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Abstract

For any cssc-crossed module a category is constructed, equipped with a structure and proved
that this is a coherent categorical group. Together with a result of the previous paper, where to
any categorical group the cssc-crossed module is associated, this construction will enable us to
prove an equivalence between the categories of categorical groups and of cssc-crossed modules
in the sequel to this paper.
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1 Introduction
Our aim was to obtain for categorical groups an analogous description in terms of certain crossed
module type objects as we have for G-groupoids obtained by Brown and Spencer [3], which are
strict categorical groups, or equivalently, group-groupoids or internal categories in the category of
groups. By a categorical group we mean a coherent 2-group in the sense of Baez and Lauda [1].
It is important to note, that it is a well known fact that a categorical group is equivalent to a
strict categorical group [1, 9, 14], but we do not have an equivalence between the corresponding
categories. This idea brought us to a new notion of group up to congruence relation introduced
in [8]. In this way we came to the definition of c-group and the corresponding category. Then we
defined actions in this category and introduced the notion of c-crossed module. Among this kind
of objects we distinguished connected, strict and special c-crossed modules denoted as cssc-crossed
modules [8]. We proved that any categorical group C gives rise to a cssc-crossed module. In the
presented paper for any cssc-crossed module ∂ : M → N we construct a categorical group G. A set
of objects of G is defined in the standard way, as it is in the case of group-groupoids. The definition
of a set of arrows turned out to be complicated. We consider the product N × M ; then enlarge
this set with special congruences from the c-crossed module ∂ : M → N . After this we introduce
two types of identifications in the obtained set and define an operation of addition there, as well
as the composition of arrows, the identity arrow of each object in G and the inverse arrow of each
arrow. We prove that all these operations do not depend on the choice of representatives. After all
we prove that the constructed category is a coherent categorical group.

We plan to show that there is an equivalence between the category of coherent categorical
groups and the category of cssc-crossed modules. We hope that this result will give a chance to
consider for categorical groups problems analogous to those considered and solved in the cases of
strict categorical groups in terms of group-groupoids and internal categories in [2, 4, 5, 6, 7, 12].
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2 Preliminary results and definitions
Since the paper is a continuation of the previous one, in this section as a preparation we summarise
some preliminaries from [8].

2.1 Categorical groups
The following definition of a monoidal category goes back to Mac Lane [11].

A monoidal category is a category C = (C0, C1, d0, d1, i,m) equipped with a bifunctor +: C×
C → C called the monoidal sum, an object 0 called the zero object, and the family of three natural
isomorphisms α = αx,y,z : (x + y) + z

≈→ x + (y + z), λx : 0 + x
≈→ x and ρx : x + 0 ≈→ x, for all

x, y, z ∈ C0, such that the following diagrams commute for all x, y, z, t ∈ C0.

((x+ y) + z) + t

α+1
��

α // (x+ y) + (z + t) α // x+ (y + (z + t))

(x+ (y + z)) + t
α

// x+ ((y + z) + t)

1+α

OO

(x+ 0) + y
α //

ρ+1
��

x+ (0 + y)

1+λ
��

x+ y x+ y

Moreover, all diagrams involving α, λ, and ρ must commute. A monoidal groupoid is a monoidal
category in which every morphism is invertible.

In this definition we use the term monoidal sum and denote it as +, instead of monoidal product,
used in the original definition, and write the operation additively.

It follows from the definition that 10 + f ≈ f + 10 ≈ f , for any morphism f . A monoidal
category is said to be strict if the natural isomorphisms α, λ, and ρ are identities.

For any two monoidal categories C = (C,+, 0, α, λ, ρ) and C′ = (C ′,+′, 0′, α′, λ′, ρ′), a functor
T : C → C ′ satisfying T (x + y) = Tx +′ Ty, T (f + g) = Tf +′ Tg, T0 = 0′, Tαx,y,z = α′

Tx,Ty,Tz,
Tλx = λ′

Tx, Tρx = ρ′
Tx for all objects x, y, z and morphisms f and g is called a (strict) morphism

of monoidal categories.
T : (C,+, 0, α, λ, ρ) → (C ′,+′, 0′, α′, λ′, ρ′)

Let x be an object in a monoidal category C. If there is an object y ∈ C0 such that x + y ≈ 0
and y + x ≈ 0 then y is called an inverse of x. It is a well known fact that if any object has a
one-sided inverse in a monoidal category, then any object is invertible [1, 9].

A monoidal groupoid C = (C0, C1, d0, d1, i,m) is called a categorical group if for every object
x ∈ C0 there is an object −x ∈ C0 with a family of natural isomorphisms εx : − x + x ≈ 0 and
δx : x+ (−x) ≈ 0 such that the following diagrams are commutative:

0 + x
δ−1

x +1 //

λx

��

(x+ (−x)) + x
αx,−x,x // x+ (−x+ x)

1x+εx

��
x

ρ−1
x

// x+ 0
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−x+ 0
1+δ−1

x //

ρ−x

��

−x+ (x+ (−x))
α−1

−x,x,−x// (−x+ x) + (−x)

εx+1−x

��
−x

λ−1
−x

// 0 + (−x)

It is important and a well-known fact that the definition of a categorical group implies that for
any morphism f : x → x′ ∈ C1 there is a morphism −f : − x → −x′ with natural isomorphisms
−f + f ≈ 0 and f + (−f) ≈ 0, where the morphism 0 is 10 (see e.g. [13]). The natural isomor-
phisms α, λ, ρ, ε, δ, identity transformation 1C → 1C, their compositions and sums are called special
isomorphisms in [8]. A categorical group is said to be coherent if all diagrams involving special
isomorphisms commute [10, 1]. The categorical group defined above is coherent. See [11, Chapter
VII Section 2] for coherence of monoidal categories.

The functorial properties of addition + implies that in a categorical group we have −1x = 1−x,
for any x ∈ C0. Since an isomorphism between morphisms θ : f ≈ g means that there exist
isomorphisms θi : di(f) → di(g), i = 0, 1 with θ1f = gθ0, the naturality property of special
isomorphisms implies that there exist special isomorphisms between the morphisms in C1. But
if θi, i = 0, 1 are special isomorphisms, it does not imply that θ is a special isomorphism; in this
case θ is called a weak special isomorphism. It is obvious that a special isomorphism between the
morphisms in C1 is a weak special isomorphism. Note that if f ≈ f ′ is a weak special isomorphism,
then the coherence property implies that f ′ is the unique morphism weakly specially isomorphic to
f with the same domain and codomain objects as f ′.

In [8], we defined (strict) morphisms between categorical groups, which satisfy conditions of
(strict) morphisms of monoidal categories. Note that this definition implies: T (−x) = −T (x) and
T (−f) = −T (f), for any object x and arrow f in a categorical group. Categorical groups form a
category with (strict) morphisms between them. For any categorical group C = (C0, C1, d0, d1, i,m)
denote Ker d0 = {f ∈ C1 | d0(f) ≈ 0} and Ker d1 = {f ∈ C1 | d1(f) ≈ 0}.

Lemma 2.1. Let C = (C0, C1, d0, d1, i,m) be a categorical group. For any f ∈ Ker d1 and g ∈
Ker d0 we have a weak special isomorphism f + g ≈ g + f .

