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Abstract

The main idea of this article is to study the generalized Wintgen ideal Legendrian submanifolds
of generalized Sasakian-space-forms. Also, we characterize generalized Wintgen ideal Legen-
drian submanifolds based on pseudo parallel and Ricci generalized pseudo parallel concerning
Levi-Civita connection as well as the Schouten-Van Kampen and generalized Tanaka-Webster
connections of generalized Sasakian-space-forms.

2020 Mathematics Subject Classification. 53B50. 53C20, 53C40.
Keywords. generalized Wintgen ideal Legendrian submanifolds, pseudo parallel submanifolds, Ricci generalized pseudo
parallel submanifolds.

1 Introduction

Wintgen [35] established the inequality K ≤ ∥Ω∥2−|K⊥| between Gauss curvature K, the squared
mean curvature ∥Ω∥2 and normal curvature K⊥ of any surface M2 in E4 and also shown that the
equality holds if the ellipse of curvature of M2 in E4 is a circle. Later in 1999, De Smet et al. [11]
have given the conjecture on Wintgen inequality for any submanifold in real space form

ρ ≤ ∥Ω∥2 − ρ⊥ + c, (1.1)

where ρ is normalized scalar curvature and ρ⊥ is normalized normal scalar curvature. They also
proved this conjecture on a submanifold of arbitrary dimension and codimension 2 in real space
form. Thereafter Choi and Lu [10] proved this inequality of any 3-dimensional submanifold and
any codimension of real space form. In 2008, Ge and Tang [15] and in 2011, Lu [18] independently
proved Wintgen inequality on submanifold of arbitrary dimension and codimension of real space
form. Many authors studied Wintgen inequality of certain submanifold of different space forms, see
[2, 13, 14, 19, 20, 21]. Chen [8] made a detailed survey of the recent results of Wintgen inequality.
If the equality case of Wintgen inequality holds on a submanifold then such submanifold is said
to be a Wintgen ideal submanifold. Several authors studied this submanifold and their geometric
properties, such as [9, 10, 18, 19, 20].
In these context, Deszcz et al. [12] studied hypersurfaces in 4-dimensional space of constant curva-
ture satisfying the condition

(R̄(E1, E2) · h)(E3, E4) = LhQ(g, h)(E3, E4;E1, E2), (1.2)
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(R̄(E1, E2) · h)(E3, E4) = LSQ(S, h)(E3, E4;E1, E2), (1.3)

where R̄ is defined in (2.6).
Later Asperti et al. [3, 4] studied submanifold satisfying (1.2) and (1.3) in space forms. They named
such submanifolds as pseudo parallel and Ricci generalized pseudo parallel respectively. Moreover,
pseudo parallel contact CR-submanifolds were studied in [17]. Several authors studied pseudo par-
allel and Ricci pseudo parallel submanifolds of generalized Sasakian-space-forms [23, 32].
In 2008, Petrović-Torgašev and Verstraelen [26] have studied Deszcz symmetries of Wintgen ideal
submanifolds of real space forms. Recently Šebeković et al. [28] studied pseudosymmetry proper-
ties of generalized Wintgen ideal Legendrian submanifold of Sasakian-space-form.
The Schouten-Van Kampen connection was introduced to study non-holomorphic manifolds [27].
Solov’ev [29, 30, 31] has investigated hyperdistributions in Riemannian manifolds using the Schouten-
van Kampen connection. In 2006, Schouten-Van Kampen connection was studied on foliated man-
ifolds by Bejancu [7]. Recently Olszak [24] studied such connection on almost(para) contact metric

structure. Here we denote such connection by ˜̄∇.
The Tanaka-Webster connection [33, 36] was defined on a non-degenerate pseudo-Hermitian

CR-manifold. In 1989, Tanno [34] defined generalized Tanaka-Webster connection for contact met-
ric manifolds. Later Zamkovoy [38] defined generalized Tanaka-Webster connection for paracontact
metric manifolds. Several authors studied Contact manifolds with generalized Tanaka-Webster con-

nection [22, 25]. Here we denote such connection by
∗
∇̄.

