Generalized Wintgen ideal Legendrian submanifolds of generalized Sasakian-space forms

Meraj Ali Khan ${ }^{1}$, Pradip Mandal ${ }^{2}$, Cenap Ozel 3 and Shyamal Kumar Hui ${ }^{4}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
${ }^{2}$ School of Applied Science and Humanities, Haldia Institute of Technology, Haldia-721657, West Bengal, India
${ }^{3}$ Department of mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
${ }^{4}$ Department of Mathematics, The University of Burdwan, Golapbag 713104, West Bengal, India
E-mail: mskhan@imamu.edu.sa ${ }^{1}$, pm2621994@gmail.com ${ }^{2}$, cenap.ozel@gmail.com ${ }^{3}$, skhui@math.buruniv.ac.in ${ }^{4}$

Abstract

The main idea of this article is to study the generalized Wintgen ideal Legendrian submanifolds of generalized Sasakian-space-forms. Also, we characterize generalized Wintgen ideal Legendrian submanifolds based on pseudo parallel and Ricci generalized pseudo parallel concerning Levi-Civita connection as well as the Schouten-Van Kampen and generalized Tanaka-Webster connections of generalized Sasakian-space-forms.

2020 Mathematics Subject Classification. 53B50. 53C20, 53C40.
Keywords. generalized Wintgen ideal Legendrian submanifolds, pseudo parallel submanifolds, Ricci generalized pseudo parallel submanifolds.

1 Introduction

Wintgen [35] established the inequality $K \leq\|\Omega\|^{2}-\left|K^{\perp}\right|$ between Gauss curvature K, the squared mean curvature $\|\Omega\|^{2}$ and normal curvature K^{\perp} of any surface M^{2} in E^{4} and also shown that the equality holds if the ellipse of curvature of M^{2} in E^{4} is a circle. Later in 1999, De Smet et al. [11] have given the conjecture on Wintgen inequality for any submanifold in real space form

$$
\begin{equation*}
\rho \leq\|\Omega\|^{2}-\rho^{\perp}+c, \tag{1.1}
\end{equation*}
$$

where ρ is normalized scalar curvature and ρ^{\perp} is normalized normal scalar curvature. They also proved this conjecture on a submanifold of arbitrary dimension and codimension 2 in real space form. Thereafter Choi and Lu [10] proved this inequality of any 3 -dimensional submanifold and any codimension of real space form. In 2008, Ge and Tang [15] and in 2011, Lu [18] independently proved Wintgen inequality on submanifold of arbitrary dimension and codimension of real space form. Many authors studied Wintgen inequality of certain submanifold of different space forms, see $[2,13,14,19,20,21]$. Chen [8] made a detailed survey of the recent results of Wintgen inequality. If the equality case of Wintgen inequality holds on a submanifold then such submanifold is said to be a Wintgen ideal submanifold. Several authors studied this submanifold and their geometric properties, such as $[9,10,18,19,20]$.
In these context, Deszcz et al. [12] studied hypersurfaces in 4-dimensional space of constant curvature satisfying the condition

$$
\begin{equation*}
\left(\bar{R}\left(E_{1}, E_{2}\right) \cdot h\right)\left(E_{3}, E_{4}\right)=L_{h} Q(g, h)\left(E_{3}, E_{4} ; E_{1}, E_{2}\right), \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\bar{R}\left(E_{1}, E_{2}\right) \cdot h\right)\left(E_{3}, E_{4}\right)=L_{S} Q(S, h)\left(E_{3}, E_{4} ; E_{1}, E_{2}\right) \tag{1.3}
\end{equation*}
$$

where \bar{R} is defined in (2.6).
Later Asperti et al. [3, 4] studied submanifold satisfying (1.2) and (1.3) in space forms. They named such submanifolds as pseudo parallel and Ricci generalized pseudo parallel respectively. Moreover, pseudo parallel contact CR-submanifolds were studied in [17]. Several authors studied pseudo parallel and Ricci pseudo parallel submanifolds of generalized Sasakian-space-forms [23, 32].
In 2008, Petrović-Torgašev and Verstraelen [26] have studied Deszcz symmetries of Wintgen ideal submanifolds of real space forms. Recently Š ebeković et al. [28] studied pseudosymmetry properties of generalized Wintgen ideal Legendrian submanifold of Sasakian-space-form.
The Schouten-Van Kampen connection was introduced to study non-holomorphic manifolds [27]. Solov'ev [29, 30, 31] has investigated hyperdistributions in Riemannian manifolds using the Schoutenvan Kampen connection. In 2006, Schouten-Van Kampen connection was studied on foliated manifolds by Bejancu [7]. Recently Olszak [24] studied such connection on almost(para) contact metric structure. Here we denote such connection by $\tilde{\nabla}$.

The Tanaka-Webster connection [33, 36] was defined on a non-degenerate pseudo-Hermitian CR-manifold. In 1989, Tanno [34] defined generalized Tanaka-Webster connection for contact metric manifolds. Later Zamkovoy [38] defined generalized Tanaka-Webster connection for paracontact metric manifolds. Several authors studied Contact manifolds with generalized Tanaka-Webster connection $[22,25]$. Here we denote such connection by $\stackrel{*}{\nabla}$.
In this paper we have studied pseudo parallel and Ricci generalized pseudo parallel on generalized Wintgen ideal Legendrian submanifold of generalized Sasakian-space-form with respect to LeviCivita connection, Schouten-Van Kampen connection and generalized Tanaka-Webster connection.

Remark 1.1. Throughout the paper, we use acronym "GWIL submanifold" for generalized Wintgen ideal Legendrian submanifold.

2 Preliminaries

An odd dimensional smooth manifold $\bar{M}^{2 d+1}$ is said to be an almost contact metric manifold if the following holds [6]:

$$
\begin{gather*}
\varphi^{2} E_{1}=-E_{1}+\eta\left(E_{1}\right) \chi, \quad \varphi \chi=0, \tag{2.1}\\
g\left(E_{1}, \chi\right)=\eta\left(E_{1}\right), \quad \varphi \circ \eta=0, \tag{2.2}\\
g\left(\varphi E_{1}, \varphi E_{2}\right)=g\left(E_{1}, E_{2}\right)-\eta\left(E_{1}\right) \eta\left(E_{2}\right), \tag{2.3}
\end{gather*}
$$

where E_{1}, E_{2} are the vector fields, φ is a tensor of type (1,1), χ is a vector field, η is an 1-form and g is a Riemannian metric on \bar{M}.
$\bar{M}^{2 d+1}(\varphi, \chi, \eta, g)$ is said to be Sasakian manifold if the following holds [6]:

$$
\begin{gather*}
\left(\bar{\nabla}_{E_{1}} \varphi\right) E_{2}=g\left(E_{1}, E_{2}\right) \chi-\eta\left(E_{2}\right) E_{1} \tag{2.4}\\
\bar{\nabla}_{E_{1}} \chi=-\varphi E_{1} . \tag{2.5}
\end{gather*}
$$

where $\bar{\nabla}$ is a Riemannian connection.
A Sasakian manifold with constant φ-sectional curvature say c is called Sasakian-space-form. As a generalization of Sasakian-space-form, Alegre et al. [1] introduced the notion of generalized