2.2 Groups up to congruence relation
Now we recall the definition of a group up to congruence relation or briefly a c-group. Let the
pair XR denotes a set X with an equivalence relation R ⊆ X × X. These kind of objects form a
category, denoted by S̃ets, where the morphisms are functions f : XR → YS , such that f(x) ∼S f(y),
whenever x ∼R y.

Product in this category consists of the cartesian product of the sets and the usual product of
the equivalence relations.

Definition 2.2. A c-group is an object GR in S̃ets with a morphism m ∈ S̃ets((G × G)R×R, GR),
denoted by m(a, b) = a+ b, for any a, b ∈ G, satisfying the following conditions:

(i) a+ (b+ c) ∼R (a+ b) + c, for all a, b, c ∈ G;

(ii) there exists an element 0 ∈ G such that a+ 0 ∼R a ∼R 0 + a, for all a ∈ G;
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(iii) for each a ∈ G there exists an element −a such that a+ (−a) ∼R 0 and −a+ a ∼R 0.

In a c-group GR, the given element 0 ∈ G is called zero element and for any a ∈ G the given
element −a ∈ G is called the inverse of a. The congruences involved in the conditions (i)–(iii) of
the definition, their compositions and sums are called special congruences.

Every group G can be considered as a c-group with R = {(a, a) | a ∈ G}, i.e. R is the equality
(=) relation. See [8] for the properties and examples of c-groups.

For any two c-groups GR and HS , a morphism f : GR → HS in S̃ets is called a c-group morphism
if f(a + b) = f(a) + f(b), for any a, b ∈ G. It is easy to see that a morphism between c-groups
preserves congruences between elements; moreover f(0) ∼ 0 and f(−a) ∼ −f(a), for any a ∈ G.
Hence, a morphism between c-groups carries special congruences to special congruences between
pairs of elements.

A category with objects as c-groups, with morphisms as c-group morphisms, with obvious
composition of morphisms and identity morphisms of each object will be denoted by cGr.

For a c-group morphism f : GR → HS , the subset cKer f = {a ∈ GR | f(a) ∼S 0H} of GR is
called the c-kernel and the subset cIm f = {b ∈ HS | ∃a ∈ GR, f(a) ∼S b} of HS is said to be the
c-image of f .

Let H be a subset of the underlying set G of a c-group GR and let S = R ∩ (H × H). In this
case, it is easy to see that S is an equivalence relation on H. If HS is a c-group with the operation
induced from GR then HS is called a c-subgroup of GR. Note that cKer f is a c-subgroup of GR.
In particular, cKer d0, for a categorical group C = (C0, C1, d0, d1, i,m), is a c-subgroup of C1 with
the congruence relation on cKer d0 induced by the isomorphisms in C1.

Let GR be a c-group and let H be a subset of G. If for an element a ∈ G there exists an element
b ∈ H such that a ∼R b then we write a ∈̃ H. If H and H ′ are two subsets of GR, then we write
H ⊂̃H ′ if for any h ∈ H we have h ∈̃H ′. If H ⊂̃H ′ and H ′ ⊂̃H, then we write H ∼ H ′.

Definition 2.3. Let HS be a c-subgroup of a c-group GR. Then HS is called

(i) normal if g + h− g ∈̃HS , for any h ∈ HS and g ∈ G;

(ii) perfect if g ∈̃H implies g ∈ H, for any g ∈ G.

One can see that, for a c-group morphism f : GR → HS , cKer f is a perfect and normal c-
subgroup of GR, and cIm f is a perfect c-subgroup of HS .

Definition 2.4. A c-group GR is called connected if g ∼ g′ for any g, g′ ∈ G.

2.3 Actions and crossed modules in cGr
From now on we omit congruence relation symbols for c-groups A and B if no confusion arise.

Definition 2.5. An (left) action of a c-group B on a c-group A is a function B ×A → A denoted
by (b, a) 7→ b · a which satisfies the following conditions

(i) b · (a+ a1) ∼ (b · a) + (b · a1),

(ii) (b+ b1) · a ∼ b · (b1 · a),

(iii) 0 · a ∼ a,
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(iv) If a ∼ a1 and b ∼ b1 then b · a ∼ b1 · a1,

for a, a1 ∈ A and b, b1 ∈ B.

A semi-direct product is defined as follow: Let A,B ∈ cGr and suppose that B acts on A
satisfying the conditions (i)–(iv). Then the product B × A in cGr becomes a c-group with the
operation (b′, a′) + (b, a) = (b′ + b, a′ + b′ · a) for any b, b′ ∈ B, a, a′ ∈ A where the congruence
relation is the product relation, i.e. (b, a) ∼ (b′, a′) if and only if b ∼ b′ and a ∼ a′. Here, (0, 0) is a
zero element in B ×A and (−b,−b · (−a)) is the opposite element of the pair (b, a) ∈ B ×A. This
c-group is called the semi-direct product B ⋉A in cGr.

For any morphism f : D → D′ in cGr, f is called an isomorphism up to congruence relation or
briefly a c-isomorphism if there is a morphism f ′ : D′ → D, such that ff ′ ∼ 1D′ and f ′f ∼ 1D.
This kind of an isomorphism is denoted by ≈̃, i.e. f : D ≈̃ D′.

For a semi-direct product object B ⋉ A in cGr, we have a natural projection p′ : B ⋉ A → B.
In this case, there is a c-isomorphism cKer p′ ≈̃ A which need not to be an isomorphism as in the
case of groups.

From a categorical group C = (C0, C1, d0, d1, i,m), we obtain a split extension

0 // cKer d0
j // C1

d0

// C0 //
itt 0 (2.1)

where i : C0 → C1 is a section of d0. Thus we define an action of C0 on cKer d0 by

C0 × cKer d0 −→ cKer d0,
(r, c) 7−→ r · c = i(r) + (j(c) − i(r)).

Proposition 2.6. The action of C0 on cKer d0 satisfies the conditions for an action in cGr.

Definition 2.7. Let G and H be two c-groups, let ∂ : G → H be a morphism of c-groups and let
H act on G. We call (G,H, ∂) a c-crossed module if the following conditions are satisfied:

(i) ∂(b · a) = b+ (∂(a) − b),

(ii) ∂(a) · a1 ∼ a+ (a1 − a),

for a, a1 ∈ G and b ∈ H.

Let (G,H, ∂) and (G′, H ′, ∂′) be two c-crossed modules. A c-crossed module morphism is a pair
of morphisms ⟨f, g⟩ : (G,H, ∂) → (G′, H ′, ∂′) such that g∂ = ∂′f and f(b · a) = g(b) · f(a), for all
b ∈ H and a ∈ G, where f and g are morphisms of c-groups. c-crossed modules and morphisms of
c-crossed modules form a category.

Let H be a normal c-subgroup of a c-group G. One can easily see that, in general, we do not
have a usual action by conjugation of G on H. However, we have a similar situation as given below.

Lemma 2.8. If H is a perfect normal c-subgroup of a c-group G, then we have an action of G on
H in the category cGr and the inclusion morphism defines a c-crossed module.