In this paper we have studied pseudo parallel and Ricci generalized pseudo parallel on generalized
Wintgen ideal Legendrian submanifold of generalized Sasakian-space-form with respect to Levi-
Civita connection, Schouten-Van Kampen connection and generalized Tanaka-Webster connection.

Remark 1.1. Throughout the paper, we use acronym “GWIL submanifold” for generalized Wint-
gen ideal Legendrian submanifold.

2 Preliminaries

An odd dimensional smooth manifold M̄2d+1 is said to be an almost contact metric manifold if the
following holds [6]:

φ2E1 = −E1 + η(E1)χ, φχ = 0, (2.1)

g(E1, χ) = η(E1), φ ◦ η = 0, (2.2)

g(φE1, φE2) = g(E1, E2)− η(E1)η(E2), (2.3)

where E1, E2 are the vector fields, φ is a tensor of type (1, 1), χ is a vector field, η is an 1-form and
g is a Riemannian metric on M̄ .
M̄2d+1(φ, χ, η, g) is said to be Sasakian manifold if the following holds [6]:

(∇̄E1
φ)E2 = g(E1, E2)χ− η(E2)E1 (2.4)

∇̄E1
χ = −φE1. (2.5)

where ∇̄ is a Riemannian connection.
A Sasakian manifold with constant φ-sectional curvature say c is called Sasakian-space-form. As
a generalization of Sasakian-space-form, Alegre et al. [1] introduced the notion of generalized
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Sasakian-space-form as that an almost contact metric manifold M̄2d+1(φ, χ, η, g) whose curvature
tensor R̄ of M̄ satisfies

R̄(E1, E2)E3 = f1
{
g(E2, E3)E1 − g(E1, E3)E2

}
+ f2

{
g(E1, φE3)φE2 (2.6)

− g(E2, φE3)φE1 + 2g(E1, φE2)φE3

}
+ f3

{
η(E1)η(E3)E2

− η(E2)η(E3)E1 + g(E1, E3)η(E2)χ− g(E2, E3)η(E1)χ
}

for all E1, E2, E3 ∈ Γ(M̄) and f1, f2, f3 are certain smooth functions on M̄ . Such a manifold
of dimension (2d + 1) satisfying (2.4) and (2.5), is denoted by M̄2d+1(f1, f2, f3). If f1 = c+3

4 ,
f2 = f3 = c−1

4 then M̄2d+1(f1, f2, f3) reduces to Sasakian-space-form [1].

For an almost contact metric manifold M̄2d+1(φ, χ, η, g), we have two naturally defined distri-
bution in the tangent bundle TM of M̄2d+1(φ, χ, η, g) as follows [27] H = ker(η), G = span(χ).
Then we have H ⊕ G = TM , H ∩ G = 0 and H ⊥ G. This decomposition allows one to define

the Schouten-Van Kampen connection ˜̄∇ over an almost contact metric structure. The ˜̄∇ on a
generalized Sasakian-space-form M̄2d+1(f1, f2, f3) with respect to ∇̄ is defined by

˜̄∇E1E2 = ∇̄E1E2 + η(E2)φE1 − g(φE1, E2)χ (2.7)

The generalized Tanaka-Webster connection
∗
∇̄ on a generalized Sasakian-space-form M̄2d+1(f1, f2, f3)

with respect to ∇̄ is defined by

∗
∇̄E1

E2 = ∇̄E1
E2 + η(E1)φE2 + η(E2)φE1 − g(φE1, E2)χ. (2.8)

The curvature tensor ˜̄R with respect to ˜̄∇ is given by [16]

˜̄R(E1, E2, E3, E4) (2.9)

= f1{g(E2, E3)g(E1, E4)− g(E2, E4)g(E1, E3)}
+f2{g(E1, φE3)g(φE2, E4)− g(E2, φE3)g(φE1, E4) + 2g(E1, φE2)g(φE3, E4)}

+(f3 + 1)
[
{η(E1)g(E2, E4)− η(E2)g(E1, E4)}η(E3) + {g(E1, E3)η(E2)

−g(E2, E3)η(E1)}η(E4)
]
+ g(E1, φE3)g(φE2, E4)− g(E2, φE3)g(φE1, E4).