Sasakian-space-form as that an almost contact metric manifold $\bar{M}^{2 d+1}(\varphi, \chi, \eta, g)$ whose curvature tensor \bar{R} of \bar{M} satisfies

$$
\begin{align*}
\bar{R}\left(E_{1}, E_{2}\right) E_{3} & =f_{1}\left\{g\left(E_{2}, E_{3}\right) E_{1}-g\left(E_{1}, E_{3}\right) E_{2}\right\}+f_{2}\left\{g\left(E_{1}, \varphi E_{3}\right) \varphi E_{2}\right. \tag{2.6}\\
& \left.-g\left(E_{2}, \varphi E_{3}\right) \varphi E_{1}+2 g\left(E_{1}, \varphi E_{2}\right) \varphi E_{3}\right\}+f_{3}\left\{\eta\left(E_{1}\right) \eta\left(E_{3}\right) E_{2}\right. \\
& \left.-\eta\left(E_{2}\right) \eta\left(E_{3}\right) E_{1}+g\left(E_{1}, E_{3}\right) \eta\left(E_{2}\right) \chi-g\left(E_{2}, E_{3}\right) \eta\left(E_{1}\right) \chi\right\}
\end{align*}
$$

for all $E_{1}, E_{2}, E_{3} \in \Gamma(\bar{M})$ and f_{1}, f_{2}, f_{3} are certain smooth functions on \bar{M}. Such a manifold of dimension $(2 d+1)$ satisfying (2.4) and (2.5), is denoted by $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$. If $f_{1}=\frac{c+3}{4}$, $f_{2}=f_{3}=\frac{c-1}{4}$ then $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ reduces to Sasakian-space-form [1].

For an almost contact metric manifold $\bar{M}^{2 d+1}(\varphi, \chi, \eta, g)$, we have two naturally defined distribution in the tangent bundle $T M$ of $\bar{M}^{2 d+1}(\varphi, \chi, \eta, g)$ as follows [27] $H=\operatorname{ker}(\eta), G=\operatorname{span}(\chi)$. Then we have $H \oplus G=T M, H \cap G=0$ and $H \perp G$. This decomposition allows one to define the Schouten-Van Kampen connection $\tilde{\tilde{\nabla}}$ over an almost contact metric structure. The $\tilde{\bar{\nabla}}$ on a generalized Sasakian-space-form $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\bar{\nabla}$ is defined by

$$
\begin{equation*}
\tilde{\bar{\nabla}}_{E_{1}} E_{2}=\bar{\nabla}_{E_{1}} E_{2}+\eta\left(E_{2}\right) \varphi E_{1}-g\left(\varphi E_{1}, E_{2}\right) \chi \tag{2.7}
\end{equation*}
$$

The generalized Tanaka-Webster connection $\stackrel{*}{\nabla}$ on a generalized Sasakian-space-form $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\bar{\nabla}$ is defined by

$$
\begin{equation*}
\stackrel{*}{\nabla}_{E_{1}} E_{2}=\bar{\nabla}_{E_{1}} E_{2}+\eta\left(E_{1}\right) \varphi E_{2}+\eta\left(E_{2}\right) \varphi E_{1}-g\left(\varphi E_{1}, E_{2}\right) \chi . \tag{2.8}
\end{equation*}
$$

The curvature tensor $\tilde{\bar{R}}$ with respect to $\tilde{\bar{\nabla}}$ is given by [16]

$$
\begin{align*}
& \tilde{\tilde{R}}\left(E_{1}, E_{2}, E_{3}, E_{4}\right) \tag{2.9}\\
= & f_{1}\left\{g\left(E_{2}, E_{3}\right) g\left(E_{1}, E_{4}\right)-g\left(E_{2}, E_{4}\right) g\left(E_{1}, E_{3}\right)\right\} \\
+ & f_{2}\left\{g\left(E_{1}, \varphi E_{3}\right) g\left(\varphi E_{2}, E_{4}\right)-g\left(E_{2}, \varphi E_{3}\right) g\left(\varphi E_{1}, E_{4}\right)+2 g\left(E_{1}, \varphi E_{2}\right) g\left(\varphi E_{3}, E_{4}\right)\right\} \\
+ & \left(f_{3}+1\right)\left[\left\{\eta\left(E_{1}\right) g\left(E_{2}, E_{4}\right)-\eta\left(E_{2}\right) g\left(E_{1}, E_{4}\right)\right\} \eta\left(E_{3}\right)+\left\{g\left(E_{1}, E_{3}\right) \eta\left(E_{2}\right)\right.\right. \\
- & \left.\left.g\left(E_{2}, E_{3}\right) \eta\left(E_{1}\right)\right\} \eta\left(E_{4}\right)\right]+g\left(E_{1}, \varphi E_{3}\right) g\left(\varphi E_{2}, E_{4}\right)-g\left(E_{2}, \varphi E_{3}\right) g\left(\varphi E_{1}, E_{4}\right) .
\end{align*}
$$

The curvature tensor $\stackrel{*}{\bar{R}}$ with respect to $\stackrel{*}{\nabla}$ is given by [16]

$$
\begin{align*}
& \stackrel{*}{\bar{R}}\left(E_{1}, E_{2}, E_{3}, E_{4}\right) \tag{2.10}\\
& =f_{1}\left\{g\left(E_{2}, E_{3}\right) g\left(E_{1}, E_{4}\right)-g\left(E_{2}, E_{4}\right) g\left(E_{1}, E_{3}\right)\right\} \\
& +\left(f_{2}+1\right)\left\{g\left(E_{1}, \varphi E_{3}\right) g\left(\varphi E_{2}, E_{4}\right)-g\left(E_{2}, \varphi E_{3}\right) g\left(\varphi E_{1}, E_{4}\right)\right. \\
& \left.+2 g\left(E_{1}, \varphi E_{2}\right) g\left(\varphi E_{3}, E_{4}\right)\right\}+\left(f_{3}+1\right)\left[\left\{\eta\left(E_{1}\right) g\left(E_{2}, E_{4}\right)\right.\right. \\
& \left.\left.-\eta\left(E_{2}\right) g\left(E_{1}, E_{4}\right)\right\} \eta\left(E_{3}\right)+\left\{g\left(E_{1}, E_{3}\right) \eta\left(E_{2}\right)-g\left(E_{2}, E_{3}\right) \eta\left(E_{1}\right)\right\} \eta\left(E_{4}\right)\right] .
\end{align*}
$$