Definition 2.9. A c-crossed module (G,H, ∂) is called connected if G is a connected c-group.
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Proposition 2.10. For a categorical group C = (C0, C1, d0, d1, i,m), (cKer d0, C0, d) is a connected
c-crossed module where d = d1|cKer d0 .

In [8] we introduced another c-group, StarC0, from a categorical group C = (C0, C1, d0, d1, i,m)
apart from cKer d0. StarC0 = {f ∈ C1 | d0(f) = 0} with the addition operation given by f + f ′ =
(f + f ′)γ, where f + f ′ : 0 + 0 → d1(f) + d1(f ′) is a sum in C1 and γ : 0 → 0 + 0 is the unique
special isomorphism in C1. The congruence relation on StarC0 is induced by the relation on C1,
which is the relation of being isomorphic in C1. C0 is also a c-group where the congruence relation
is given by isomorphisms between the objects. Moreover, there is an action of C0 on StarC0 given
by r · c = (i(r) + (c − i(r)))γ, for any r ∈ C0, c ∈ StarC0, where γ : 0 ≈ r + (0 − r) is a special
isomorphism.

Definition 2.11. A c-crossed module (G,H, ∂) is called strict if,

(i) ∂(b · a) = b+ (∂(a) − b),

(ii) ∂(a) · a1 = a+ (a1 − a),

for a, a1 ∈ G and b ∈ H.

Definition 2.12. In a c-crossed module (G,H, ∂) a congruence g ∼ g′ in G is called a weak special
congruence if ∂(g) ∼ ∂(g′) is a special congruence in H.

For a c-crossed module (G,H, ∂) every special congruence in G is a weak special congruence since
the morphism ∂ carries any special congruence to a special congruence between pairs of elements

Definition 2.13. A c-crossed module (G,H, ∂) is called special if for any congruence γ : ∂(c) ∼ r,
there exists c′ ∼ c, such that ∂(c′) = r, where c, c′ ∈ G and r ∈ H. If γ is a special congruence,
then c′ is the unique element in G which is special weakly congruent to c.

A c-crossed module is called as a cssc-crossed module if it is connected, strict, and special
c-crossed module. This kind of crossed module is exactly that we were looking for.

Theorem 2.14. For a categorical group C = (C0, C1, d0, d1, i,m) the triple (StarC0, C0, d) is a
cssc-crossed module, where d = d1|StarC .

3 Objects and arrows in G
In this section we start with a cssc-crossed module and construct the objects and arrows of a
category associated with this cssc-crossed module.

Let ∂ : M → N be a cssc-crossed module. Define a category G with the set of objects G0 = N ,
which has a c-group structure according to the definition of c-crossed module. Consider the product
N × M . Elements of N × M are the pairs (r, c), where r ∈ N and c ∈ M . As we know from the
definition of a c-group there exist special congruences between certain elements in N . We will
denote these congruences by α, β, .... If α : r ∼ r′ is a special congruence in N , then we write an
arrow α : r → r′ with dom(α) = r, codom(α) = r′. Since for any special congruence α : r ∼ r′,
there exists the special congruence α−1 : r′ ∼ r and the corresponding arrows in N ×M are called
by special isomorphisms.

We now enlarge the set N × M as follows: Consider the set N×̄M with elements of the type
α, β, ..., β(r, c)α, where α, β, ... are all special isomorphisms in N × M , (r, c) ∈ N × M , and in
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β(r, c)α we have codom(α) = r, dom(β) = ∂(c) + r. From this definition it follows that any element
(r, c) ∈ N ×M is an element in N×̄M , where α = 1r : r =−→ r and β = 1∂(c)+r : ∂(c) + r

=−→ ∂(c) + r
are special identity arrows. We define dom(β(r, c)α) = dom(α) and codom(β(r, c)α) = codom(β).
Hence β(r, c)α actually consists of three compossible arrows

r′ α−−−→ r
(r,c)−−−→ ∂(c) + r

β−−−→ r′′.

Lemma 3.1. Let ∂ : M → N be a c-crossed module. Then we have a special congruence ∂(0) ∼ 0
in N .

Proof. We have the special congruence 0+0 ∼ 0 in M , from which the special congruence ∂(0+0) ∼
∂(0) follows, since ∂ carries special congruences in M to special congruences in N . From this we have
the special congruences ∂(0) + ∂(0) ∼ ∂(0 + 0) ∼ ∂(0), which gives the desired special congruence.
□

Lemma 3.2. Let ∂ : M → N be a cssc-crossed module and α : r ∼ r′ a special congruence in N .
Then there exists a unique element c ∈ M with the properties that c is weakly special congruent
to 0 and ∂(c) = r′ − r.

Proof. By the condition we assume, it follows that there is a special congruence 0 ∼ r′ − r. From
Lemma 3.1 ∂(0) ∼ 0 is a special congruence, from which we conclude the existence of a special
congruence ∂(0) ∼ r′ − r. Since ∂ : M → N is a special c-crossed module, it follows that there
exists a unique element c ∈ M with weakly special congruence c ∼ 0 and ∂(c) = r′ − r, which
completes the proof. □

Corollary 3.3. If there is a special congruence α : r ∼ r′ for r, r′ ∈ N , then there exists a unique
element c ∈ M with ∂(c) = r′ − r, a weak congruence c ∼ 0 and an arrow ε(r, c) : r → r′ in
N×̄M , where ε : (r′ − r) + r → r′ is a special isomorphism corresponding to the special congruence
(r′ − r) + r ∼ r′ in N and (r, c) : r → (r′ − r) + r is an arrow in N×̄M .

Proof. Follows from Lemma 3.2. □

We now define two identifications in N×̄M as follows:

Identification I in N×̄M : In what follows we will identify any special isomorphism α : r ∼ r′

in N×̄M with the arrow ε(r, c) defined uniquely; i.e. c is the element defined uniquely and
weakly special congruent to 0 in M with ∂(c) = r′ − r and ε is a unique special isomorphism
defined in Corollary 3.3. We will use the notation α ≡ ε(r, c).

Identification II in N×̄M : If φ : c ∼ c′ is a weak special congruence in M , then β(r, c)α ≡
β′(r, c′)α, for any r ∈ N , where β = β′(∂(φ) + 1r), for any special congruence β′ with
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dom(β′) = ∂(c′) + r, and any α with codom(α) = r

∂(c) + r

β

""
≈∂(φ)+1r

��

r′ α // r

(r,c)

<<

(r,c′)

""

r′′

∂(c′) + r

β′

<< (3.1)

In the diagram, in particular, if β′ = 1∂(c′)+r then β = ∂(φ) + 1r and we obtain (r, c′)α =
(∂(φ) + 1r)(r, c)α. If in addition α = 1r, then we have (r, c′) = (∂(φ) + 1r)(r, c).

It is obvious, but worth to note, that on the base of described identifications we have the
following. If α ≡ ε(r, c) by Identification I and ε(r, c) ≡ ε′(r, c′) by Identification II, then α ≡
ε′(r, c′); also if β(r, c)α ≡ β′(r, c′)α ≡ β′′(r, c′′)α by Identification II, then β(r, c) ≡ β′′(r, c′′)α.

We denote the resulting set obtained by Identifications I and II by G1; the elements of G1
will be called arrows of the category G.