The curvature tensor
∗
R̄ with respect to

∗
∇̄ is given by [16]

∗
R̄(E1, E2, E3, E4) (2.10)

= f1{g(E2, E3)g(E1, E4)− g(E2, E4)g(E1, E3)}
+(f2 + 1){g(E1, φE3)g(φE2, E4)− g(E2, φE3)g(φE1, E4)

+2g(E1, φE2)g(φE3, E4)}+ (f3 + 1)
[
{η(E1)g(E2, E4)

−η(E2)g(E1, E4)}η(E3) + {g(E1, E3)η(E2)− g(E2, E3)η(E1)}η(E4)
]
.
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Let M be an m-dimensional submanifold of M̄2d+1(f1, f2, f3) and ∇, ∇⊥ be the induced connection
on Γ(TM) and Γ(T⊥M) then the Gauss and Weingarten formulas are

∇̄E1
E2 = ∇E1

E2 + h(E1, E2), (2.11)

∇̄E1
V = ∇⊥

E1
V −AV E1, (2.12)

where h(E1, E2), AV E1 are 2nd fundamental form, shape operator and they are related by [37]

g(h(E1, E2), V ) = g(AV E1, E2). (2.13)

From (2.11) and (2.12) we have Gauss and Ricci equation as

R(E1, E2, E3, E4) = R̄(E1, E2, E3, E4) + g(h(E1, E4), h(E2, E3)) (2.14)

− g(h(E1, E3), h(E2, E4)),

R⊥(E1, E2, V1, V2) = R̄(E1, E2, V1, V2) + g([AV1
, AV2

]E1, E2), (2.15)

where E1, E2, E3, E4 ∈ Γ(TM), V1, V2 ∈ Γ(T⊥M) and R is the curvature of the submanifold Md.
A submanifold Mm of M̄2d+1(f1, f2, f3) is said to be invariant submanifold if χ is tangent to M
and φE1 ∈ Γ(TM) for every E1 ∈ TM and Mm is said to be anti-invariant if χ ∈ Γ(T⊥M) and
φE1 ∈ Γ(T⊥M) for every E1 ∈ Γ(TM). If m = d, then anti-invariant submanifold is said to be
Legendrian submanifold.
Let {b1, · · · , bd} be an orthonormal basis of Γ(TxM) and {bd+1, bd+2, · · · , b2d+1 = χ} be an or-
thonormal basis of Γ(T⊥

x M), then the mean curvature vector Ω is defined by

Ω =
1

d

d∑
i=1

h(bi, bi). (2.16)

The squared norm of the second fundamental form is defined by

∥h∥2 =

d∑
i,j=1

g(h(bi, bj), h(bi, bj)). (2.17)

Also we define
hr
ij = g(h(bi, bj), bd+r). (2.18)

From (2.16) we have

∥Ω∥2 =
1

d2

d∑
r=1

(
d∑

i=1

hr(bi, bi)

)2

=
1

d2

 d∑
r=1

(
d∑

i=1

hr
ii

)2
 . (2.19)

By virtue of (2.16), (2.17), (2.18) and (2.19) we have

d∑
r=1

∑
1≤i<j≤d

hr
iih

r
jj − (hr

ij)
2 = d2∥Ω∥2 − ∥h∥2. (2.20)
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We define the normalized scalar curvature for submanifold Md of M̄2d+1(f1, f2, f3) by

ρ =
2τ

d(d− 1)
, (2.21)

where

τ =
∑

1≤i≤j≤d

R(bi, bj , bj , bi), (2.22)

and normalized normal scalar curvature is

ρ⊥ =
2

d(d− 1)
τ⊥, (2.23)

where

τ⊥ =

√ ∑
1≤i≤j≤d

∑
1≤α≤β≤d

(R⊥(bi, bj , uα, uβ))2, (2.24)

and uα, uβ ∈ T⊥M .
The normalized scalar normal curvature is calculated as follows:

ρN =
2

d(d− 1)