Let M be an m-dimensional submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ and ∇, ∇^{\perp} be the induced connection on $\Gamma(T M)$ and $\Gamma\left(T^{\perp} M\right)$ then the Gauss and Weingarten formulas are

$$
\begin{gather*}
\bar{\nabla}_{E_{1}} E_{2}=\nabla_{E_{1}} E_{2}+h\left(E_{1}, E_{2}\right) \tag{2.11}\\
\bar{\nabla}_{E_{1}} V=\nabla_{E_{1}}^{\perp} V-A_{V} E_{1}, \tag{2.12}
\end{gather*}
$$

where $h\left(E_{1}, E_{2}\right), A_{V} E_{1}$ are $2^{\text {nd }}$ fundamental form, shape operator and they are related by [37]

$$
\begin{equation*}
g\left(h\left(E_{1}, E_{2}\right), V\right)=g\left(A_{V} E_{1}, E_{2}\right) . \tag{2.13}
\end{equation*}
$$

From (2.11) and (2.12) we have Gauss and Ricci equation as

$$
\begin{align*}
R\left(E_{1}, E_{2}, E_{3}, E_{4}\right) & =\bar{R}\left(E_{1}, E_{2}, E_{3}, E_{4}\right)+g\left(h\left(E_{1}, E_{4}\right), h\left(E_{2}, E_{3}\right)\right) \tag{2.14}\\
- & g\left(h\left(E_{1}, E_{3}\right), h\left(E_{2}, E_{4}\right)\right), \\
R^{\perp}\left(E_{1}, E_{2}, V_{1}, V_{2}\right)= & \bar{R}\left(E_{1}, E_{2}, V_{1}, V_{2}\right)+g\left(\left[A_{V_{1}}, A_{V_{2}}\right] E_{1}, E_{2}\right), \tag{2.15}
\end{align*}
$$

where $E_{1}, E_{2}, E_{3}, E_{4} \in \Gamma(T M), V_{1}, V_{2} \in \Gamma\left(T^{\perp} M\right)$ and R is the curvature of the submanifold M^{d}. A submanifold M^{m} of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ is said to be invariant submanifold if χ is tangent to M and $\varphi E_{1} \in \Gamma(T M)$ for every $E_{1} \in T M$ and M^{m} is said to be anti-invariant if $\chi \in \Gamma\left(T^{\perp} M\right)$ and $\varphi E_{1} \in \Gamma\left(T^{\perp} M\right)$ for every $E_{1} \in \Gamma(T M)$. If $m=d$, then anti-invariant submanifold is said to be Legendrian submanifold.
Let $\left\{b_{1}, \cdots, b_{d}\right\}$ be an orthonormal basis of $\Gamma\left(T_{x} M\right)$ and $\left\{b_{d+1}, b_{d+2}, \cdots, b_{2 d+1}=\chi\right\}$ be an orthonormal basis of $\Gamma\left(T_{x}^{\perp} M\right)$, then the mean curvature vector Ω is defined by

$$
\begin{equation*}
\Omega=\frac{1}{d} \sum_{i=1}^{d} h\left(b_{i}, b_{i}\right) . \tag{2.16}
\end{equation*}
$$

The squared norm of the second fundamental form is defined by

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{d} g\left(h\left(b_{i}, b_{j}\right), h\left(b_{i}, b_{j}\right)\right) \tag{2.17}
\end{equation*}
$$

Also we define

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(b_{i}, b_{j}\right), b_{d+r}\right) . \tag{2.18}
\end{equation*}
$$

From (2.16) we have

$$
\begin{equation*}
\|\Omega\|^{2}=\frac{1}{d^{2}} \sum_{r=1}^{d}\left(\sum_{i=1}^{d} h^{r}\left(b_{i}, b_{i}\right)\right)^{2}=\frac{1}{d^{2}}\left(\sum_{r=1}^{d}\left(\sum_{i=1}^{d} h_{i i}^{r}\right)^{2}\right) . \tag{2.19}
\end{equation*}
$$

By virtue of (2.16), (2.17), (2.18) and (2.19) we have

$$
\begin{equation*}
\sum_{r=1}^{d} \sum_{1 \leq i<j \leq d} h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}=d^{2}\|\Omega\|^{2}-\|h\|^{2} \tag{2.20}
\end{equation*}
$$

We define the normalized scalar curvature for submanifold M^{d} of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ by

$$
\begin{equation*}
\rho=\frac{2 \tau}{d(d-1)}, \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau=\sum_{1 \leq i \leq j \leq d} R\left(b_{i}, b_{j}, b_{j}, b_{i}\right) \tag{2.22}
\end{equation*}
$$

and normalized normal scalar curvature is

$$
\begin{equation*}
\rho^{\perp}=\frac{2}{d(d-1)} \tau^{\perp} \tag{2.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau^{\perp}=\sqrt{\sum_{1 \leq i \leq j \leq d} \sum_{1 \leq \alpha \leq \beta \leq d}\left(R^{\perp}\left(b_{i}, b_{j}, u_{\alpha}, u_{\beta}\right)\right)^{2}} \tag{2.24}
\end{equation*}
$$

and $u_{\alpha}, u_{\beta} \in T^{\perp} M$.
The normalized scalar normal curvature is calculated as follows:

$$
\begin{equation*}
\rho_{N}=\frac{2}{d(d-1)} \sqrt{\sum_{1 \leq i \leq j \leq d} \sum_{1 \leq r \leq s \leq d}\left(\sum_{k=1}^{d}\left(h_{j k}^{r} h_{i k}^{s}-h_{i k}^{r} h_{j k}^{s}\right)\right)^{2}} . \tag{2.25}
\end{equation*}
$$