4 Composition of arrows in G
In this section we define compositions of arrows in G.

Definition 4.1. (a) Let α and β be two composable special isomorphisms in G1. The com-
position β ◦ α is defined to be βα which is the special isomorphism corresponding to the
composition of special congruences α and β in N which is a special congruence as well.

(b) If β and γ are composable special isomorphisms in G1, the composition γ◦(β(r, c)α) is defined
as (γβ)(r, c)α. In analogous way (β(r, c)α) ◦ δ = β(r, c)(αδ), where δ and α are composable.
From this definition it follows that

γ ◦ ((r, c)α) = γ(r, c)α (4.1)

(β(r, c)) ◦ δ = β(r, c)δ (4.2)

(c) Let β(r, c)α and β′(r′, c′)α′ ∈ G1. If β and α′ are composable, we define

(β′(r′, c′)α′) ◦ (β(r, c)α) = θ(r, c′ + c)α,

where θ is the composition of the following special isomorphisms

(∂(c′) + ∂(c)) + r ≈ ∂(c′) + (∂(c) + r)
1∂(c′)+β

≈ ∂(c′) + r2
1∂(c′)+α

≈ ∂(c′) + r′ β≈ r′′

the picture is

r1
α−→ r

(r,c)−−−→ ∂(c) + r
β−→ r2

α′

−→ r′ (r′,c′)−−−−→ ∂(c′) + r′ β′

−→ r′′.
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Now we shall show that the above definitions of compositions do not depend on the choice of
representatives.

Proposition 4.2. In definition (a), the composition of special isomorphisms does not depend on
the choice of representatives.

Proof. Suppose α ≡ ε(r, c), β ≡ ε1(r′, c1), where α : r → r′, β : r′ → r′
1, ε : (r′ − r) + r → r′ and

ε1 : (r′
1 − r′)+ r′ → r′

1 are special isomorphisms with ∂(c) = r′ − r, ∂(c1) = r′
1 − r′. Let βα = ε̄(r, c̄)

by Identification I, where ε̄ : (r′
1 − r′) + r′ → r′

1 is a special isomorphism and ∂(c̄) = r′
1 − r. We

have ε1(r′, c1) ◦ ε(r, c) = η(r, c1 + c), where

η : (∂(c1) + ∂(c)) + r≈(r′
1 − r′) + (∂(c) + r) ≈(r′

1 − r′) + r′ ≈ r′
1

is the composition of the special isomorphisms. We have to show the equality η(r, c1 + c) = ε̄(r, c̄).
Since M is connected, we have the congruence c1 + c ∼ c̄ in M . Moreover ∂(c1) + ∂(c) = (r′

1 −
r′) + (r′ − r) ≈ r′

1 − r≈ ∂(c1). By Identification II and Definition 4.1 (b) we obtain the desired
equality. □

Proposition 4.3. Let β(r, c)α ∈ G1, γ and β be composable and γ ≡ ε(r′, c′) by Identification
I. Then

(ε(r′, c′)) ◦ (β(r, c)α) = (ε(r′, c′) ◦ β) ◦ ((r, c)α).

Proof. We compute both sides according to the definition of composition (c). We have

(ε(r′, c′)) ◦ (β(r, c)α) = θ(r, c′ + c)α,

where
θ : (∂(c′) + ∂(c)) + r≈ ∂(c′) + (∂(c) + r)

1∂(c′)+β
≈ ∂(c′) + r′ = (r′′ − r′) + r′ ε≈r′′

is the composition of the special identities and the equality.
For the right-side we have

(ε(r′, c′) ◦ β) ◦ ((r, c)α) = (ε(r′, c′)β)) ◦ ((r, c)α) = θ′(r, c′ + c), (4.3)

where θ′ = θ, which proves the equality. In (4.3) we use (4.2). □

Proposition 4.4. Let β(r, c)α ≡ β′(r, c′)α by Identification II. Then for any β1(r1, c1)α1 with
dom(α1) = codom(β) there is an equality

β1(r1, c1)α1 ◦ β(r, c)α = β1(r1, c1)α1 ◦ β′(r, c′)α.

Proof. By the definition of composition the left-side of the equality is equal to θ(r, c1 + c)α and the
right-side is equal to θ′(r, c1 + c′)α, where θ and θ′ are the compositions of the following special
isomorphisms

θ : (∂(c1) + ∂(c)) + r ≈ ∂(c1) + (∂(c) + r)
1∂(c1)+α1β

≈ ∂(c1) + r1
β1≈r2

θ′ : (∂(c1) + ∂(c′)) + r ≈ ∂(c1) + (∂(c′) + r)
1∂(c1)+α1β

′

≈ ∂(c1) + r1
β1≈r2
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The picture is

∂(c) + r

β

""
∂(φ)+1r

��

r′ α // r

(r,c)

<<

(r,c′)

""

r′′ α1 // r1
(r1,c1) // ∂(c1) + r

β1 // r2

∂(c′) + r

β′

<<

where φ : c ∼ c′ is a weak special congruence which is meant in Identification II. Since c1 +
c ≈ c1 + c′ is a weak special congruence by the same Identification II we have the equality
θ(r, c1 + c) = θ′(r, c1 + c′).

The equality when compositions are taken from the right-side can be proved similarly. □

Proposition 4.5. Suppose β′(r′, c′)α′ = ε(r′, c′) and ε(r′, c′) ≡ γ is a special isomorphism in the
definition of composition (c). Then (ε(r′, c′)) ◦ (β(r, c)α) = (γβ)(r, c)α.

Proof. We have the following notation;

r1
α // r

(r,c) // ∂(c) + r
β // r′ (r′,c′) //

γ

OO∂(c′) + r′ ε // r′′

The left-side of the equality is equal to θ(r, c′ + c)α by the Definition 4.1 (c), where θ : ∂(c′ +
c) + r → r′′ is an obvious special isomorphism. Here we have to note that ∂(c′) = r′′ − r′ and
ε : (r′′ − r′) + r′ → r′′ is a special isomorphism. We have to show that θ(r, c′ + c)α = (γβ)(r, c)α.
The equality follows from Identification II coherence and (4.2). The diagram is

(∂(c′) + ∂(c)) + r

θ

%%
≈

��

r1
α // r

(r,c′+c)

99

(r,c)

%%

r′′

∂(c) + r

γβ

99

Note that the composition

(∂(c′) + ∂(c)) + r ≈ ∂(c′) + (∂(c) + r) = (r′′ − r′) + ∂(c) + r ≈ ∂(c) + r
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is a special isomorphism since (r′′ − r′) ≈ 0 is a special isomorphism. □

In what follows we will not use the sign “◦” for composition.

Proposition 4.6. For any three composible arrows we have an equality

(r, c)((r2, c2)(r1, c1)) = ((r, c)(r2, c2))(r1, c1).

Proof. We compute both sides of the equality and prove that they are equal. The right-side is equal
to ψ1ψ(r1, (c+ c2) + c1), where ψ and ψ1 are the special isomorphisms

((∂(c) + ∂(c2)) + ∂(c1)) + r1
ψ−→ (∂(c) + ∂(c2)) + (∂(c1) + r1) ψ1−−→ ∂(c) + r.