√√√√√ ∑
1≤i≤j≤d

∑
1≤r≤s≤d

(
d∑

k=1

(hr
jkh

s
ik − hr

ikh
s
jk)

)2

. (2.25)

In similar of (2.21), (2.22), (2.23) and (2.24) we can define ρ̃, ρ̃⊥ and
∗
ρ,

∗
ρ
⊥

with respect to ∇̃ and
∗
∇ as

ρ̃ =
2τ̃

d(d− 1)
=

∑
1≤i<j≤m

2

d(d− 1)
R̃(bi, bj , bj , bi), (2.26)

ρ̃⊥ =
2τ̃⊥

d(d− 1)
=

2

d(d− 1)

√ ∑
1≤i<j≤d

∑
1≤α<β≤n

(R̃⊥(bi, bj , uα, uβ))2, (2.27)

∗
ρ =

2
∗
τ

d(d− 1)
=

∑
1≤i<j≤m

2

d(d− 1)

∗
R(bi, bj , bj , bi), (2.28)

∗
ρ
⊥
=

2
∗
τ
⊥

d(d− 1)
=

2

d(d− 1)

√√√√ ∑
1≤i<j≤n

∑
1≤α<β≤n

(
∗
R

⊥
(bi, bj , uα, uβ))2. (2.29)

Proposition 2.1. [16] Let M be a C-totally real submanifold of M̄2d+1(f1, f2, f3) with respect to
˜̄∇. Then following holds:
(i) h̃(E1, E2) = h(E1, E2), Ω̃ = Ω,
(ii) ÃV E1 = AV E1,
where h̃, Ω̃ and Ã are second fundamental form, mean curvature and shape operator with respect
to ∇̃.
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Proposition 2.2. [16] Let M be a C-totally real submanifold of M̄2d+1(f1, f2, f3) with respect to
∗
∇̄. Then following holds:

(i)
∗
h(E1, E2) = h(E1, E2),

∗
Ω = Ω,

(ii)
∗
AV E1 = AV E1,

where
∗
h,

∗
Ω and

∗
A are second fundamental form, mean curvature and shape operator with respect

to
∗
∇.

Definition 2.3. [3, 4, 12] M of M̄2d+1(f1, f2, f3) is said to be pseudo parallel if (1.2) holds where
Lh is a function existing on U = {x ∈ M : (h− ωg)x ̸= 0} for all E1, E2, E3, E4 ∈ Γ(TM) and

Q(g, h)(E3, E4;E1, E2) = g(E2, E4)h(E1, E3)− g(E1, E4)h(E2, E3) (2.30)

+ g(E2, E3)h(E1, E4)− g(E1, E3)h(E2, E4),

(R̄(E1, E2) · h)(E3, E4) = R⊥(E1, E2)h(E3, E4)− h(R(E1, E2)E3, E4) (2.31)

− h(E3, R(E1, E2)E4).

If Lh = 0, M is considered semi-parallel.

Definition 2.4. [3, 4, 12] M of M̄2d+1(f1, f2, f3) is said to be Ricci generalized pseudo parallel if
(1.3) holds where LS is a function existing on U defined in above and

Q(S, h)(E3, E4;E1, E2) = S(E2, E4)h(E1, E3)− S(E1, E4)h(E2, E3) (2.32)

+ S(E2, E3)h(E1, E4)− S(E1, E3)h(E2, E4),

where S is the Ricci curvature with respect to ∇ and defined by S(E1, E2) =
d∑

i=1

R(bi, E1, E2, bi).

Similarly we define

Definition 2.5. A submanifold M of M̄2d+1(f1, f2, f3) with respect to ˜̄∇ and
∗
∇̄ is said to be

pseudo parallel if

( ˜̄R(E1, E2) · h)(E3, E4) = LhQ(g, h)(E3, E4;E1, E2), (2.33)

(
∗
R̄(E1, E2) · h)(E3, E4) = LhQ(g, h)(E3, E4;E1, E2), (2.34)

where Lh is a function existing on U and Q(g, h)(E3, E4;E1, E2) is defined in (2.30) and ( ˜̄R(E1, E2)·

h)(E3, E4) , (
∗
R̄(E1, E2) · h)(E3, E4) are obtained just replacing the term R by R̃ and

∗
R in (2.31)

respectively.
If Lh = 0, M is considered semi-parallel.