In similar of (2.21), (2.22), (2.23) and (2.24) we can define $\tilde{\rho}, \tilde{\rho}^{\perp}$ and $\stackrel{*}{\rho}, \stackrel{* \perp}{\rho}$ with respect to $\tilde{\nabla}$ and $\stackrel{*}{\nabla}$ as

$$
\begin{gather*}
\tilde{\rho}=\frac{2 \tilde{\tau}}{d(d-1)}=\sum_{1 \leq i<j \leq m} \frac{2}{d(d-1)} \tilde{R}\left(b_{i}, b_{j}, b_{j}, b_{i}\right), \tag{2.26}\\
\tilde{\rho}^{\perp}=\frac{2 \tilde{\tau}^{\perp}}{d(d-1)}=\frac{2}{d(d-1)} \sqrt{\sum_{1 \leq i<j \leq d} \sum_{1 \leq \alpha<\beta \leq n}\left(\tilde{R}^{\perp}\left(b_{i}, b_{j}, u_{\alpha}, u_{\beta}\right)\right)^{2}}, \tag{2.27}\\
\stackrel{*}{\rho}=\frac{2^{*}}{d(d-1)}=\sum_{1 \leq i<j \leq m} \frac{2}{d(d-1)} \stackrel{*}{R}\left(b_{i}, b_{j}, b_{j}, b_{i}\right), \tag{2.28}\\
\stackrel{* \perp}{\rho}=\frac{2_{\tau}^{*}{ }^{\perp}}{d(d-1)}=\frac{2}{d(d-1)} \sqrt{\sum_{1 \leq i<j \leq n} \sum_{1 \leq \alpha<\beta \leq n}\left({ }^{\perp}{ }^{\perp}\left(b_{i}, b_{j}, u_{\alpha}, u_{\beta}\right)\right)^{2} .} \tag{2.29}
\end{gather*}
$$

Proposition 2.1. [16] Let M be a C-totally real submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$. Then following holds:
(i) $\tilde{h}\left(E_{1}, E_{2}\right)=h\left(E_{1}, E_{2}\right), \tilde{\Omega}=\Omega$,
(ii) $\tilde{A}_{V} E_{1_{\sim}}=A_{V} E_{1}$,
where $\tilde{h}, \tilde{\Omega}$ and \tilde{A} are second fundamental form, mean curvature and shape operator with respect to $\tilde{\nabla}$.

Proposition 2.2. [16] Let M be a C-totally real submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$. Then following holds:
(i) $\stackrel{*}{h}\left(E_{1}, E_{2}\right)=h\left(E_{1}, E_{2}\right), \stackrel{*}{\Omega}=\Omega$,
(ii) $\stackrel{*}{{ }^{\prime}}{ }_{V} E_{1}=A_{V} E_{1}$,
where $\stackrel{*}{h}, \stackrel{*}{\Omega}$ and $\stackrel{*}{A}$ are second fundamental form, mean curvature and shape operator with respect to $\stackrel{*}{\nabla}$.

Definition 2.3. $[3,4,12] M$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ is said to be pseudo parallel if (1.2) holds where L_{h} is a function existing on $U=\left\{x \in M:(h-\omega g)_{x} \neq 0\right\}$ for all $E_{1}, E_{2}, E_{3}, E_{4} \in \Gamma(T M)$ and

$$
\begin{align*}
Q(g, h)\left(E_{3}, E_{4} ; E_{1}, E_{2}\right) & =g\left(E_{2}, E_{4}\right) h\left(E_{1}, E_{3}\right)-g\left(E_{1}, E_{4}\right) h\left(E_{2}, E_{3}\right) \tag{2.30}\\
& +g\left(E_{2}, E_{3}\right) h\left(E_{1}, E_{4}\right)-g\left(E_{1}, E_{3}\right) h\left(E_{2}, E_{4}\right) \\
\left(\bar{R}\left(E_{1}, E_{2}\right) \cdot h\right)\left(E_{3}, E_{4}\right) & =R^{\perp}\left(E_{1}, E_{2}\right) h\left(E_{3}, E_{4}\right)-h\left(R\left(E_{1}, E_{2}\right) E_{3}, E_{4}\right) \tag{2.31}\\
& -h\left(E_{3}, R\left(E_{1}, E_{2}\right) E_{4}\right) .
\end{align*}
$$

If $L_{h}=0, M$ is considered semi-parallel.
Definition 2.4. [3, 4, 12] M of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ is said to be Ricci generalized pseudo parallel if (1.3) holds where L_{S} is a function existing on U defined in above and

$$
\begin{align*}
Q(S, h)\left(E_{3}, E_{4} ; E_{1}, E_{2}\right) & =S\left(E_{2}, E_{4}\right) h\left(E_{1}, E_{3}\right)-S\left(E_{1}, E_{4}\right) h\left(E_{2}, E_{3}\right) \tag{2.32}\\
& +S\left(E_{2}, E_{3}\right) h\left(E_{1}, E_{4}\right)-S\left(E_{1}, E_{3}\right) h\left(E_{2}, E_{4}\right)
\end{align*}
$$

where S is the Ricci curvature with respect to ∇ and defined by $S\left(E_{1}, E_{2}\right)=\sum_{i=1}^{d} R\left(b_{i}, E_{1}, E_{2}, b_{i}\right)$.
Similarly we define
Definition 2.5. A submanifold M of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$ and $\stackrel{*}{\nabla}$ is said to be pseudo parallel if

$$
\begin{align*}
& \left(\tilde{\bar{R}}\left(E_{1}, E_{2}\right) \cdot h\right)\left(E_{3}, E_{4}\right)=L_{h} Q(g, h)\left(E_{3}, E_{4} ; E_{1}, E_{2}\right), \tag{2.33}\\
& \left(\stackrel{*}{\bar{R}}\left(E_{1}, E_{2}\right) \cdot h\right)\left(E_{3}, E_{4}\right)=L_{h} Q(g, h)\left(E_{3}, E_{4} ; E_{1}, E_{2}\right), \tag{2.34}
\end{align*}
$$

where L_{h} is a function existing on U and $Q(g, h)\left(E_{3}, E_{4} ; E_{1}, E_{2}\right)$ is defined in (2.30) and ($\tilde{R}\left(E_{1}, E_{2}\right)$. $h)\left(E_{3}, E_{4}\right),\left(\stackrel{*}{\bar{R}}\left(E_{1}, E_{2}\right) \cdot h\right)\left(E_{3}, E_{4}\right)$ are obtained just replacing the term R by \tilde{R} and $\stackrel{*}{R}$ in (2.31) respectively.
If $L_{h}=0, M$ is considered semi-parallel.
Definition 2.6. A submanifold M of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$ and $\stackrel{*}{\nabla}$ is said to be Ricci generalized pseudo parallel if

$$
\begin{equation*}
\left(\tilde{\bar{R}}\left(E_{1}, E_{2}\right) \cdot h\right)\left(E_{3}, E_{4}\right)=L_{\tilde{S}} Q(\tilde{S}, h)\left(E_{3}, E_{4} ; E_{1}, E_{2}\right) \tag{2.35}
\end{equation*}
$$

$$
\begin{equation*}
\left(\stackrel{*}{\bar{R}}\left(E_{1}, E_{2}\right) \cdot h\right)\left(E_{3}, E_{4}\right)=L_{S}^{*} Q(\stackrel{*}{S}, h)\left(E_{3}, E_{4} ; E_{1}, E_{2}\right), \tag{2.36}
\end{equation*}
$$

where L_{S} is a function existing on $U . Q(\tilde{S}, h)$ and $Q(\stackrel{*}{S}, h)$ are obtained just replacing the term S by \tilde{S} and $\stackrel{*}{S}$ in (2.32) respectively.