Here we have in mind that since the three arrows are composible we have ∂(c1) + r1 = r2 and
∂(c2) + r2 = r.

The left-side of the equality is equal to φ1φ(r1, c + (c2 + c1)), where φ and φ1 are the special
isomorphisms

(∂(c) + (∂(c2) + ∂(c1))) + r1
φ−→ (∂(c) + ∂(c2)) + (∂(c1) + r1) φ1−→ ∂(c) + r.

The diagram is

((∂(c) + ∂(c2)) + ∂(c1)) + r

ψ1ψ

((
∂(η)+1r

��

r

(r,(c+c2)+c1)

77

(r,c+(c2+c1))

''

∂(c) + r

(∂(c) + (∂(c2) + ∂(c1))) + r

φ1φ

66

where η : (c+c2)+c1 ∼ c+(c2 +c1) is a special congruence of associativity in M and ∂η is a special
isomorphism in G1. From the Identification II of arrows we have commutative triangle on the
left-side of the diagram. The second triangle is also commutative from the coherence property of
special congruences in c-groups. Applying Definition 4.1 (b), this commutative diagram gives the
proof. □

Note that associativity of composition in the general case is proved in a similar way. Here we
mean that the arrows are of the type β(r, c)α.
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Proposition 4.7. Let (r, c), (r′, c′) ∈ G1 and r ∼ r′ be a congruence in N . Then there exist arrows
φ : r → r′ and θ : ∂(c) + r → ∂(c′) + r′ for which the following diagram commutes

r
(r,c) //

φ

��

∂(c) + r

θ

��
r′

(r′,c′)
// ∂(c′) + r′

Proof. Since c-crossed module ∂ : M → N is connected, we have the congruence c ∼ c′. Since it is
a special c-crossed module there exists (not necessarily unique) an element c′′ with

∂(c′′) = r′ − r (4.4)

and c′′ ∼ 0. Let ε : (r′ − r) + r → r′ be the special isomorphism. Then ε(r, c′′) is an arrow r → r′.
In a similar way, we have a congruence ∂(c) + r ∼ ∂(c′) + r′ and therefore there exists an element
c1 with

∂(c1) = (∂(c′) + r′) − (∂(c) + r), (4.5)
c1 ∼ 0 and we have a special isomorphism φ : ((∂(c′) + r′) − (∂(c) + r)) + (∂(c) + r) → ∂(c′) + r′.
Therefore there is an arrow φ(∂(c) + r, c1) : ∂(c) + r → ∂(c′) + r′. We take ψ = ε(r, c′′) and
θ = φ(∂(c) + r, c1); and prove that the diagram is commutative. The compositions in the diagram
are respectively equal to χ1χ(r, c′ + c′′) and σ1σ(r, c1 + c) where χ1χ, σ1σ are the following special
isomorphisms

(∂(c′) + ∂(c′′)) + r
χ−→ ∂(c′) + (∂(c′′) + r) χ1−→ ∂(c′) + r′,

(∂(c1) + ∂(c)) + r
σ−→ ∂(c1) + (∂(c) + r) σ1−→ ∂(c′) + r′.

Here we applied (4.4) and (4.5). Since M is connected we have a congruence c′ + c′′ ∼ c1 + c.
Moreover ∂(c′) + ∂(c′′) = ∂(c′) + (r′ − r) and ∂(c1) + ∂(c) is special congruent to ∂(c′) + (r′ − r);
and therefore c′ + c′′ is weakly special congruent to c1 + c. On the base of Identification II the
diagram commutes. □

Corollary 4.8. Let β(r, c)α and β′(r′, c′)α′ ∈ G1, where dom(α) = dom(α′) and codom(β) =
codom(β′). If c ∼ c′ is a weak special congruence, then β(r, c)α = β′(r′, c′)α′.

Proof. The proof follows from Proposition 4.7 and the coherence property of special isomorphisms
in G1 as in the diagram

r
(r,c) //

��

∂(c) + r

β

&&

��

•

α

88

α′

&&

•

r′
(r′,c′)

// ∂(c′) + r′

β′

88
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□

5 Identity arrows and invertibility of arrows in G1
For each object r ∈ G0, we define an arrow ε(r, 0), where (r, 0) : r → ∂(0) + r is an arrow in G1
and ε : ∂(0) + r → r is a special isomorphism by means of the special isomorphism ∂(0) ≈ 0. We
prove that ε(r, 0) : r → r is an identity arrow.

Lemma 5.1. For any (r1, c) with ∂(c) + r1 = r and any (r, c1) ∈ G1 there are equalities

ε(r, 0)(r1, c) = (r1, c),

(r, c1)ε(r, 0) = (r, c1).

Proof. From the definition of composition in G1 we have ε(r, 0)(r1, c) = εε1(r1, 0 + c), where
ε1 : (∂(0) + ∂(c)) + r1 → ∂(0) + r is a special isomorphism by ∂(c) + r1 = r. Moreover, we have the
special congruence 0 + c ∼ c. By the Identification II we obtain commutative diagram

r1
(r1,c) //

(r1,0+c)

��

∂(c) + r1 = r

(∂(0) + ∂(c)) + r1 ε1
// ∂(0) + r

ε

OO

which proves the first equality. The second equality is proved in a similar way. □

Hence we have a map i : G0 → G1 defined by i(r) = ε(r, 0), which is the identity arrow 1r for
any object r in G0.

For any arrow β(r, c)α ∈ G1 define an arrow α−1(r, c)−1β−1, where (r, c)−1 = φ(∂(c) + r,−c),
and φ : ∂(−c) + (∂(c) + r) → r is a special isomorphism.

The pictures are as follows

r′ α // r
(r,c) // ∂(c) + r

β // r′′ (5.1)

r′′ β−1
// ∂(c) + r

(∂(c)+r,−c) // ∂(−c) + (∂(c) + r) φ // r
α−1

// r′ (5.2)

Proposition 5.2. For any β(r, c)α ∈ G1 we have

(β(r, c)α)(α−1φ(∂(c) + r,−c)β−1) = 1r′′ ,

(α−1φ(∂(c) + r,−c)β−1)(β(r, c)α) = 1r′ .

Proof. By the definition of composition, we obtain that the left-side of the first equality is equal to

βξ(∂(c) + r, c− c)β−1
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where ξ : ∂(c− c) + (∂(c) + r) → ∂(c) + r is a special isomorphism and β is as given in (5.1). We
have the following diagram

r′′ β−1
// ∂(c) + r

(∂(c)+r,c−c) //

(∂(c)+r,0)

��
1∂(c)+r

""

∂(c− c) + (∂(c) + r)

ξ

��

φ+1∂(c)+r

xx
∂(0) + (∂(c) + r)

ε

��

∂(c) + r

β

��

1∂(c)+r

∂(c) + r
β

// r′′

For the arrows (∂(c) + r, c − c) and (∂(c) + r, 0) we have the special congruence c − c ∼ 0 and
therefore a special isomorphism φ : ∂(c − c) → ∂(0). From Identification II, it follows that
the upper triangular diagram commutes. In the diagram, ε is a special isomorphism and the left
vertical composition is 1∂(c)+r. From the coherence property of special congruences in c-groups,
and therefore from the coherence of special isomorphisms in G1, we conclude that the diagram is
commutative, which proves the first equality of the proposition.