Definition 2.6. A submanifold M of M̄2d+1(f1, f2, f3) with respect to ˜̄∇ and
∗
∇̄ is said to be Ricci

generalized pseudo parallel if

( ˜̄R(E1, E2) · h)(E3, E4) = LS̃Q(S̃, h)(E3, E4;E1, E2), (2.35)
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(
∗
R̄(E1, E2) · h)(E3, E4) = L∗

S
Q(

∗
S, h)(E3, E4;E1, E2), (2.36)

where LS is a function existing on U . Q(S̃, h) and Q(
∗
S, h) are obtained just replacing the term S

by S̃ and
∗
S in (2.32) respectively.

3 Generalized Wintgen ideal Legendrian submanifold of M̄2d+1(f1, f2, f3)

Let Md be a Legendrian submanifold of M̄2d+1(f1, f2, f3), then we have [5]

(ρ⊥)2 ≤ (∥Ω∥2 − ρ+ f1)
2 + 2

d(d−1)f
2
2 + 4f2

d(d−1) (ρ− f1). (3.1)

To obtain equality of (3.1) we take orthonormal basis {b1, b2, · · · , bd} of TxM and orthonormal
basis {bd+1 = φb1, bd+2 = φb2, · · · , bd+d = φbd, b2d+1 = χ} of T⊥

x M on Legendrian submanifolds of
M̄2d+1(f1, f2, f3). In Legendrian submanifolds of M̄2d+1(f1, f2, f3) the second fundamental form
must satisfy

g(h(bi, bj), φbk) = g(h(bi, bk), φbj) = g(h(bj , bk), φbi),

i.e. g(h(bi, bj), bd+k) = g(h(bi, bk), bd+j) = g(h(bj , bk), bd+i),

i.e. g(Abd+k
bi, bj) = g(Abd+j

bk, bi) = g(Abd+i
bj , bk).

Now using the above equations for k = 1, i = j = 2; k = 2, i = j = 3; k = 3, i = j = 2 and shape
operators of (Lemma 2, [5]), we get the equality of (3.1) holds for some points x ∈ M if and only
if the shape operator takes the following form

Abd+1
=


0 µ 0 · · · 0
µ 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 , Abd+2
=


µ 0 0 · · · 0
0 −µ 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 (3.2)

Abd+r
= Od, r = 3, · · · , (d+ 1), (3.3)

where µ is real constant on R [5].
A Legendrian submanifold Md of M̄2d+1(f1, f2, f3) satisfying the equality of (3.1) is said to be

generalized Wintgen ideal Legendrian submanifold [28], we denote such submanifold by M(µ).
Using (2.6), (3.2), and (3.3) we get

R(b1, b2)b1 = −Bb2, R(b2, b1)b1 = Bb2,

R(b1, b2)b2 = Bb1, R(b2, b1)b2 = −Bb1,

R(b1, bi)bi = −R(bi, b1)bi = (B + 2µ2)b1 i = 3, · · · , d,
R(b2, bi)bi = −R(bi, b2)bi = (B + 2µ2)b2 i = 3, · · · , d,
R(bi, b1)b1 = −R(b1, bi)b1 = (B + 2µ2)bi, i = 3, · · · , d,
R(bi, b2)b2 = −R(b2, bi)b2 = (B + 2µ2)bi, i = 3, · · · , d,
R(bi, bj)bi = −R(bj , bi)bi = −(B + 2µ2)bj , i, j = 3, · · · , d, i ̸= j,

R(bi, bi)bj = 0, i, j = 1, · · · , d,

(3.4)
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where B = f1 − 2µ2, R is curvature tensor of Md.
Similarly using (2.9), (3.2), and (3.3) we get R̃(bi, bj)bk same as R(bi, bj)bk defined in (3.4).
We now prove the following:

Theorem 3.1. A GWIL submanifold M(µ) of M̄2d+1(f1, f2, f3) is pseudo parallel if and only if it
is totally geodesic.

