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Abstract

The aim of this note is to introduce a topic about some ways to interpolate values of a function,
on a finite set of points in the disk. Each interpolating function is built by means of a certain
distance between points. We study the behaviour of such interpolations.
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1 Introduction

Let f be a complex function on the open unit disk D of the complex plane and for n ≥ 2, let
Zn = {z1, . . . , zn} be a set of different points in D. We recall that the interpolating polynomial of
the values of the function f on Zn, in the Lagrange form, is ([1]):

L[f ](z) =

n∑
j=1

f(zj)

n∏
i=1
i ̸=j

zi − z

zi − zj
. (1.1)

The fact that the error function

L∗[f ](z) = |L[f ](z)− f(z) |, z ∈ D,

is bounded in terms of distances between points motivates us to pose the question: what happens
if, looking for uniformity, we give up analyticity of the interpolating polynomial in exchange for
also having an interpolating function in terms of distances?

For a given distance d(w, z) in D, we define similarly to (1.1) the interpolating function

d[f ](z) =

n∑
j=1

f(zj)

n∏
i=1
i ̸=j

d(zi, z)

d(zi, zj)
.

Its interest is that to interpolate a set of values wj := f(zj), j = 1, . . . , n, it is not necessary to use
the points zj , just the distance between them and their distance from the variable. We consider
three distances: the Euclidean E(w, z) = |z − w|, the pseudo-hyperbolic

ρ(w, z) =

∣∣∣∣ z − w

1− wz

∣∣∣∣
and the hyperbolic

ψ(w, z) = log
1 + ρ(w, z)

1− ρ(w, z)
.
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Our goal is to analyse the error function

d∗[f ](z) = | d[f ](z)− f(z) |, z ∈ D,

for each of the distances above.
We point out that for a polynomial P it is possible that d∗[P ](z) ≤ L∗[P ](z), and for a distance

function D, that L∗[D](z) ≤ d∗[D](z):

Example 1.1. Let P (z) = z2 and Z2 = {−0.4, 0.6}. We have:

E∗[P ](z) = 0.16 |z − 0.6|+ 0.36 |z + 0.4|,
L∗[P ](z) = 0.2z + 0.24,

and E∗[P ](z) ≤ L∗[P ](z) for any z ∈ (−1, 1).

Example 1.2. Let Z2 = {−0.5,−0.1}. If D(z) = ρ(z, 12 ), then L∗[D](z) ≤ E∗[D](z) for all
z ∈ (−1, 1).

Example 1.3. For Z2 = {−0.5,−0.1}, D(z) = |z| and z ∈ (−1, 1), it follows that:

E∗[D](z) < L∗[D](z), if z > 1/7,

E∗[D](z) = L∗[D](z), if z ∈ (z1, z2),

E∗[D](z) > L∗[D](z), otherwise.

On the other hand, we note that all inequalities between E∗[f ], ρ∗[f ] and ψ∗[f ] happen. We
write d∗(z) := d∗[1](z).

Example 1.4. If Z2 = {0.5, 0.8}, then:

ρ∗(0.1) ≈ 1.36 < ψ∗(0.1) ≈ 1.63 < E∗(0.1) ≈ 2.67

E∗(0.7) = ψ∗(0.7) = 0 < ρ∗(0.7) ≈ 0.07

E∗(0.9) ≈ 0.67 < ρ∗(0.9) ≈ 1.17 < ψ∗(0.9) ≈ 1.36

Definition 1.1. We say that a function f is exact for the polynomial interpolation (resp. for the
distance interpolation) if L∗[f ](z) = 0 (resp. d∗[f ](z) = 0) for all z in D.

It is well-known that any polynomial pn−1 of degree at most n− 1 is exact for the polynomial
interpolation. On the other hand, it is an easy computation to show that the function d̂ defined in
D by

d̂(z) = k

n∑
j=1

n∏
i=1
i ̸=j

d(zi, z),

where from now on k will denote a complex constant different from zero, is exact for the distance in-
terpolation. We are interested in knowing how the exact functions for one interpolation behave with
respect to the other. More specifically, we want to estimate: L∗[d̂](z) and, specially, d∗[pn−1](z).



Finite interpolation by distances in the disk 35

2 Statement of results

First, we confine ourselves to Z2. For any three points z, η, w in D, we put

d(z, η, w) := d(z, η) + d(η, w)− d(z, w).