In a similar way the second equality can be proved. □

We now prove that the inverse of an arrow does not depend on the choise of representatives.

Proposition 5.3. If α : r → r′ is a special isomorphism and α ≡ ε(r, c′) by Identification I,
where ∂(c′) = r′ − r and ε is a special isomorphism (r′ − r) + r → r′, then α−1 = (ε(r, c′))−1.

Proof. By the definition of inverse arrow (ε(r, c′))−1 = φ(∂(c′) + r,−c′)ε−1, where φ : ∂(−c′) +
(∂(c′) + r) → r is a special isomorphism. Since α−1 is a special isomorphism, by Identification I
we have α−1 = (ε̄(r′, c̄1)), where ∂c̄1 = r−r′ and ε̄ : ∂c̄1 +r′ → r is a special isomorphism. We have
to show that φ(∂(c′)+r,−c′)ε−1 = ε̄(r′, c̄1

′). We have the special isomorphism ε−1 : r′ → ∂(c′)+r;
and moreover −c′ ∼ c̄1

′, since M is connected. ∂(−c′) is a special congruent to c̄1
′, since both are

special congruent to r − r′. Like in Proposition 4.7 the following diagram commutes

r′ (r′,c′
1) //

ε−1

��

∂(c′
1) + r′

ε

��
r

φ−1

��
∂(c′) + r

(∂(c′)+r,−c′)
// ∂(−c′) + (∂(c′) + r)
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which proves the equality. □

Proposition 5.4. If φ : c ∼ c′ is a weak special congruence, then according to diagram (3.1) for
any r ∈ G0 we have

(β′(r, c′)α)−1 = (β(r, c)α)−1.

Proof. For the right-side of the equality we have

(β(r, c)α)−1 = α−1(η(∂(c) + r,−c)β−1)

where η : ∂(−c) + (∂(c) + r) → r is a special isomorphism. For the left-side of the equality we have

(β′(r, c′)α)−1 = α−1(η′(∂(c′) + r,−c′)β′−1)

where η′ : ∂(−c′)+(∂(c′)+r) → r is a special isomorphism. By diagram (3.1) we have the following
picture

∂(c) + r
(∂(c)+r,−c) //

��

∂(−c) + (∂(c) + r)

η

''

��

r′′

β−1

::

β′−1

$$

r
α−1

// r′

∂(c′) + r
(∂(c′)+r,−c′)

// ∂(−c′) + (∂(c′) + r)

η′

77

By the definition of composition (b) we have

α−1(η(∂(c) + r,−c)β−1) = (α−1η)(∂(c) + r,−c)β−1,

α−1(η′(∂(c′) + r,−c′)β′−1) = (α−1η′)(∂(c′) + r,−c′)β′−1.

Since ∂(c) + r ≈ ∂(c′) + r is a special isomorphism and −c ∼ −c′ is a weak special congruence, by
Corollary 4.8 we obtain the equality. □

6 Addition operation, the zero element and the opposite arrows in G1
For any arrows β1(r1, c1)α1 and β2(r2, c2)α2 ∈ G1 their sum is defined by

β1(r1, c1)α1 + β2(r2, c2)α2 = (β1 + β2)θ(r1 + r2, c1 + r1 · c2)(α1 + α2),

where
θ : ∂(c1) + (r1 + (∂(c2) − r1)) + r1 + r2 −→ (∂(c1) + r1) + (∂(c2) + r2)

is the special isomorphism. That can be pictured as

r′
1

α1 // r1
(r1,c1) // ∂(c1) + r1

β1 // r′′
1
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r′
2

α2 // r2
(r2,c2) // ∂(c2) + r2

β2 // r′′
2

r′
1 + r′

2
α1+α2 //

β1(r1,c1)α1+β2(r2,c2)α2

��

r1 + r2

(r1+r2,c1+r1·c2)

��
∂(c1) + (r1 + (∂(c2) − r1)) + r1 + r2

θ

��
r′′

1 + r′′
2 (∂(c1) + r1) + (∂(c2) + r2)

β1+β2

oo

Let α : r → r′ be a special isomorphism in G1. By Identification I, we have α ≡ ε(r, c),
where c ∼ 0 is a weak special congruence with ∂(c) = r′ − r and ε : (r′ − r) + r → r′ is the special
isomorphism. For any γ(r′, c′)β ∈ G1 the sum α + γ(r′, c′)β is defined to be ε(r, c) + γ(r′, c′)β.
Similarly, γ(r′, c′)β + α is defined to be γ(r′, c′)β + ε(r, c).

Now we prove that the addition operation in G1 does not depend on the choice of representatives.
In the case of Identification I of arrows we do not need to prove anything for the definitions of
the sums α+ γ(r′, c′)β and γ(r′, c′)β + α.

Proposition 6.1. Let α : r → r′ and β : r1 → r′
1 be the special isomorphisms. Then we have the

special isomorphism α + β : r + r1 → r′ + r′
1, which corresponds to the special congruence α + β

in M . We have the identifications α ≡ ε(r, c), β ≡ ε1(r1, c1) and α + β ≡ ε(r + r1, c), where
∂(c) = r′ − r, ∂(c1) = r′

1 − r1, ∂(c) = (r′ + r′
1) − (r+ r1), ε : (r′ − r) + r → r′, ε1 : (r′ − r1) + r1 → r′

1
and ε : ((r′ + r′

1) − (r + r1)) + (r + r1) → r′ + r′
1 are the special isomorphisms. Moreover c, c1 and

c are weakly special congruent to 0. Then we have the equality

ε(r + r1, c) = ε(r, c) + ε1(r1, c1).

Proof. According to the definition of sum in G1 we have

ε(r, c) + ε1(r1, c1) = (ε+ ε1)η(r + r1, c+ r · c1)

where

η : ∂(c+ r · c1) + (r + r1) = ∂(c) + (r + (∂(c1) − r)) + (r + r1)
=→ ((r′ − r) + (r + ((r′

1 − r1) − r))) + (r + r1) → ((r′ − r) + r) + ((r′
1 − r1) + r1) (6.1)

is a special isomorphism. For two arrows (r+r1, c+r ·c1) and (r+r1, c), we have that c+r ·c1 ∼ c′,
and from (6.1) ∂(c+r ·c1) = (r′ −r)+((r+(r′

1 −r1))−r); and the right-side of this equality is special
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congruent to (r′ + r′
1) − (r + r1), which is equal to ∂(c). Therefore we can apply Identification

II, which gives a commutative diagram

r + r1

(r+r1,c)

��

(r+r1,c+r·c1) // ∂(c+ r · c1) + (r + r1)

η

��
((r′ − r) + r) + ((r′

1 − r1) + r1)

ε+ε1

��
((r′ + r′

1) − (r + r1)) + (r + r1)
ε

// r′ + r′
1

from which the desired equality follows. □

Proposition 6.2. If φ : c ∼ c′ is a weak special congruence, then for any r ∈ G0 and Identification
II β′(r, c′)α ≡ β(r, c)α we have the following equalities

β′(r, c′)α+ β1(r1, c1)α1 = β(r, c)α+ β1(r1, c1)α1

β1(r1, c1)α1 + β′(r, c′)α = β1(r1, c1)α1 + β(r, c)α

for any arrow β1(r1, c1)α1 in G1.

