arrows induced by the universal property of this pullback.
This arrow ζ is called the star-multiplication of pC1, C0, d, c, eq.

Remark 3.9. Every multiplicative graph is star-multiplicative; the star-multiplication is a kind
of restriction of the multiplication: see [MFVdL12] for further details. Consider the arrow m ˝ µ
where µ : C1 ˆC0 X Ñ C1 ˆC0 C1 is induced in the diagram below by the universal property of the
pullback.

C1 ˆC0 X X

C1 C1 ˆC0 C1 C1

C1 C0

π1

µ
π0

k

⌟
p1

p0 c

d

We will show that m ˝ µ factors through X and that this factorisation is the star-multiplication
we want. Since X is a kernel of d, we must show that d ˝ pm ˝ µq “ 0. In order to do so, we will
precompose this arrow with pk, 0q and pe ˝ c ˝ k, 1Xq, which will let us conclude since these two
arrows are jointly epic (as pk, 0q is a kernel of the splitting π1 of pe ˝ c ˝ k, 1Xq). By uniqueness, we
have µ “ p1C1 , e ˝ dq ˝ π0 “ pe ˝ c, 1C1 q ˝ k ˝ π1 so that

d ˝ pm ˝ µq ˝ pk, 0q “ d ˝ π0 ˝ pk, 0q “ d ˝ k “ 0

and
d ˝ pm ˝ µq ˝ pe ˝ c ˝ k, 1Xq “ d ˝ k ˝ π1 ˝ pe ˝ c ˝ k, 1Xq “ d ˝ k “ 0
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as expected. Therefore, the universal property of k gives us an arrow from C1 ˆC0 X to X that
factorises m ˝ µ through k and this is this arrow that we choose to be the star-multiplication ζ. To
conclude, we must show that this ζ makes

X C1 ˆC0 X X

X

pk,0q

ζ

pe˝c˝k,1X q

commute and, since k is monic, we can reduce these two equations by postcomposing them by k.
But these two reduced equations correspond exactly to the computations we made just above, the
composition with d intervening only on the last step in both cases, which finishes the proof.
Remark 3.10. Given a reflexive graph pC1, C0, d, c, eq, let us note that the arrow π1 : C1 ˆC0 X Ñ

X is at the same time a cokernel of pk, 0q : X Ñ C1 ˆC0 X and a splitting of pe ˝ c ˝ k, 1Xq : X Ñ

C1 ˆC0 X. The fact that π1 ˝ pe ˝ c ˝ k, 1Xq “ 1X is immediate. To show that π1 is a cokernel
of pk, 0q, let us show that pk, 0q is kernel of it, the conclusion following since π1 is split. Let
f : A Ñ C1 ˆC0 X such that π1 ˝ f “ 0. Then, by the definition of the pullback, f is of the form
f “ pg, 0q with g : A Ñ C1 such that d ˝ g “ pc ˝ kq ˝ 0 “ 0 and, since k is a kernel of d, we also
have a factorisation g “ k ˝ φ. Finally, we remark that this factorisation φ : A Ñ X is the unique
arrow such that pk, 0q ˝ φ “ f , showing that pk, 0q is a kernel of π1.

A

X C1 ˆC0 X X

f
D!φ

pk,0q π1

Therefore, pk, 0q and pe ˝ c ˝ k, 1Xq is the cospan associated to an action ξ : X Ñ X and we can
view Diagram (3.1) as the commutativity of 1X with itself, twisted by this action ξ. Finally,
by Theorem 2.11, this means that the star-multiplicativity of a reflexive graph pC1, C0, d, c, eq is
characterised by the commutator condition r1X , 1X sξ “ 0 where ξ : X Ñ X is the internal action
associated to the SSES

0 X C1 ˆC0 X X 0pk,0q π1

pe˝c˝k,1X q

.

(Let us also note that the multiplicativity of a reflexive graph can also be characterised by a
commutator condition, but this commutator has no reason to be twisted by an action.)
3.3 Characterisation in Terms of Twisted Commutators
We can now state and prove our characterisations of precrossed and crossed modules in terms of
twisted commutators. These are variations of the results of [MM10a] so the goal of this section is
mainly to reformulate them in terms of twisted commutators via Theorem 2.18 (and provide an
alternative proof in the case of Theorem 3.14). In what follows, in a semi-abelian category, we
consider an arrow B : X Ñ B and an action ξ : B5X Ñ X with induced SSES (1.1).

