Finite interpolation by distances in the disk
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Abstract

The aim of this note is to introduce a topic about some ways to interpolate values of a function,
on a finite set of points in the disk. Each interpolating function is built by means of a certain
distance between points. We study the behaviour of such interpolations.
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1 Introduction

Let f be a complex function on the open unit disk D of the complex plane and for n > 2, let
Zn =1{21,-..,2n} be a set of different points in D. We recall that the interpolating polynomial of
the values of the function f on Z,, in the Lagrange form, is ([1]):

n

Lifl) = Y e [ == (1.1)

j=1

The fact that the error function

L*[fI(z) = [LIfI(2) = f(2)], =z€D,

is bounded in terms of distances between points motivates us to pose the question: what happens
if, looking for uniformity, we give up analyticity of the interpolating polynomial in exchange for
also having an interpolating function in terms of distances?

For a given distance d(w, z) in D, we define similarly to (1.1) the interpolating function

n n

dlf](z) = E flz; —
[ ]( ) — ( ]) = d(ZZ‘,Zj)
j= i=1
1#]
Its interest is that to interpolate a set of values w; := f(z;), = 1,...,n, it is not necessary to use

the points z;, just the distance between them and their distance from the variable. We consider
three distances: the Euclidean F(w, z) = |z — w/|, the pseudo-hyperbolic

zZ—Ww
plw.2) = | T
and the hyperbolic
1+ p(w, 2)
=log ———=.
e )
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Our goal is to analyse the error function

for each of the distances above.
We point out that for a polynomial P it is possible that d*[P](z) < L*[P](z), and for a distance
function D, that L*[D](z) < d*[D](z):

Example 1.1. Let P(z) = 2% and Z» = {—0.4,0.6}. We have:

E*[P)(2) = 0.16 |z — 0.6] + 0.36 |2 + 0.4],
L*[P](z) = 0.2z + 0.24,

and E*[P](z) < L*[P](z) for any z € (—1,1).

Example 1.2. Let Z, = {-0.5,-0.1}. If D(z) = p(z,3), then L*[D](z) < E*[D](z) for all
z € (—1,1).

Example 1.3. For Zy = {-0.5,-0.1}, D(z) = |2] and z € (—1,1), it follows that:

E*[D](z) < L*[D](2), if z > 1/7,
E*[D](z) = L*[D](2), if z € (21, 22),
E*[D)(z) > L*[D](z), otherwise.

On the other hand, we note that all inequalities between E*[f], p*[f] and ¥*[f] happen. We
write d*(z) := d*[1](2).

Example 1.4. If Z; = {0.5,0.8}, then:

p(0.1) ~ 1.36 < ¢*(0.1) ~ 1.63 < E*(0.1) ~ 2.67
E*(0.7) = ¢*(0.7) = 0 < p*(0.7) ~ 0.07
E*(0.9) ~ 0.67 < p*(0.9) ~ 1.17 < ¢*(0.9) ~ 1.36

Definition 1.1. We say that a function f is exact for the polynomial interpolation (resp. for the
distance interpolation) if L*[f](z) = 0 (resp. d*[f](z) = 0) for all z in D.

It is well-known that any polynomial p,—1 of degree at most n — 1 is exact for the polynomial
interpolation. On the other hand, it is an easy computation to show that the function d defined in

D by
n n
d(z) =k Z H d(z;, z),
j=li=1
1#]
where from now on k will denote a complex constant different from zero, is exact for the distance in-
terpolation. We are interested in knowing how the exact functions for one interpolation behave with

respect to the other. More specifically, we want to estimate: L*[d](z) and, specially, d*[p,—1](2).
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2 Statement of results

First, we confine ourselves to Z5. For any three points z, n, w in D, we put
d(z7 7, w) = d(Z, 77) + d(777 ’UJ) - d(Z7 w)

It is easy to get

L*[d](z) = kd(z, 2, 22).

We have L*[E] < 4k, since |z — 21|, |z — 22| < 2, and L*[p] < 2k, because p(z, 21), p(2,22) < 1. In
the particular case that Z; is on a diameter A of D, then L*[E] < 2k and

lim  sup L*[p](z) = k.

|21 —22| =1 zeA

We will estimate d*[p1](z) for each distance and the test polynomials: pi(z) = k and pi(z) =
zZ— (Zl —|—212)/2

For the pseudo-hyperbolic distance, we will use the following improvement of the triangle in-
equality ([2]):

Lemma 2.1. For any three points z, n, w in D,

p(z,m,w) > p(z,w)p(z,n)p(n, w).

We search for upper bounds for d*[k](z), with less possible dependence on z, and taking into
account that d*[k](z) = |k| d*(z), we may assume without loss of generality k = 1.