Proof. The right-side of the first equality is equal to (β + β1)θ(r + r1, c + r · c1)(α + α1) and the
left-side of the same equality is equal to (β′ +β′

1)θ′(r+r1, c
′ +r ·c1)(α+α1). We have the following

picture (see also diagram (3.1)).
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r′ + r′
1

α+α1

��
r + r1

(r+r1,c
′+r·c1)

vv

(r+r1,c+r·c1)

''
(∂(c′) + ∂(r · c1)) + (r + r1)

θ′

��

(∂(c) + ∂(r · c1)) + r + r1

θ

��
(∂(c′) + r) + (∂(c1) + r1)

β′+β1

((

(∂(c) + r) + (∂(c1) + r1)

β+β1

ww
r′′ + r2

Since we have a weak special congruence c′ + r · c1 ∼ c+ r · c1, by Identification II we obtain the
first equality of the proposition. The second equality is proved in a similar way. □

Proposition 6.3. For any three arrows (r, c), (r1, c1) and (r2, c2) in G1 we have an isomorphism

((r, c) + (r1, c1)) + (r2, c2) ≈ (r, c) + ((r1, c1) + (r2, c2)).

Proof. First we compute the left-side of the isomorphism. Let

θ1 : (∂(c) + (r + (∂(c1) − r))) + (r + r1) → (∂(c) + r) + (∂(c1) + r1)

be the special isomorphism. We have

θ1(r + r1, c+ r · c1) + (r2, c2) = θ2((r + r1) + r2, (c+ r · c1) + (c+ r · c1) · c2),

where

θ2 : ((∂(c) + (r + (∂(c1) − r))) + ((r + r1) + (∂(c2) − (r + r1)))) + ((r + r1) + r2)
→ ((∂(c) + r) + (∂(c1) + r1)) + (∂(c2) + r2)

is the obvious special isomorphism.
The right-side of the isomorphism in the proposition is equal to

(r, c) + θ′
1(r1 + r2, c1 + r1 · c2) = θ′

2(r + (r1 + r2), c+ r · (c1 + r1 · c2))
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where
θ′

1 : (∂(c1) + (r1 + (∂(c2) − r1))) + (r1 + r2) → (∂(c1) + r1) + (∂(c2) + r2)

and

θ′
2 : (∂(c)+(r+(∂(c1)+((r1+∂(c2))−r1))−r))+((r+r1)+r2) → (∂(c)+r)+((∂(c1)+r1)+(∂(c2)+r2)),

are the obvious special isomorphisms.
We have the weak special congruence (c+ r · c1) + (r+ r1) · c2 ∼ c+ r · (c1 + r1 · c2) and a special

congruence (r + r1) + r2 ∼ r + (r1 + r2), which give a commutative diagram like in the proof of
Proposition 4.7

(r + r1) + r2

ε

��

θ2((r+r1)+r2,(c+r·c1)+(r+r1)·c2) // ((∂(c) + r) + (∂(c1) + r1)) + (∂(c2) + r2)

ε1

��
r + (r1 + r2)

θ′
2(r+(r1+r2),c+r·(c1+r1·c2))

// (∂(c) + r) + ((∂(c1) + r1) + (∂(c2) + r2))

where ε and ε1 are special isomorphisms. These prove the desired isomorphism of arrows. □

In more general case of arrows, the proposition can be proved in a similar way. Therefore we
have proved that the sum of arrows in G1 is associative up to isomorphism.

The sum of objects in G0 is defined as a sum in c-group N , which is associative up to special
congruence, and therefore it is associative in G0 up to special isomorphism in G1.

A zero object in the category G with objects G0 = N is a zero element 0 in N as in c-group,
i.e. we have special isomorphisms 0 + r ≈ r ≈ r+ 0 which are defined by special congruences in N .

A zero element for the addition operation in G1 we define as σ(0, 0), where σ is the special
isomorphism defined by the special congruence σ : ∂(0) + 0 ∼ 0. According to the definition of
identity arrows for any object r ∈ G0, we have σ(0, 0) = 10 : 0 → 0.

Proposition 6.4. For any arrow β(r, c)α ∈ G1 we have an isomorphism

β(r, c)α+ σ(0, 0) ≈ β(r, c)α ≈ σ(0, 0) + β(r, c)α

Proof. Let α : r′ → r and β : ∂(c) + r → r′′ be special isomorphisms. For the left-side of the
isomorphism we have

β(r, c)α+ σ(0, 0) = (β + σ)ζ(r + 0, c+ r · 0)(α+ 10),

where β + σ : (∂(c) + r) + (∂(0) + 0) → r′′ + 0 and α + 10 : r′ + 0 → r + 0 are obvious special
isomorphisms. The picture is

r′ α // r
(r,c) // ∂(c) + r

β // r′′
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r′ + 0

α+10

��

r′′ + 0

r + 0
(r+0,c+r·0)

// (∂(c) + (r + (∂(0) − r))) + (z + 0)
ζ

// (∂(c) + r) + (∂(0) + 0)

β+σ

OO

where ζ is a special isomorphism. Moreover we have special isomorphisms r ≈ r + 0, r′ ≈ r′ + 0,
r′′ ≈ r′′ + 0 and c ≈ c+ r · 0. Hence by coherence of special isomorphisms and Proposition 4.5, the
isomorphism β(r, c)α + σ(0, 0) ≈ β(r, c)α follows. The second isomorphism is proved in a similar
way. □

For any arrow β(r, c)α ∈ G1 we define an opposite arrows −(β(r, c)α) = (−β)ε(−r, (−r) ·
(−c))(−α), where α : r′ → r and β : ∂(c) + r → r′′ are special isomorphisms. −α : − r′ → −r
and −β : − (∂(c) + r) → −r′′ are the opposite special isomorphisms corresponding to the opposite
special congruences −α : − r′ ∼ −r and −β : − (∂(c) + r) ∼ −r′′, respectively; and ε : ((−r) +
(∂(−c) − (−r))) + (−r) → −(∂(c) + r) is an obvious special isomorphism.

Proposition 6.5. For any β(r, c)α ∈ G1 we have isomorphisms

β(r, c)α+ (−(β(r, c)α)) ≈ σ(0, 0) ≈ −(β(r, c)α) + β(r, c)α

where σ : ∂(0) + 0 → 0 is the special isomorphism.

Proof. We have

β(r, c)α+ (−(β(r, c)α)) = β(r, c)α+ (−β)ε(−r, (−r) · (−c))(−α)
= (β + ((−β)ε))θ(r + (−r), c+ r · ((−r) · (−c)))(α+ (−α)),

(6.2)

where β+((−β)ε) : (∂(c)+r)+(((−r)+(∂(−c)−(−r)))+(−r)) → r′′ −r′′ is a special isomorphism.
By Proposition 4.5 we obtain that the right-side of (6.2) is isomorphic to (0, 0) and therefore to
σ(0, 0). The second isomorphism of the proposition is proved similiarly. □

Below we prove that an opposite arrow does not depend on the choice of representatives.