Let us begin with the characterisation of internal precrossed modules, which is a straightforward
consequence of Theorem 2.11.
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Theorem 3.11. In a semi-abelian category, let B : X Ñ B be an arrow and ξ an action of B on X.
The couple pB, ξq is an internal precrossed module if and only if it satisfies the so-called Precrossed
Module Condition (PCM), which is the equality rB, 1Bsξ “ 0.

Proof. By Theorem 2.11, the triviality of the commutator rB, 1Bsξ is equivalent to the existence of
an arrow φ : X ¸ξ B Ñ B

X X ¸ξ B B

B

k

B
φ

e

1B

such that φ ˝ k “ B and φ ˝ e “ 1B , which are exactly the conditions the arrow c in Theorem 3.1
must satisfy. q.e.d.

The characterisation of internal crossed modules is less simple. In fact, we will even need
an additional assumption: we ask that our semi-abelian category C satisfies the Smith-is-Huq
Condition (SH) [BG02b].

Definition 3.12 ([MFVdL12, Section 1]). A semi-abelian category C satisfies the Smith-is-Huq
Condition (SH) whenever two effective equivalence relations in C commute if and only if their
normalisations commute.

Examples include any Moore category in the sense of [Rod04] and, more generally, any algebra-
ically coherent semi-abelian category [CGVdL15]. We will not use this definition directly but the
following characterisation instead.

Theorem 3.13 ([MFVdL12, Theorem 3.8]). For a semi-abelian category, the following conditions
are equivalent:

(SM) every star-multiplicative graph is multiplicative,

(SH) two (effective) equivalence relations commute if and only if their normalisations commute.
q.e.d.

Indeed, since an internal crossed module is an internal precrossed module that is also a groupoid
and, as said earlier, in a semi-abelian context, multiplicative graphs coincide with groupoids, we
see that the condition (SM) might be useful for our desired characterisation. We now have all the
necessary tools for its proof.

Theorem 3.14. In a semi-abelian category, let the couple pB, ξq be an internal precrossed module
with (1.1) the SSES associated to ξ. Then pB, ξq satisfies the so-called Peiffer Condition (PFF),
which is the equality rk, e ˝ BscX,X “ 0, if and only if the reflexive graph pX ¸ξ B,B, d, c, eq is
star-multiplicative.

In particular, by Theorem 3.9 and Theorem 3.13, this implies that, if pB, ξq is an internal crossed
module, then (PFF) is satisfied and, conversely, if the category C satisfies (SH), then the condition
(PFF) implies that pB, ξq is an internal crossed module.



44 B. S. Deval and T. Van der Linden

Proof. Let us recall that

0 X X ˆX X 0p1X ,0q π2

∆X

,

where π2 is the projection on the second factor and ∆X is the diagonal of X, is the SSES associated
to cX,X .

Let us start with rk, e ˝ BscX,X “ 0. By Theorem 2.11, this gives us an arrow φ : XˆX Ñ X¸ξB
such that

X X ˆX X

X ¸ξ B

p1X ,0q

k
φ

∆X

e˝B

commutes. Then this arrow φ makes

0 X X ˆX X 0

0 X X ¸ξ B B 0

p1X ,0q π2

φ B

∆X

k d

e

commute. Indeed, we must just check that d ˝ φ “ B ˝ π2 and we see that this is the case by pre-
composing with p1X , 0q and ∆X which are jointly epic. Therefore, the right-hand square whose the
horizontal arrows point to the right is a pullback, since we have an isomorphism on the left [BB04,
Lemma 4.2.5] so this square is the pullback mentioned in the definition of a star-multiplicative graph
(see Theorem 3.8). (Note that, by definition of precrossed module, we do indeed have B “ c ˝ k.)
Finally, we check that π1 : X ˆX Ñ X is the needed star-multiplication: we have the commutative
diagram

X X ˆX X

X

p1X ,0q

π1

∆X

and we easily check that p1X , 0q and ∆X are the required arrows (induced by the universal property
of the pullback) in Diagram (3.1).

Conversely, if we have a star-multiplication ζ : pX ¸ξ Bq ˆB X Ñ X on the reflexive graph
associated to our precrossed module, with pX ¸ξ Bq ˆB X Ñ X being constructed as the pullback

pX ¸ξ Bq ˆB X X

X ¸ξ B C0

⌟
p1

p0 c˝k“B

d

,
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then, by Theorem 2.11, we must show that rk, e ˝ BscX,X “ 0, i.e. that there is an arrow φ : XˆX Ñ

X ¸ξ B that makes

X X ˆX X

X ¸ξ B

p1X ,0q

k
φ

∆X

e˝B
(3.2)

commute. As a reminder, the star-multiplication ζ is defined as the arrow making the following
diagram commute.