Proof. Without loss of generality let us put {E1 = b1, E2 = b2, E3 = b1, E4 = b2} in (1.2) and using
(2.30), (2.31), (3.4) and (2.15) we get{

2(Lh + f1 − 3µ2)− f2
}
µ = 0. (3.5)

Similarly if we put {E1 = b1, E2 = b3, E3 = b3, E4 = b1} and {E1 = b1, E2 = b3, E3 = b1, E4 = b2}
in (1.2) and using (2.30), (2.31), (3.4) and (2.15) we get the following two equations

(Lh + f1)µ = 0, (3.6)

µf2 = 0. (3.7)

The above equations (3.5)-(3.7) are consistent if µ = 0 i.e. M(µ) is totally geodesic. If we take
µ ̸= 0, then from (3.7) we get f2 = 0. Put f2 = 0 in (3.5), we get 2(Lh + f1 − 3µ2) = 0. From this
and (3.6) we get µ = 0, which is contradiction. Therefore only for µ = 0, then equations (3.5)-(3.7)
are consistent. The converse is trivial. q.e.d.

Corollary 3.2. A GWIL submanifold M(µ) of M̄2d+1(f1, f2, f3) is semi-parallel if and only if it
is totally geodesic.

Proof. If M(µ) is semi-parallel, then Lh = 0. After substitute Lh = 0 in (3.5)-(3.7) we get three
new equations. The obtained equations are consistent if µ = 0, i.e. M(µ) is totally geodesic. q.e.d.

From Proof of Theorem 3.1 we have

Remark 3.3. Let M(µ) be a GWIL submanifold of M̄2d+1(f1, f2, f3). If µ ̸= 0, i.e. M(µ) is not
totally geodesic then M(µ) is not pseudo parallel.

Remark 3.4. Let M(µ) be a GWIL submanifold of M̄2d+1(f1, f2, f3). If µ ̸= 0, i.e. M(µ) is not
totally geodesic then M(µ) is not semi-parallel.

Theorem 3.5. A GWIL submanifoldM(µ) of M̄2d+1(f1, f2, f3) is Ricci generalized pseudo parallel
if and only if M(µ) satisfies any one of the following
(i) totally geodesic,
(ii) not totally geodesic but f2 = 0, f1 = 0 and LS = − 3

2 .

Proof. Without loss of generality let us put {E1 = b1, E2 = b2, E3 = b1, E4 = b2} in (1.3) and using
(2.31), (2.32), (3.4) and (2.15) we get

µ{2(f1 − 3µ2)− f2}+ LS2µ{(d− 1)f1 − 2µ2} = 0. (3.8)

Similarly if we put {E1 = b1, E2 = b3, E3 = b3, E4 = b1} and {E1 = b1, E2 = b3, E3 = b1, E4 = b2}
in (1.3) and using (2.31), (2.32), (3.4) and (2.15) we get the following two equations

µf1{LS(d− 1) + 1} = 0, (3.9)



Generalized Wintgen ideal Legendrian submanifolds · · · 59

µf2 = 0. (3.10)

If µ = 0 i.e. M(µ) is totally geodesic, then above equations (3.8)-(3.10) are consistent.
If µ ̸= 0, then from (3.10), f2 = 0. Also from (3.9) we get f1(LS(d− 1) + 1) = 0 i.e. either f1 = 0
or {LS(d−1)+1} = 0, d ̸= 1. If d = 1 then (3.9) we get f1 = 0. Again if {LS(d−1)+1} = 0, d ̸= 1
then from (3.8) we get d = 5

3 , which is not possible. Therefore from (3.9) we get f1 = 0. Using
f2 = f1 = 0 in (3.8) we get LS = − 3

2 .
The converse is trivial. q.e.d.