It is easy to get
L∗[d̂](z) = k d(z1, z, z2).

We have L∗[Ê] < 4k, since |z − z1|, |z − z2| < 2, and L∗[ρ̂] < 2k, because ρ(z, z1), ρ(z, z2) < 1. In
the particular case that Z2 is on a diameter ∆ of D, then L∗[Ê] < 2k and

lim
|z1−z2|→1

sup
z∈∆

L∗[ρ̂](z) = k.

We will estimate d∗[p1](z) for each distance and the test polynomials: p1(z) ≡ k and p1(z) =
z − (z1 + z2)/2.

For the pseudo-hyperbolic distance, we will use the following improvement of the triangle in-
equality ([2]):

Lemma 2.1. For any three points z, η, w in D,

ρ(z, η, w) ≥ ρ(z, w)ρ(z, η)ρ(η, w).

We search for upper bounds for d∗[k](z), with less possible dependence on z, and taking into
account that d∗[k](z) = |k| d∗(z), we may assume without loss of generality k = 1.

Proposition 2.1. For all z ∈ D, the following bounds hold:

E∗(z) <
4

|z1 − z2|
(2.1)

ρ(z1, z) ρ(z2, z) ≤ ρ∗(z) <
2

ρ(z1, z2)
(2.2)

ψ∗(z) <
2

ρ(z1, z2) [1− ρ(z1, z)] [1− ρ(z2, z)]
(2.3)

Proof. By the triangle inequality,

E∗(z) =
E(z1, z, z2)

|z1 − z2|
, (2.4)

and using |z − z1|, |z − z2| < 2, it follows (2.1). By the triangle inequality,

ρ∗(z) =
ρ(z1, z, z2)

ρ(z1, z2)
(2.5)

and using ρ(z, z1), ρ(z, z2) < 1, the upper bound in (2.2) follows. The lower bound in (2.2) is
immediate from Lemma 2.1. By the triangle inequality,

ψ∗(z) =
ψ(z1, z, z2)

ψ(z1, z2)
(2.6)
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Since for t ≥ 0,

2t ≤ log
1 + t

1− t
≤ 2t

1− t
, (2.7)

then

ψ∗(z) <

ρ(z1, z)

1− ρ(z1, z)
+

ρ(z2, z)

1− ρ(z2, z)

ρ(z1, z2)
, (2.8)

and using ρ(z, z1), ρ(z, z2) < 1, it follows (2.3). q.e.d.

Note that E∗(z) = ψ∗(z) = 0 for any z in the segment [z1, z2], and ρ
∗(z) ̸= 0 for all z different

from z1 and z2.

Proposition 2.2. For any z ∈ D, the following relationships between E∗(z), ρ∗(z) and ψ∗(z) hold:

E∗(z) ≤ 2 [ρ∗(z) + 1]

1− |z1| |z2|
(2.9)

ρ∗(z) ≤ 2 [E∗(z) + 1]

1− |z| max{|z1|, |z2|}
(2.10)

ψ∗(z) ≤ ρ∗(z) + 1

1−max{ρ(z1, z), ρ(z2, z)}
(2.11)

Proof. Using that
|z − w|

2
≤ ρ(z, w) ≤ |z − w|

1− |z| |w|
,

we have from (2.4) and (2.5):

E∗(z) ≤ 2ρ∗(z) + 1 + |z1| |z2|
1− |z1| |z2|

ρ∗(z) ≤ 2E∗(z) + 1 + |z| max{|z1|, |z2|}
1− |z| max{|z1|, |z2|}

,

and (2.9) and (2.10) follow. Finally, (2.11) is a consequence of (2.8). q.e.d.

Proposition 2.3. Let q(z) be the polynomial q(z) = z − (z1 + z2)/2. For all z ∈ D, the following
bounds hold:

E∗[q](z) < 4

ρ∗[q](z) < 4

ψ∗[q](z) ≤ 2 +
1

ρ(z1, z2)

[
1

1− ρ(z1, z)
+

1

1− ρ(z2, z)

]
(2.12)
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Proof. By the triangle inequality,

E∗[q](z) ≤ |z − z1|+ |z − z2| < 4

and

ρ∗[q](z) ≤ |1− z1z2| [ρ(z1, z) + ρ(z2, z)] + |z − z1|+ |z − z2|
2

< 4.