3 Generalized Wintgen ideal Legendrian submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$

Let M^{d} be a Legendrian submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$, then we have [5]

$$
\begin{equation*}
\left(\rho^{\perp}\right)^{2} \leq\left(\|\Omega\|^{2}-\rho+f_{1}\right)^{2}+\frac{2}{d(d-1)} f_{2}^{2}+\frac{4 f_{2}}{d(d-1)}\left(\rho-f_{1}\right) . \tag{3.1}
\end{equation*}
$$

To obtain equality of (3.1) we take orthonormal basis $\left\{b_{1}, b_{2}, \cdots, b_{d}\right\}$ of $T_{x} M$ and orthonormal basis $\left\{b_{d+1}=\varphi b_{1}, b_{d+2}=\varphi b_{2}, \cdots, b_{d+d}=\varphi b_{d}, b_{2 d+1}=\chi\right\}$ of $T_{x}^{\perp} M$ on Legendrian submanifolds of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$. In Legendrian submanifolds of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ the second fundamental form must satisfy

$$
\begin{aligned}
& g\left(h\left(b_{i}, b_{j}\right), \varphi b_{k}\right)=g\left(h\left(b_{i}, b_{k}\right), \varphi b_{j}\right)=g\left(h\left(b_{j}, b_{k}\right), \varphi b_{i}\right), \\
& \text { i.e. } g\left(h\left(b_{i}, b_{j}\right), b_{d+k}\right)=g\left(h\left(b_{i}, b_{k}\right), b_{d+j}\right)=g\left(h\left(b_{j}, b_{k}\right), b_{d+i}\right), \\
& \text { i.e. } g\left(A_{b_{d+k}} b_{i}, b_{j}\right)=g\left(A_{b_{d+j}} b_{k}, b_{i}\right)=g\left(A_{b_{d+i}} b_{j}, b_{k}\right) .
\end{aligned}
$$

Now using the above equations for $k=1, i=j=2 ; k=2, i=j=3 ; k=3, i=j=2$ and shape operators of (Lemma 2, [5]), we get the equality of (3.1) holds for some points $x \in M$ if and only if the shape operator takes the following form

$$
\begin{gather*}
A_{b_{d+1}}=\left(\begin{array}{ccccc}
0 & \mu & 0 & \cdots & 0 \\
\mu & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), A_{b_{d+2}}=\left(\begin{array}{ccccc}
\mu & 0 & 0 & \cdots & 0 \\
0 & -\mu & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) \tag{3.2}\\
A_{b_{d+r}}=O_{d}, r=3, \cdots,(d+1), \tag{3.3}
\end{gather*}
$$

where μ is real constant on \mathbb{R} [5].
A Legendrian submanifold M^{d} of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ satisfying the equality of (3.1) is said to be generalized Wintgen ideal Legendrian submanifold [28], we denote such submanifold by $M(\mu)$. Using (2.6), (3.2), and (3.3) we get

$$
\left\{\begin{array}{l}
R\left(b_{1}, b_{2}\right) b_{1}=-B b_{2}, R\left(b_{2}, b_{1}\right) b_{1}=B b_{2}, \tag{3.4}\\
R\left(b_{1}, b_{2}\right) b_{2}=B b_{1}, R\left(b_{2}, b_{1}\right) b_{2}=-B b_{1}, \\
R\left(b_{1}, b_{i}\right) b_{i}=-R\left(b_{i}, b_{1}\right) b_{i}=\left(B+2 \mu^{2}\right) b_{1} i=3, \cdots, d, \\
R\left(b_{2}, b_{i}\right) b_{i}=-R\left(b_{i}, b_{2}\right) b_{i}=\left(B+2 \mu^{2}\right) b_{2} i=3, \cdots, d \\
R\left(b_{i}, b_{1}\right) b_{1}=-R\left(b_{1}, b_{i}\right) b_{1}=\left(B+2 \mu^{2}\right) b_{i}, i=3, \cdots, d, \\
R\left(b_{i}, b_{2}\right) b_{2}=-R\left(b_{2}, b_{i}\right) b_{2}=\left(B+2 \mu^{2}\right) b_{i}, i=3, \cdots, d, \\
R\left(b_{i}, b_{j}\right) b_{i}=-R\left(b_{j}, b_{i}\right) b_{i}=-\left(B+2 \mu^{2}\right) b_{j}, i, j=3, \cdots, d, i \neq j, \\
R\left(b_{i}, b_{i}\right) b_{j}=0, i, j=1, \cdots, d,
\end{array}\right.
$$

where $B=f_{1}-2 \mu^{2}, R$ is curvature tensor of M^{d}.
Similarly using (2.9), (3.2), and (3.3) we get $\tilde{R}\left(b_{i}, b_{j}\right) b_{k}$ same as $R\left(b_{i}, b_{j}\right) b_{k}$ defined in (3.4). We now prove the following:
Theorem 3.1. A GWIL submanifold $M(\mu)$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ is pseudo parallel if and only if it is totally geodesic.

Proof. Without loss of generality let us put $\left\{E_{1}=b_{1}, E_{2}=b_{2}, E_{3}=b_{1}, E_{4}=b_{2}\right\}$ in (1.2) and using (2.30), (2.31), (3.4) and (2.15) we get

$$
\begin{equation*}
\left\{2\left(L_{h}+f_{1}-3 \mu^{2}\right)-f_{2}\right\} \mu=0 \tag{3.5}
\end{equation*}
$$

Similarly if we put $\left\{E_{1}=b_{1}, E_{2}=b_{3}, E_{3}=b_{3}, E_{4}=b_{1}\right\}$ and $\left\{E_{1}=b_{1}, E_{2}=b_{3}, E_{3}=b_{1}, E_{4}=b_{2}\right\}$ in (1.2) and using (2.30), (2.31), (3.4) and (2.15) we get the following two equations

$$
\begin{gather*}
\left(L_{h}+f_{1}\right) \mu=0, \tag{3.6}\\
\mu f_{2}=0 . \tag{3.7}
\end{gather*}
$$

The above equations (3.5)-(3.7) are consistent if $\mu=0$ i.e. $M(\mu)$ is totally geodesic. If we take $\mu \neq 0$, then from (3.7) we get $f_{2}=0$. Put $f_{2}=0$ in (3.5), we get $2\left(L_{h}+f_{1}-3 \mu^{2}\right)=0$. From this and (3.6) we get $\mu=0$, which is contradiction. Therefore only for $\mu=0$, then equations (3.5)-(3.7) are consistent. The converse is trivial.