4 Generalized Wintgen ideal Legendrian submanifold of M̄2d+1(f1, f2, f3)

with respect to ˜̄∇
Let Md be a Legendrian submanifold of M̄2d+1(f1, f2, f3) with respect to ˜̄∇, then we have [16]

(ρ̃⊥)2 ≤ (∥Ω∥2 − ρ̃+ f1)
2 + 2

d(d−1) (f2 + 1)2 + 4(f2+1)
d(d−1) (ρ̃− f1). (4.1)

This equality holds for some points x ∈ M if and only if their exists an orthonormal basis
{b1, · · · , bd} of TxM and an orthonormal basis {bd+1 = φb1, bd+2 = φb2, · · · , bd+d = φbd, b2d+1 = χ}
of T⊥

x M such that shape operator takes the form (3.2) and (3.3).

Theorem 4.1. AGWIL submanifoldM(µ) of M̄2d+1(f1, f2, f3) with respect to ˜̄∇ is pseudo parallel
if and only if it is totally geodesic.

Proof. Without loss of generality let us put {E1 = b1, E2 = b2, E3 = b1, E4 = b2} in (2.33) and
using (3.4) we get {

2(Lh + f1 − 3µ2)− (f2 + 1)
}
µ = 0. (4.2)

Similarly if we put {E1 = b1, E2 = b3, E3 = b3, E4 = b1} and {E1 = b1, E2 = b3, E3 = b1, E4 = b2}
in (2.33) and using (3.4) we get the following two equations

(Lh + f1)µ = 0, (4.3)

µ(f2 + 1) = 0. (4.4)

The above equations (4.2)-(4.4) are consistent if µ = 0, i.e M(µ) is totally geodesic.
If we take µ ̸= 0, then from (4.4) we get f2 = −1. Put f2 = −1 in (4.2), we get (Lh+f1−3µ2) = 0.
From this and (4.3) we get µ = 0, which is contradiction. Therefore only for µ = 0, the equations
(4.2)-(4.4) are consistent. The converse is trivial. q.e.d.

Corollary 4.2. A GWIL submanifold M(µ) of M̄2d+1(f1, f2, f3) with respect to ˜̄∇ is semi-parallel
if and only if it is totally geodesic.

Proof. If M(µ) is semi-parallel, then Lh = 0. After substitute Lh = 0 in (4.2)-(4.4) we get three
new equations. The obtained equations are consistent if µ = 0, i.e. M(µ) is totally geodesic. q.e.d.

From the proof of Theorem 4.1, we get

Remark 4.3. Let M(µ) be a GWIL submanifold of M̄2d+1(f1, f2, f3) with respect to ˜̄∇. If µ ̸= 0,
i.e. M(µ) is not totally geodesic then M(µ) is not pseudo parallel.
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Remark 4.4. Let M(µ) be a GWIL submanifold of M̄2d+1(f1, f2, f3) with respect to ˜̄∇. If µ ̸= 0,
i.e. M(µ) is not totally geodesic then M(µ) is not semi-parallel.

Theorem 4.5. A GWIL submanifold M(µ) of M̄2d+1(f1, f2, f3) with respect to ˜̄∇ is Ricci gener-
alized pseudo parallel if and only if M(µ) satisfies any one of the following
(i) totally geodesic,
(ii) not totally geodesic but f2 = −1, f1 = 0 and LS̃ = − 3

2 .

Proof. Without loss of generality let us put {E1 = b1, E2 = b2, E3 = b1, E4 = b2} in (2.35) and
using (3.4) we get

µ{2(f1 − 3µ2)− f2 − 1}+ LS̃2µ{(d− 1)f1 − 2µ2} = 0. (4.5)

Similarly if we put {E1 = b1, E2 = b3, E3 = b3, E4 = b1} and {E1 = b1, E2 = b3, E3 = b1, E4 = b2}
in (2.35) and using (3.4) we get the following two equations

µf1{LS̃(d− 1) + 1} = 0, (4.6)

µ(f2 + 1) = 0. (4.7)

The above equations (4.5)-(4.7) is consistent if µ = 0, i.e. M(µ) is totally geodesic. If µ ̸= 0,
then from (4.7), f2 = −1. Also from (4.6) we get f1(LS̃(d − 1) + 1) = 0 i.e. either f1 = 0 or
{LS̃(d− 1) + 1} = 0, d ̸= 1. If d = 1 then (4.6) we get f1 = 0. Again if {LS̃(d− 1) + 1} = 0, d ̸= 1
then from (4.5) we get d = 5

3 , which is not possible. Therefore from (4.6) we get f1 = 0. Using
f2 = −1 and f1 = 0 in (4.5) we get LS̃ = − 3

2 . The converse of the Theorem holds trivially. q.e.d.