By the triangle inequality and (2.7),

ψ∗[q](z) ≤ 1

2ρ(z1, z2)

(
|z − z1| ρ(z1, z)
1− ρ(z1, z)

+
|z − z2| ρ(z2, z)
1− ρ(z2, z)

)
+

|z − z1|+ |z − z2|
2

and the bound in (2.12) follows. q.e.d.

Next, we provide some bounds for n points (n ≥ 2). We write E∗
n(z) instead E

∗(z), put

Fn(z) :=

n∑
j=1

n∏
i=1
i ̸=j

|zi − z|
|zi − zj |

and consider two particular cases:
1. Zn is on a diameter of D and |zi − zi+1| = |zi+1 − zi+2|, i = 1, . . . , n− 2.
Since |zi − zi+1| < 2

n−1 and |z − zj | > 1, j = 1, . . . , n, then for any z ∈ D:

E∗
n(z) = Fn(z)− 1 > n

(
n− 1

2

)n−1

− 1.

For some values of n:

E∗
3 (z) > 2, E∗

4 (z) >
25

2
, E∗

5 (z) > 79, E∗
6 (z) >

9359

16
≈ 584, 94.

On the other hand, |z− zj | <
√
2, j = 1, . . . , n, and if we denote s := |zi − zi+1|, then for all z ∈ D:

E∗
n(z) < Fn(z) <

(√
2

s

)n−1 n∑
j=1

n∏
i=1
i ̸=j

1

|i− j|
.

For some values of n:

E∗
2 (z) <

2
√
2

s
, E∗

3 (z) <
4

s2
, E∗

4 (z) <
8
√
2

3s3
,

E∗
5 (z) <

8

3s4
, E∗

6 (z) <
16

√
2

15s5
.

2. Zn (n ≥ 3) is a regular polygon with respect to the Euclidean distance.
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The minimum of the function Fn(z) is reached at the centre of the polygon, Fn(z) ≥ 1 and,
particularly, F3(z) ≥ 4/3. Then, for any z ∈ D:

E∗
n(z) < Fn(z) < n2n−1

n∏
j=2

1

|z1 − zj |

and also, E∗
3 (z) ≥ 1/3. If l denotes the side of the polygon, then for some values of n:

E∗
3 (z) <

12

l2
, E∗

4 (z) <
16

√
2

l3
≈ 22.63

l3
,

E∗
5 (z) <

80 sin2(π/5)

l4 sin2(3π/5)
≈ 30.56

l4
, E∗

6 (z) <
32

l5
.

If the polygon is on the boundary of D, then the maximum of Fn(z) is reached at the middle
point of two consecutive vertices. In that case, for some values of n:

E∗
2 (z) <

√
2, E∗

3 (z) <
5

3
, E∗

4 (z) <

√
2 +

√
2 +

√
2−

√
2 ≈ 2.61.

Also, ρ∗(z) = n− 1.

Remark 2.1. We point out that it is possible to introduce a kind of hybrid interpolation: polyno-
mial interpolation and distance interpolation or/and this last with different distances at a time. For
example, for n ≥ 4, 0 ≤ n1, n2, n3, n4 ≤ n− 3 and n1 +n2 +n3 +n4 = n, we can define (reordering
the points, if necessary):

Ln1
En2

ρn2
ψn4

[f ](z) =

n1∑
j=1

f(zj)

n1∏
i=1
i̸=j

zi − z

zi − zj

+

n1+n2∑
j=n1+1

f(zj)

n1+n2∏
i=n1+1

i ̸=j

|zi − z|
|zi − zj |

+

n1+n2+n3∑
j=n1+n2+1

f(zj)

n1+n2+n3∏
i=n1+n2+1

i ̸=j

ρ(zi, z)

ρ(zi, zj)

+

n∑
j=n1+n2+n3+1

f(zj)

n∏
i=n1+n2+n3+1

i ̸=j

ψ(zi, z)

ψ(zi, zj)
.

Remark 2.2. In this context, we can also consider a type of weak interpolation, in the sense of
looking for an interpolating polynomial Q such that |Q| = |f | on Zn. Clearly, L[ |f | ] works, but if
we know the Euclidean distances between z1, . . . , zn, then it is more convenient to use the mixed
function (contains distances) M [f ] defined by

M [f ](z) =

n∑
j=1

|f(zj)|
n∏

i=1
i ̸=j

zi − z

|zi − zj |
.
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