Corollary 3.2. A GWIL submanifold $M(\mu)$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ is semi-parallel if and only if it is totally geodesic.

Proof. If $M(\mu)$ is semi-parallel, then $L_{h}=0$. After substitute $L_{h}=0$ in (3.5)-(3.7) we get three new equations. The obtained equations are consistent if $\mu=0$, i.e. $M(\mu)$ is totally geodesic. Q.E.D.

From Proof of Theorem 3.1 we have
Remark 3.3. Let $M(\mu)$ be a GWIL submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$. If $\mu \neq 0$, i.e. $M(\mu)$ is not totally geodesic then $M(\mu)$ is not pseudo parallel.
Remark 3.4. Let $M(\mu)$ be a GWIL submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$. If $\mu \neq 0$, i.e. $M(\mu)$ is not totally geodesic then $M(\mu)$ is not semi-parallel.

Theorem 3.5. A GWIL submanifold $M(\mu)$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ is Ricci generalized pseudo parallel if and only if $M(\mu)$ satisfies any one of the following
(i) totally geodesic,
(ii) not totally geodesic but $f_{2}=0, f_{1}=0$ and $L_{S}=-\frac{3}{2}$.

Proof. Without loss of generality let us put $\left\{E_{1}=b_{1}, E_{2}=b_{2}, E_{3}=b_{1}, E_{4}=b_{2}\right\}$ in (1.3) and using (2.31), (2.32), (3.4) and (2.15) we get

$$
\begin{equation*}
\mu\left\{2\left(f_{1}-3 \mu^{2}\right)-f_{2}\right\}+L_{S} 2 \mu\left\{(d-1) f_{1}-2 \mu^{2}\right\}=0 \tag{3.8}
\end{equation*}
$$

Similarly if we put $\left\{E_{1}=b_{1}, E_{2}=b_{3}, E_{3}=b_{3}, E_{4}=b_{1}\right\}$ and $\left\{E_{1}=b_{1}, E_{2}=b_{3}, E_{3}=b_{1}, E_{4}=b_{2}\right\}$ in (1.3) and using (2.31), (2.32), (3.4) and (2.15) we get the following two equations

$$
\begin{equation*}
\mu f_{1}\left\{L_{S}(d-1)+1\right\}=0 \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\mu f_{2}=0 \tag{3.10}
\end{equation*}
$$

If $\mu=0$ i.e. $M(\mu)$ is totally geodesic, then above equations (3.8)-(3.10) are consistent.
If $\mu \neq 0$, then from (3.10), $f_{2}=0$. Also from (3.9) we get $f_{1}\left(L_{S}(d-1)+1\right)=0$ i.e. either $f_{1}=0$ or $\left\{L_{S}(d-1)+1\right\}=0, d \neq 1$. If $d=1$ then (3.9) we get $f_{1}=0$. Again if $\left\{L_{S}(d-1)+1\right\}=0, d \neq 1$ then from (3.8) we get $d=\frac{5}{3}$, which is not possible. Therefore from (3.9) we get $f_{1}=0$. Using $f_{2}=f_{1}=0$ in (3.8) we get $L_{S}=-\frac{3}{2}$.
The converse is trivial.
Q.E.D.

4 Generalized Wintgen ideal Legendrian submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$

Let M^{d} be a Legendrian submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\nabla}$, then we have [16]

$$
\begin{equation*}
\left(\tilde{\rho}^{\perp}\right)^{2} \leq\left(\|\Omega\|^{2}-\tilde{\rho}+f_{1}\right)^{2}+\frac{2}{d(d-1)}\left(f_{2}+1\right)^{2}+\frac{4\left(f_{2}+1\right)}{d(d-1)}\left(\tilde{\rho}-f_{1}\right) . \tag{4.1}
\end{equation*}
$$

This equality holds for some points $x \in M$ if and only if their exists an orthonormal basis $\left\{b_{1}, \cdots, b_{d}\right\}$ of $T_{x} M$ and an orthonormal basis $\left\{b_{d+1}=\varphi b_{1}, b_{d+2}=\varphi b_{2}, \cdots, b_{d+d}=\varphi b_{d}, b_{2 d+1}=\chi\right\}$ of $T_{x}^{\perp} M$ such that shape operator takes the form (3.2) and (3.3).
Theorem 4.1. A GWIL submanifold $M(\mu)$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$ is pseudo parallel if and only if it is totally geodesic.

Proof. Without loss of generality let us put $\left\{E_{1}=b_{1}, E_{2}=b_{2}, E_{3}=b_{1}, E_{4}=b_{2}\right\}$ in (2.33) and using (3.4) we get

$$
\begin{equation*}
\left\{2\left(L_{h}+f_{1}-3 \mu^{2}\right)-\left(f_{2}+1\right)\right\} \mu=0 . \tag{4.2}
\end{equation*}
$$

Similarly if we put $\left\{E_{1}=b_{1}, E_{2}=b_{3}, E_{3}=b_{3}, E_{4}=b_{1}\right\}$ and $\left\{E_{1}=b_{1}, E_{2}=b_{3}, E_{3}=b_{1}, E_{4}=b_{2}\right\}$ in (2.33) and using (3.4) we get the following two equations

$$
\begin{gather*}
\left(L_{h}+f_{1}\right) \mu=0 \tag{4.3}\\
\mu\left(f_{2}+1\right)=0 \tag{4.4}
\end{gather*}
$$

The above equations (4.2)-(4.4) are consistent if $\mu=0$, i.e $M(\mu)$ is totally geodesic.
If we take $\mu \neq 0$, then from (4.4) we get $f_{2}=-1$. Put $f_{2}=-1$ in (4.2), we get $\left(L_{h}+f_{1}-3 \mu^{2}\right)=0$. From this and (4.3) we get $\mu=0$, which is contradiction. Therefore only for $\mu=0$, the equations (4.2)-(4.4) are consistent. The converse is trivial.
Q.E.D.