X pX ¸ξ Bq ˆB X X

X

pk,0q

ζ

pe˝B,1X q

The first implication of this proposition tells us that, if we have a crossed module, then the product
of X with itself coincides (up to isomorphism) with the pullback pX ¸ξ Bq ˆB X (with different
projections) and that the wanted arrow φ is the first projection of this pullback, so let us show that
it is also the case here. Consider the following diagram.

X pX ¸ξ Bq ˆB X X

X X ˆX X

pk,0q p1

pζ,p1q

pe˝B,1X q

p1X ,0q

π2

∆X

We check that this diagram commutes and that both rows are (split) exact sequences. The arrow
pk, 0q is indeed a kernel of p1 since k is the kernel of d and p1 is the pullback of d. Therefore,
we can apply the (Split) Short Five Lemma [BB04, Theorem 4.1.10] to deduce that pζ, p1q is an
isomorphism. Finally, we see that φ “ p0 ˝ pζ, p1q´1 is the wanted arrow making Diagram (3.2)
commute, which finishes the proof. q.e.d.

Remark 3.15. Let us justify our terminology by remarking that, by Theorem 2.20 and The-
orem 2.11, the Peiffer Condition rk, e ˝ BscX,X “ 0 is equivalent to the commutativity of the square

X5X X

B5X X

cX,X

B51X

ξ

which (via the equivalence between actions and SSESs) corresponds to the definition of Peiffer graph
of [MM10a, Definition 5.2]. Moreover, it was already shown in [MM10a, Theorem 5.3] that Peiffer
graphs and star-multiplicative graphs coincide, so this gives an alternative proof for Theorem 3.14.

These two theorems combine to:
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Corollary 3.16. In a semi-abelian category satisfying (SH), let B : X Ñ B be an arrow and ξ an
action of B on X inducing the SSES (1.1). The couple pB, ξq is an internal crossed module if and
only if the twisted commutators rB, 1Bsξ and rk, e ˝ BscX,X vanish. q.e.d.

3.4 Two Special Cases of Crossed Modules
Let us see what this characterisation amounts to in two well-known special types of crossed modules:
those pB, ξq where B is a monomorphism and the ones where B is a regular epimorphism.
Monic B

We start with the case where B is monic. Then pB, ξq is a crossed module if and only if B : X Ñ B
is the inclusion of a normal subobject X of B and ξ : B5X Ñ X is the action of conjugation of B
on X, i.e. the unique action making

B5X X

B5B B

ξ

B5B B

cB,B

(3.3)

commute [JMU07, Proposition 7.2]. Note that the uniqueness follows from the fact that B is monic.
The given reference states the equivalence for precrossed modules but, as we will see below, any
precrossed module pB, ξq with B monic is automatically a crossed module.

Let us first assume that pB, ξq is just a precrossed module. By Theorem 3.11, this is equivalent
to the triviality of the commutator rB, 1Bsξ. Moreover, by Theorem 2.11 and Theorem 2.18, we can
reformulate this condition as the equivariance of B and 1B with respect to ξ, which means exactly
that ξ is the conjugation action of B on X (see (3.3)). Finally, the existence of such a conjugation
action is equivalent to the normality of the subobject B : X Ñ B ([JMU09, Corollary 2.3] combined
with [JMT02, Proposition p. 382]—as a reminder, semi-abelian categories are normal so we can
indeed apply [JMT02, Proposition p. 382] on the square of [JMU09, Corollary 2.3.(b)]), which is
what was announced in the previous paragraph.

Thus we already know that a couple pB, ξq with B monic is a precrossed module if and only if B

is the inclusion of a normal subobject. Now, let us see what tells us the Peiffer Condition, i.e. the
triviality of rk, e ˝ BscX,X (see Theorem 3.14). Using again Theorem 2.11 and Theorem 2.18, this
condition is equivalent to the commutativity of the diagram

X5X X

pX ¸ξ Bq5pX ¸ξ Bq X ¸ξ B

cX,X

pe˝Bq5k k

cX¸ξB,X¸ξB



Twisted Commutators and Internal Crossed Modules 47

which can be decomposed as

X5X X

B5X X

pX ¸ξ Bq5pX ¸ξ Bq X ¸ξ B

cX,X

B51X

ξ

e5k k

cX¸ξB,X¸ξB

.