Proposition 6.6. For any special isomorphism α ∈ G1, where α ≡ ε(r, c) by Identification I, we
have an equality −α = (ε(r, c)), where α : r → r′ and ε : (r′ − r) + r → r′ are special isomorphisms
and ∂(c) = r′ − r.

Proof. By the definition of opposite arrow we have −(ε(r, c)) = (−ε)φ(−r, (−r) · (−c)), where

φ : (−r + (∂(−c) − (−r))) + (−r) : − r + (r − r′) → −r′,

is a special isomorphism. Here we applied that ∂(−c) ∼ −∂(c) in N , and therefore ∂(−c) ≈ −∂(c)
in G1. −α : − r ∼ −r′ is a special congruence, therefore we have −α ≡ ε′(−r, c′), where ∂(c′) =
−r′ − (−r) and ε′ : (−r′ − (−r)) + (−r) → −r′ is a special isomorphism. We have to show that

ε′(−r, c′) = (−ε)φ(−r,−r · (−c)). (6.3)

c′ and −r · (−c) are weakly special congruent to 0; from the coherence of special isomorphisms and
Identification II we prove equality (6.3). □
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Proposition 6.7. If φ : c ∼ c′ is a weak special congruence, then

−(β′(r, c′)α) = −(β(r, c)α),

for any r ∈ G0 (see diagram (3.1)).

Proof. By Identification II we have β′(r, c′)α = β(r, c)α. The proof is similar to the previous
statement, applying the definition of opposite arrows and Identification II. □

Theorem 6.8. The category G = (G0,G1, d0, d1, i,m) with the defined addition operation in G is
a categorical group.

Proof. First of all we prove that the addition operation in G is a functor G×G → G. Consider the
following picture of objects and arrows in G × G.

r

(r,c)

��

r′

(r′,c′)

��

(r, r′)

((r,c),(r′,c′))

��
∂(c) + r

(∂(c)+r,c1)

��

∂(c′) + r′

(∂(c′)+r′,c′
1)

��

⇒ (∂(c) + r, ∂(c′) + r′)

((∂(c)+r,c1),(∂(c′)+r′,c′
1))

��
∂(c1) + (∂(c) + r) ∂(c′

1) + (∂(c′) + r′) (∂(c1) + (∂(c) + r), ∂(c′
1) + (∂(c′) + r′))

Here we have in mind that on the base of definition of sum for arrows we have

dj((r, c) + (r′, c′)) = dj(r, c) + dj(r′, c′), for j = 0, 1.

Let us first take the (vertical) composition of arrows and then the sum of resulting compositions.
Then we have

(ε(r, c1 + c), ε′(r′, c′
1 + c′)) −→ ξ(r + r′, (c1 + c) + r · (c′

1 + c′))

where ε : (∂(c1) + ∂(c)) + r1 ≈ ∂(c1) + (∂(c) + r) and ε′ : (∂(c′
1) + ∂(c′)) + r′

1 ≈ ∂(c1) + (∂(c′) + r′)
are the special isomorphisms in G. We have the following equality and the special isomorphism

∂((c1 + c) + r · (c′
1 + c′)) + (r + r′) = (∂(c1) + ∂(c)) + ((r + (∂(c′

1) − r)) + (r + (∂(c′) − r))) + (r + r′)
ξ
≈ (∂(c1) + (∂(c) + r)) + (∂(c′) + r′).

Now let us take first sums of arrows and then the composition of the sums. We have

(r, c) + (r′, c′) = η(r + r′, c+ r · c′),

where η is the special isomorphism ∂(c) + ((r + ∂(c′)) − r) + (r + r′) ≈ (∂(c) + r) + (∂(c′) + r′).
For the second sum we have

(∂(c) + r, c1) + (∂(c′) + r′, c′
1) = ξ′((∂(c) + r) + (∂(c′) + r′), c1 + ((∂(c) + r) · c′

1))
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where ξ′ is a special isomorphism

(∂(c1) + ((∂(c) + r) + (∂(c′) − (∂(c) + r)))) + ((∂(c) + r) + (∂(c′) + r′))
≈ (∂(c1) + (∂(c) + r)) + (∂(c′

1) + (∂(c′) + r′)).

Now we take the composition of these sums

ξ′((∂(c)+r)+(∂(c′)+r′), c1+(∂(c)+r)·c′
1)◦η(r+r′, c+r·c′) = χ(r+r′, (c1+(∂(c)+r)·c′

1)+(c+r·c′)),

where χ is the special isomorphism

(∂((c1 + (∂(c) + r) · c1) + ∂(c+ r · c′))) + (r + r′)
= ((∂(c1) + ((∂(c) + r) + (∂(c′

1) − (∂(c) + r)))) + (∂(c) + (r + (∂(c′) − r)))) + (r + r′)
χ
≈ (∂(c1) + (∂(c) + r)) + (∂(c′

1) + (∂(c′) + r′)).

We have to compare the arrows ξ(r+r′, (c1+c)+r·(c′
1+c′)) and χ(r+r′, (c1+(∂(c)+r)·c′

1)+(c+r·c′)).
We have weak special congruence

(c1 + c) + r · (c′
1 + c′) ∼ (c1 + (∂(c) + r) · c′

1) + (c+ r · c′).

On the base of Identification II and the coherence for special isomorphisms we have the equality
of these two arrows.

Now we show that for any object (r, r′) in G × G, the identity arrow is carried to the identity
arrow of the object r + r′ in G0. We have to show that

ε(r, 0) + ε′(r′, 0) = ε′′(r + r′, 0) (6.4)

where ε : ∂(0)+r → r, ε′ : ∂(0)+r′ → r′ and ε′′ : ∂(0)+(r+r′) → r+r′ are the special isomorphisms.
For the left-side we have

ε(r, 0) + ε′(r′, 0) = ζ(r + r′, 0 + r · 0)

where ζ : ∂(0+r ·0)+(r+r′) → r+r′ is the special isomorphism. We have weak special congruence
0 + r · 0 ∼ 0. By Identification I we obtain equality (6.4).

We have to show that special isomorphisms are natural in G.
We have a zero arrow in G, 10 = σ(0, 0), where σ : ∂(0) + 0 ≈ 0 is a special isomorphism. By

Proposition 6.4 for any β(r, c)α ∈ G1 we have β(r, c)α + 10 ≈ β(r, c)α, from which the naturality
of the special isomorphism r + 0 ≈ r follows as in the diagram

r + 0 ≈ r

β(r,c)α+10

��

β(r,c)α

��
r′ + 0 ≈ r′

In a similar way, on the base of the definition of sum of arrows in G1, and associativity of the
sum up to isomorphism (Proposition 6.3) we obtain that the special isomorphism (r1 + r2) + r3 ≈
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r1+(r2+r3) is natural. The same is true for the special isomorphism r+(−r) ≈ 0, from the definition
of opposite arrows in G1 and the isomorphism β(r, c)α+ (−(β(r, c)α)) ≈ σ(0, 0) (Proposition 6.5).

At the end we note once more that G is a coherent categorical group. By the fact that we have
noted several times in the proofs of the paper, special isomorphisms in G are special congruences
in the corresponding c-group which satisfy coherence condition.

It is worth to note that from the functorial property of addition in G, the interchange law for
the arrows in G1 follows. □
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