Corollary 4.2. A GWIL submanifold $M(\mu)$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$ is semi-parallel if and only if it is totally geodesic.

Proof. If $M(\mu)$ is semi-parallel, then $L_{h}=0$. After substitute $L_{h}=0$ in (4.2)-(4.4) we get three new equations. The obtained equations are consistent if $\mu=0$, i.e. $M(\mu)$ is totally geodesic. Q.e.d.

From the proof of Theorem 4.1, we get
Remark 4.3. Let $M(\mu)$ be a GWIL submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$. If $\mu \neq 0$, i.e. $M(\mu)$ is not totally geodesic then $M(\mu)$ is not pseudo parallel.

Remark 4.4. Let $M(\mu)$ be a GWIL submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$. If $\mu \neq 0$, i.e. $M(\mu)$ is not totally geodesic then $M(\mu)$ is not semi-parallel.

Theorem 4.5. A GWIL submanifold $M(\mu)$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\nabla}$ is Ricci generalized pseudo parallel if and only if $M(\mu)$ satisfies any one of the following
(i) totally geodesic,
(ii) not totally geodesic but $f_{2}=-1, f_{1}=0$ and $L_{\tilde{S}}=-\frac{3}{2}$.

Proof. Without loss of generality let us put $\left\{E_{1}=b_{1}, E_{2}=b_{2}, E_{3}=b_{1}, E_{4}=b_{2}\right\}$ in (2.35) and using (3.4) we get

$$
\begin{equation*}
\mu\left\{2\left(f_{1}-3 \mu^{2}\right)-f_{2}-1\right\}+L_{\tilde{S}} 2 \mu\left\{(d-1) f_{1}-2 \mu^{2}\right\}=0 . \tag{4.5}
\end{equation*}
$$

Similarly if we put $\left\{E_{1}=b_{1}, E_{2}=b_{3}, E_{3}=b_{3}, E_{4}=b_{1}\right\}$ and $\left\{E_{1}=b_{1}, E_{2}=b_{3}, E_{3}=b_{1}, E_{4}=b_{2}\right\}$ in (2.35) and using (3.4) we get the following two equations

$$
\begin{gather*}
\mu f_{1}\left\{L_{\tilde{S}}(d-1)+1\right\}=0, \tag{4.6}\\
\mu\left(f_{2}+1\right)=0 \tag{4.7}
\end{gather*}
$$

The above equations (4.5)-(4.7) is consistent if $\mu=0$, i.e. $M(\mu)$ is totally geodesic. If $\mu \neq 0$, then from (4.7), $f_{2}=-1$. Also from (4.6) we get $f_{1}\left(L_{\tilde{S}}(d-1)+1\right)=0$ i.e. either $f_{1}=0$ or $\left\{L_{\tilde{S}}(d-1)+1\right\}=0, d \neq 1$. If $d=1$ then (4.6) we get $f_{1}=0$. Again if $\left\{L_{\tilde{S}}(d-1)+1\right\}=0, d \neq 1$ then from (4.5) we get $d=\frac{5}{3}$, which is not possible. Therefore from (4.6) we get $f_{1}=0$. Using $f_{2}=-1$ and $f_{1}=0$ in (4.5) we get $L_{\tilde{S}}=-\frac{3}{2}$. The converse of the Theorem holds trivially. Q.E.D.

5 Generalized Wintgen ideal Legendrian submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$

Let M^{d} be a Legendrian submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$, Then we have [16]

$$
\begin{equation*}
\left(\stackrel{*}{\rho}^{\perp}\right)^{2} \leq\left(\|\Omega\|^{2}-\stackrel{*}{\rho}+f_{1}\right)^{2}+\frac{2}{d(d-1)}\left(f_{2}+1\right)^{2}+\frac{4\left(f_{2}+1\right)}{d(d-1)}\left(\stackrel{*}{\rho}-f_{1}\right) . \tag{5.1}
\end{equation*}
$$

This equality holds for some points $x \in M$ if and only if their exists an orthonormal basis $\left\{b_{1}, \cdots, b_{d}\right\}$ of $T_{x} M$ and an orthonormal basis $\left\{b_{d+1}=\varphi b_{1}, b_{d+2}=\varphi b_{2}, \cdots, b_{d+d}=\varphi b_{d}, b_{2 d+1}=\chi\right\}$ such that shape operator takes the form (3.2) and (3.3).

Theorem 5.1. A GWIL submanifold $M(\mu)$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$ is pseudo parallel if and only if it is totally geodesic.

Proof. The proof is similar as the proof of Theorem 4.1.
Q.E.D.

Corollary 5.2. A GWIL submanifold $M(\mu)$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$ is semi-parallel if and only if it is totally geodesic.

Proof. The proof is similar as the proof of Corollary 4.2.
Q.E.D.

Remark 5.3. Let $M(\mu)$ be a GWIL submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$. If $\mu \neq 0$, i.e. $M(\mu)$ is not totally geodesic then $M(\mu)$ is not pseudo parallel.

Remark 5.4. Let $M(\mu)$ be a GWIL submanifold of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$. If $\mu \neq 0$, i.e. $M(\mu)$ is not totally geodesic then $M(\mu)$ is not semi-parallel.

Theorem 5.5. A GWIL submanifold $M(\mu)$ of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$ is Ricci generalized pseudo parallel if and only if $M(\mu)$ satisfies any one of the following
(i)totally geodesic,
(ii) not totally geodesic but $f_{2}=-1, f_{1}=0$ and $L_{S}^{*}=-\frac{3}{2}$.

Proof. The proof is similar as the proof of Theorem 4.5.
Q.E.D.

6 Conclusion

In this paper, we have shown that GWIL submanifolds of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ are pseudo parallel if GWIL submanifolds is totally geodesic and Ricci generalized pseudo parallel if GWIL submanifolds either totally geodesic or not totally geodesic but $f_{2}=0, f_{1}=0$ and $L_{S}=-\frac{3}{2}$. Also we proved that in GWIL submanifolds of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to Schouten-Van Kampen connection are pseudo parallel if GWIL submanifolds is totally geodesic and Ricci generalized pseudo parallel if GWIL submanifolds either totally geodesic or not totally geodesic but $f_{2}=-1, f_{1}=0$ and $L_{\tilde{S}}=-\frac{3}{2}$. Apart from these we proved that in GWIL submanifolds of $\bar{M}^{2 d+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to generalized Tanaka-Webster connection are pseudo parallel if GWIL submanifolds is totally geodesic and Ricci generalized pseudo parallel if GWIL submanifolds either totally geodesic or not totally geodesic but $f_{2}=-1, f_{1}=0$ and $L_{S}^{*}=-\frac{3}{2}$

Acknowledgment

The authors would like to express their sincere thanks to the referees for their valuable suggestions towards to the improvement of the paper.