Since we already showed that ξ is a conjugation action, the commutativity of the top square is
quite expected. More formally, let us show that these two arrows from X5X to X are equal by
postcomposing them with B, which is monic by assumption. Using the fact that ξ is the conjugation
action of B on X as well as the explicit formula for conjugation actions from Theorem 2.14, we
compute

B ˝
`

ξ ˝ pB51Xq
˘

“
`

cB,B ˝ pB5Bq
˘

˝ pB51Xq “ cB,B ˝ pB5Bq

“ px1B , 1By ˝ κB,Bq ˝ pB5Bq “ x1B , 1By ˝
`

pB ` Bq ˝ κX,X
˘

“ xB, By ˝ κX,X “ B ˝ px1X , 1Xy ˝ κX,Xq “ B ˝ cX,X

as wanted. Finally, the bottom square commutes by Theorem 2.19. In conclusion, we showed that,
if B is a monomorphism, precrossed modules and crossed modules coincide and correspond to the
normal subobjects. (We need the condition (SH) in order to apply Theorem 3.14 for the crossed
modules but this characterisation of normal subobjects remains true in an arbitrary semi-abelian
category. Indeed, if we have a precrossed module with B : X Ñ B monic, the corresponding reflexive
graph is a reflexive relation by Theorem 3.5 so it is an equivalence relation since our category is
Mal’tsev [BB04, Proposition 5.1.2]. Therefore, it is transitive and this gives us a multiplication,
making our precrossed module an internal groupoid, hence a crossed module.)
Regularly epic B

For our second example, let us assume that B is a regular epimorphism. In this case, it is
known [BG02a, Corollary 3.1] (combined with [BG02a, Remark 3.1], [GVdL08, Proposition 2.2]
and Theorem 3.6) that these crossed modules correspond to central extensions. Such is a regular
epimorphism B : X Ñ B whose kernel κ : K Ñ X Huq-commutes with its domain 1X or, in other
words, for which there exists an arrow ψ : K ˆX Ñ X making the diagram below commute.

K K ˆX X

X

p1K ,0q

κ
ψ

p0,1X q

This time, we will need (SH) for our proof—note, however, that this result nevertheless holds in an
arbitrary semi-abelian category, see the references mentioned above.
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Let us now examine how the characterisation mentioned above express itself in terms of com-
mutator conditions. First, the fact that a crossed module pB, ξq with B being a regular epimorphism
is a central extension follows directly from the following lemma.

Lemma 3.17. For a crossed module pB, ξq, the kernel κ : K Ñ X and the domain 1X of B commute
(i.e. κ is central).

Proof. Let us consider the following commutative diagram

K5X X

X5X X

pX ¸ξ Bq5pX ¸ξ Bq pX ¸ξ Bq

ζ

κ51X

cX,X

pe˝Bq5k k

cX¸ξB,X¸ξB

where ζ :“ cX,X ˝ pκ51Xq is the induced action of K on X and the bottom square commutes by
Theorem 3.14 combined with Theorem 2.18. We will show that ζ is the trivial action of K on X,
which will finish the proof since the commutativity of the top square then means that κ and 1X
are equivariant with respect to the trivial action ζ and the conjugation action cX,X , i.e. that κ and
1X commute by Theorem 2.18 (remember that Huq-commutativity corresponds to commutativity
relative to the trivial action: see Theorem 2.16).

We compute

k ˝ ζ “ cpX¸ξBq,pX¸ξBq ˝

´

`

pe ˝ Bq5k
˘

˝ pκ51Xq

¯

“ px1X¸ξB , 1X¸ξBy ˝ κX¸ξB,X¸ξBq ˝ p05kq

“ x1X¸ξB , 1X¸ξBy ˝
`

p0 ` kq ˝ κK,X
˘

“ x0, ky ˝ κK,X

“ k ˝ px0, 1Xy ˝ κK,Xq,

where we used that κ is a kernel of B for the second equality, so ζ “ x0, 1Xy ˝κK,X since k is monic,
which is indeed the trivial action of K on X as announced (see Theorem 2.13). q.e.d.