Proposition 2.1. For all z € D, the following bounds hold:
4

E*(z) < —— 2.1
()< )
(21,2) plz2,2) < () < —— (2.2)
P =1, P Z2, =p 0(2’1722) .
v (e) < - (23
z .
p(z1,22) [1 = p(21,2)] [1 = p(22, 2)]
Proof. By the triangle inequality,
E(21, 2, 22)
Er(z) = 2L 22) 2.4
S PN 24
and using |z — 21|, |z — 22| < 2, it follows (2.1). By the triangle inequality,
* p(zh Z, Z2)
)= — 2.5
P (2) (o1 22) (2.5)

and using p(z, 2z1), p(2,22) < 1, the upper bound in (2.2) follows. The lower bound in (2.2) is
immediate from Lemma 2.1. By the triangle inequality,

¢(217 2 Z2)

¢*(Z) = 1/)(21722)

(2.6)
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Since for ¢ > 0,

14 2t

2t <log — < —— 2.7

then
p(Zl,Z) p(227z)
T pln2) T p(em2)

z) < , 2.8

v(2) e (2.8

and using p(z, z1), p(z, z2) < 1, it follows (2.3). Q.E.D.

Note that E*(z) = ¢*(z) = 0 for any z in the segment [z1, 23], and p*(z) # 0 for all z different
from z; and z».

Proposition 2.2. For any z € D, the following relationships between E*(z), p*(z) and 1*(z) hold:

2[p"(2) +1]
E'(z) < ——— 2.9
()_17|Zl||22| (2.9)
2[E*(z) +1]
*(z 2.10
P S T (e, ) (210
. pr(z) +1
z 2.11
V) < T e ((en, 20, (e 20} @11
Proof. Using that
2 =P TRl
we have from (2.4) and (2.5):
o < 2C) 1t lallal
1—[z1] 2]
2F* 1
p*(z) < (Z)+ +‘Z| max{\zl|,|22|}’
1 — 2] max{|z], [z2[}
and (2.9) and (2.10) follow. Finally, (2.11) is a consequence of (2.8). Q.E.D.

Proposition 2.3. Let ¢(z) be the polynomial ¢(z) = z — (21 + 22)/2. For all z € D, the following
bounds hold:

(2.12)
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Proof. By the triangle inequality,
E*[ql(2) < |z — 21|+ |z — 22| < 4

and
p*[q](Z) < |1727122|[p(Zl,Z)+p(2’22,Z)]+‘Z*Zl|+|2’722‘ < 4.

By the triangle inequality and (2.7),

. 1 |z — 21| p(21, 2) |ZZ2P(Z272)>
z) < +
v'ldl(z) 2p(z1, 22) ( 1—p(z1,2) 1 — p(za,2)
|z — 21| + |2 — 22]
+ 2
and the bound in (2.12) follows. Q.E.D.

Next, we provide some bounds for n points (n > 2). We write E*(z) instead E*(z), put

n n |Z _ Z|
F.(z2) = E H :
— 2 |z — z
Jj=li=1
7]
and consider two particular cases:
1. Z, is on a diameter of D and |z; — z;41| = |2i41 — 2ig2|, ¢ =1,...,n — 2.
Since |z; — zi41] < % and |z — z;| > 1, j=1,...,n, then for any z € D:

Ei(2) = Fu(z) —1>n (”;1>n1 Y

For some values of n:

25 9359
Bj(x)>2, Ej(x)> 3, Ei(z)>79, Eg(s) >~ ~ 584,94

On the other hand, |z — z;| < V2, j = 1,...,n, and if we denote s := |2; — 2;41|, then for all z € D:

EX(2) < Fo(z) < (?) ZH !

L i — 4|
=1:=1
=
For some values of n: Y 3
E3(z) < 5 E3(z) < 32 Ei(z) < 337
E3(z) < 351 Eg(z) < 1555

2. Z, (n > 3) is a regular polygon with respect to the Euclidean distance.
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The minimum of the function F),(z) is reached at the centre of the polygon, F,(z) > 1 and,
particularly, F3(z) > 4/3. Then, for any z € D:

EX(2) < Fu(z) <n2"~ 1H|z1—z|
J

and also, E}(z) > 1/3. If [ denotes the side of the polygon, then for some values of n:

. 12 . 16v2  22.63
E3(z) < ik Ei(z) < B TE
80 sin?(7/5)  30.56 32
~ . Ei(2) < —.
sin(3n/5)  I* ) <3

If the polygon is on the boundary of D, then the maximum of F),(z) is reached at the middle
point of two consecutive vertices. In that case, for some values of n:

Ei(z) <

E3(z) < V2, E;;(z)<§, E}(z \/2+f+\/2—f~261

Also, p*(z) =n —1.

w

Remark 2.1. We point out that it is possible to introduce a kind of hybrid interpolation: polyno-
mial interpolation and distance interpolation or/and this last with different distances at a time. For
example, for n > 4, 0 < ny,ng,n3,ng < n—3 and ny + ne + n3 +ng = n, we can define (reordering
the points, if necessary):

Ly By pryn, [ f1(2) = Z e 11 Z —

j=1 i=1 Zi — Zj
i#j
ni+nz ni+nsg |Z _ Z‘ ni+ns+ns ni+ns+ns p(z- Z)
J=mtl i=ny+1 7 J j=ni+nz+1 i=nit+nz2+1 P Zi5 %
#i vy
n n
Ziy %
Y | “’(())
J=nitnztns+l i:nlJr?;éZ,Jrnerl w iy Zj
7]

Remark 2.2. In this context, we can also consider a type of weak interpolation, in the sense of
looking for an interpolating polynomial @ such that |Q| = |f| on Z,. Clearly, L[|f|] works, but if
we know the Euclidean distances between z1,..., z,, then it is more convenient to use the mixed
function (contains distances) M|[f] defined by

175]
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