References

[1] Alegre, P., Blair, D. E., Carriazo, A., Generalized Sasakian-space-forms, Israel J. Math., 14 (2004), 157-183.
[2] Alodan, H., Chen, B.-Y., Deshmukh, S., Vîlcu, G-E, A generalized Wintgen inequality for quaternionic CR-submanifolds, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114 (129) (2020), 14 pages.
[3] Asperti, A. C., Lobos, G. A., Mercuri, F., Pseudo-parallel immersions in space forms, Mat. Contemp., 17 (1999), 59-70.
[4] Asperti, A. C., Lobos, G. A., Mercuri, F., Pseudo-parallel submanifolds of a space forms, Adv. Geom., 2 (2002), 57-71.
[5] Aquib, M., Boyom, M. N., Shahid, M. H., Vîlcu, G-E., The first fundamental equation and generalized Wintgen-type inequalities for submanifolds in generalized space forms, Mathematics, 7 (2019), 1151.
[6] Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., SpringerVerlag, 509, (1976).
[7] Bejancu, A., Schouten-Van Kampen and Vranceanu connections on Foliated manifolds, Anale S,tintifice Ale Universitati. "AL. I. CUZA" IASI, LII (2006), 37-60.
[8] Chen, B.-Y., On Wintgen ideal surfaces, Riemannian Geometry and Applications-Proceedings RIGA 2011 (Eds. A. Mihai, I. Mihai), Ed. Univ. Bucure,sti, Bucharest, 2011, 59-74.
[9] Chen, B.-Y., Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures, Ann. Glob. Anal. Geom., 38(2) (2010). 145-160.
[10] Choi T., Lu, Z., On the DDVV conjecture and the comass in calibrated geometry I, Math. $Z ., 206$ (2008), 409-429.
[11] De Smet, P. J., Dillen, F., Verstraelen L., Vrancken, L., A pointwise inequality in submanifold theory Arch. Math., 35 (1999), 115--128.
[12] Deszcz, R., Verstraelen L., Yaprak, S., Pseudosymmetric hypersurfaces in 4-dimensional Space of Constant Curvature, Bull. Ins. Math. Acad. Sinica, 22 (1984), 167-179.
[13] Dillen, F., Fastenakels J., Van Der Veken, J., A pinching theorem for the normal scalar curvature of invariant submanifolds, J. Geom. Phys., 57 (2007), 833-840.
[14] Dillen, F., Fastenakels J., Van Der Veken, J., Remarks on an inequality involving the normal scalar curvature, Pure and Applied Differential Geometry-PADGE Ber. Math., Shaker Verlag, Aachen, 2007, 83-92.
[15] Ge, J., Tang, Z. A proof of the DDVV conjecture and its equality case, Pacific J. Math., 237 (2008), 87-95.
[16] Hui, S. K., Lemence, R.S., Mandal, P., Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms, Comment. Math. Univ. Carolin., 61(1) (2020), 105-117.
[17] Hui, S. K., Mandal, P., Pseudo parallel contact CR-submanifolds of Kenmotsu manifolds, Indian J. of Math., 59(3) (2017), 385-402.
[18] Lu, Z., Normal scalar curvature conjecture and its applications, J. Funct. Anal., 61 (2011), 1284-1308.
[19] Mihai, A., Scalar normal curvature of Lagrangian 3-dimensional submanifolds in complex space forms, Pure and Applied Differential Geometry PADGE, Ber. Math., Shaker Verlag, Aachen, 2007, 171-177.
[20] Mihai, I., On the generalized Wintgen inequality for Lagrangian submanifolds in complex space forms, Nonlinear Anal., 95 (2014), 714-720.
[21] Mihai, I., On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms, Tohoku Math. J. (2) 69 (2017), no. 1, 43-53.
[22] Montano, B. C., Some remarks on the generalized Tanaka-Webster connection of a contact metric manifold, The Rocky Mountain Journal of Mathematics, (2010), 1009-1037.
[23] Özür, C.; Gürler, F. and Murathan, C. On semiparallel anti-invariant submanifolds of generalized Sasakian space forms, Turkish J. Math., 38 (4) (2014), 796-802.
[24] Olszak, Z., The Schouten-Van Kampen affine connection adapted to an almost(para) contact metric structure, Pub. De'L Ins. Mathe., 94(108) (2013), 31-42.
[25] Prakasha, D. G., and Balachandra, S., On the Conharmonic Curvature Tensor of Kenmotsu Manifolds With Generalized Tanaka-Webster Connection, Miskolc Mathematical Notes, 19(1) (2018), 491-503.
[26] Petrović-Torgašev, M., Verstraelen, L., On Deszcz symmetries of Wintgen ideal submanifolds, Arch. Math., 44 (2008), 57-67.
[27] Schouten, J. A., Van Kampen, E. R., Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde, Math. Ann., 130 (1930), 752-783.
[28] Šebeković, A., Petrović-Torgašev, M., Pantić, A., Pseudosymmetry properties of generalized Wintgen ideal Legendrian submanifolds, Filomat, 33(4) (2019), 1209-1215.
[29] Solov"ev, A. F., On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb., 19 (1978), 12-23.
[30] Solov"ev, A. F., The bending of hyperdistributions, Geom. Sb., 20 (1979), 101-112, (in Russian).
[31] Solov" ev, A. F., Second fundamental form of a distribution, Mat. Zametki, 31 (1982), 139-146, (in Russian); translated in Math. Notes 31 (1982), 71-75.
[32] Somashekhara, G., Rajendra, R., Shivaprasanna, G., S., Reddy, P. and Siva Kota, Pseudo parallel and generalized Ricci pseudo parallel invariant submanifolds of a generalized Sasakian space form, Proc. Jangjeon Math. Soc., 26 (1) (2023), 69-78.
[33] Tanaka, N., On non-degenerate real hypersurfaces graded Lie Algebras and Cartan connections, Japan. J. Math., 2 (1976), 131-190.
[34] Tanno, S., Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314 (1989), 349-379.
[35] Wintgen, P., Sur l'inégalité de Chen-Willmore, C. R. Acad. Sci. Paris Sér. A-B, 288 (1979), A993-A995.
[36] Webster, S. M., Pseudo Hermitian structures on a real hypersurface, J. Diff. Geom., 13 (1978), 25-41.
[37] Yano, K., Kon, M., Structures on manifolds, World Sci. Publ. Co., Singapore, 1984.
[38] Zamkovoy, S., Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60.