5 Generalized Wintgen ideal Legendrian submanifold of M̄2d+1(f1, f2, f3)

with respect to
∗
∇̄

Let Md be a Legendrian submanifold of M̄2d+1(f1, f2, f3) with respect to
∗
∇̄, Then we have [16]

(
∗
ρ
⊥
)2 ≤ (∥Ω∥2 − ∗

ρ+ f1)
2 + 2

d(d−1) (f2 + 1)2 + 4(f2+1)
d(d−1) (

∗
ρ− f1). (5.1)

This equality holds for some points x ∈ M if and only if their exists an orthonormal basis
{b1, · · · , bd} of TxM and an orthonormal basis {bd+1 = φb1, bd+2 = φb2, · · · , bd+d = φbd, b2d+1 = χ}
such that shape operator takes the form (3.2) and (3.3).

Theorem 5.1. AGWIL submanifoldM(µ) of M̄2d+1(f1, f2, f3) with respect to
∗
∇̄ is pseudo parallel

if and only if it is totally geodesic.

Proof. The proof is similar as the proof of Theorem 4.1. q.e.d.

Corollary 5.2. A GWIL submanifold M(µ) of M̄2d+1(f1, f2, f3) with respect to
∗
∇̄ is semi-parallel

if and only if it is totally geodesic.

Proof. The proof is similar as the proof of Corollary 4.2. q.e.d.
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Remark 5.3. Let M(µ) be a GWIL submanifold of M̄2d+1(f1, f2, f3) with respect to
∗
∇̄. If µ ̸= 0,

i.e. M(µ) is not totally geodesic then M(µ) is not pseudo parallel.

Remark 5.4. Let M(µ) be a GWIL submanifold of M̄2d+1(f1, f2, f3) with respect to
∗
∇̄. If µ ̸= 0,

i.e. M(µ) is not totally geodesic then M(µ) is not semi-parallel.

Theorem 5.5. A GWIL submanifold M(µ) of M̄2d+1(f1, f2, f3) with respect to
∗
∇̄ is Ricci gener-

alized pseudo parallel if and only if M(µ) satisfies any one of the following
(i)totally geodesic,
(ii) not totally geodesic but f2 = −1, f1 = 0 and L∗

S
= − 3

2 .

Proof. The proof is similar as the proof of Theorem 4.5. q.e.d.

6 Conclusion

In this paper, we have shown that GWIL submanifolds of M̄2d+1(f1, f2, f3) are pseudo parallel if
GWIL submanifolds is totally geodesic and Ricci generalized pseudo parallel if GWIL submanifolds
either totally geodesic or not totally geodesic but f2 = 0, f1 = 0 and LS = − 3

2 . Also we proved
that in GWIL submanifolds of M̄2d+1(f1, f2, f3) with respect to Schouten-Van Kampen connection
are pseudo parallel if GWIL submanifolds is totally geodesic and Ricci generalized pseudo parallel
if GWIL submanifolds either totally geodesic or not totally geodesic but f2 = −1, f1 = 0 and
LS̃ = − 3

2 . Apart from these we proved that in GWIL submanifolds of M̄2d+1(f1, f2, f3) with re-
spect to generalized Tanaka-Webster connection are pseudo parallel if GWIL submanifolds is totally
geodesic and Ricci generalized pseudo parallel if GWIL submanifolds either totally geodesic or not
totally geodesic but f2 = −1, f1 = 0 and L∗

S
= − 3

2
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[2] Alodan, H., Chen, B.-Y., Deshmukh, S., Vîlcu, G-E, A generalized Wintgen inequality for
quaternionic CR-submanifolds, Revista de la Real Academia de Ciencias Exactas, F́ısicas y
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