Remark 3.18. Let us present an alternative proof for this lemma using [Sha23, Theorem 4.1] which
gives a characterisation of central arrows (note that a semi-abelian category is indeed regular—by
definition—and subtractive—see [Jan05, Proposition 3] and [BB04, Proposition 3.1.18]). Consider
the following commutative diagram

X X ˆK K

X X ˆX X

X ¸ξ B

p1X ,0q

1X ˆκ

pκ,1K q

κ

p1X ,0q

k
φ

∆X

e˝B
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where the dotted arrow φ is given by the Peiffer Condition rk, e ˝ BscX,X “ 0. By Theorem 2.5, this

means that 0 “ pe ˝ Bq ˝ κ and k commute relatively to the cospan K X ˆK X
pκ,1K q p1X ,0q so,

by Theorem 2.4, it is also the case for 0 and 1X since k is monic, which lets us conclude that κ is
central by [Sha23, Theorem 4.1] (see Theorem 2.2).

Moreover, let us remark that, for these two proofs of Theorem 3.17, we only needed the Peiffer
Condition and not the Precrossed Module Condition.

Now, we consider a central extension B : X Ñ B and will see how it naturally has a (unique)
structure of crossed module. By Theorem 3.15, the action ξ of this crossed module pB, ξq must make
the square

X5X X

B5X X

cX,X

B51X

ξ

(3.4)

commute. Using the centrality of B and the fact that it is a regular epimorphism, one can show that
such an arrow ξ : B5X Ñ X exists [HVdL11, Example 6.2]. (For example, in a variety of algebras,
B is a quotient and this diagram tells us that the action by an element b P B is given by choosing
a representative x of b (i.e. an element x P X such that Bpxq “ b) and acting by conjugation with
this x, the centrality of B assuring that this procedure is well-defined.) Once we know the existence
of this arrow, we can show that it is indeed an action using the fact that cX,X is an action and that
B51X is (regularly) epic [dMVdL20, Lemma 2.6]. Let us now check the two commutator conditions.
By Theorem 3.15, the square we used to define ξ is equivalent to the condition (PFF). For (PCM),
consider the following diagram.

X5X X

B5X X

B5B B

cX,X

B51X

ξ

B5B B

cB,B

By Theorem 2.18, we want to show that the bottom square is commutative. Since the top square
is commutative by construction of ξ and the arrow B51X is epic, we must just check that the outer
rectangle is also commutative, which is indeed the case since

cB,B ˝
`

pB5Bq ˝ pB51Xq
˘

“ px1B , 1By ˝ κB,Bq ˝ pB5Bq “ x1B , 1By ˝
`

pB ` Bq ˝ κX,X
˘

“ xB, By ˝ κX,X “ B ˝ px1X , 1Xy ˝ κX,Xq “ B ˝ cX,X .

Conclusion
To summarise, when B : X Ñ B is a monomorphism, the Precrossed Module Condition corresponds
exactly to the existence of a conjugation action of B on X, which is a characterisation of normal
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subobjects in a semi-abelian context. Moreover, when it is the case, the Peiffer Condition follows
automatically. For a regular epimorphism B : X Ñ B, the condition (PFF) implies that B is
central (even in a more general case without any assumption on B) so we have a central extension.
Conversely, given a central extension B : X Ñ B, the condition (PFF) means that the action ξ
makes Diagram (3.4) commute and, using the centrality of B, we may show that such an action
exists. Then, once we have this action ξ making Diagram (3.4) commute, the condition (PCM)
comes for free.

4 Further work
The theory of twisted commutators can be further developed in several different ways. We name a
few.

First of all, more examples of twisted commutators can be found “in nature”; we are expect-
ing that, often, the existence of an arrow may be seen as twisted commutativity. One situation
which we would like to better understand from our perspective is the so-called Peiffer commutator
of [CMM17]. In fact, there are several instances of twisted commutativity in that article.

Another way to extend the current theory would be beyond the condition (SH). In the case of
the classical commutator, this involves ternary commutators, as explained in [HVdL13]. So, is there
an appropriate concept of higher-order twisted cosmash product? And a corresponding higher-order
twisted commutator? In the classical case, there is a join decomposition formula for subobjects K,
L, M ď X:

rK,L_M s “ rK,Ls _ rK,M s _ rK,L,M s,

which explains the sudden appearance of a ternary commutator. Does a similar decomposition
make sense for twisted commutators? Can we perhaps decompose a twisted commutator in terms
of ordinary commutators, or decompose ordinary commutators in terms of the twisted commutator?
The same question arises for more exotic types of commutators, such as, in particular, the ones
considered in [SVdL21]—which is what initially motivated us to start these investigations.

Finally, we believe it would be interesting to explore relations with categorical Galois the-
ory [BJ01], with the aim of extending the use of Galois theory to the study of abelian non-central
extensions.
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