
Towards solving linear fractional differential equations with
Hermite operational matrix

Hatice Yalman Kosunalp1 and Mustafa Gulsu2

1Bandırma Onyedi Eylul University, Gonen Vocational School, Department of Accounting and Tax, Gonen, Balikesir,
Türkiye
2Mugla Sitki Kocman University, Faculty of Science, Mathematics Department, Mugla, Türkiye

E-mail: hkosunalp@bandirma.edu.tr1, mgulsu@mu.edu.tr2

Abstract

This paper presents the derivation of a new operational matrix of Caputo fractional derivatives
through Hermite polynomials with Tau method to solve a set of fractional differential equations
(FDEs). The proposed algorithm is intended to solve linear type of FDEs with the pre-defined
conditions into a matrix form for redefining the complete problem as a system of a algebraic
equations.The proposed strategy is then applied to solve the simplified FDEs in linear form. To
assess the performance of the proposed method, exact and approximate solutions for a number
of illustrative examples are obtained which prove the effectiveness of the idea.
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1 Introduction

Fractional calculus has been utilized in various scientific domains through developing efficient mod-
els with mathematical tools. Typical applications examples are electrical engineering, fluid dy-
namics [1], physics [2, 3, 4], economics [5], natural sciences [6], chemistry [7] and so on. As a
recent study, the behavior of control processes in many practical systems has been identified with
fractional calculus [8]. In order to describe these models, a significant emphasis is placed on the
solutions of fractional differential equations (FDEs). A lot of numerical and analytical methods
have been conducted to provide either approximate or exact solutions [9, 10, 11, 12, 13].

Spectral methods have been shown to be very efficient and accurate in solving different types
of differential equations. This attracted many researchers to exploit them for the solutions of the
FDEs. To solve linear multi-term FDEs, an operational matrix (OM) for chebyshev polynomials
was derived with the sense of Caputo fractional derivative with initial conditions [14]. Authors in
[15] presented a similar OM of shifted-Legendre polynomials to be applied with spectral approaches
to solve linear and nonlinear FDEs. Another work extracts the OM for fractional integration in
Genocchi polynomials [16]. Two previous similar works attempted to derive the OMs for the
polynomials of Jacobi [17], Legendre [18] and Boubaker [19]. Although these studies presented
a similar structure with numerical results, there are still some drawbacks. A critical issue is the
complexity associated with the number of iterations in solving the FDEs. Some of the studies obtain
good results with high number of iterations which may mitigate the speed of the solution. On the
other hand, some polynomials such as Laugerre introduce extra coefficients which can also increase
the complexity of the solution. The number of examples solved is relatively low in some studies
to support the actual performance in which only exact solutions in simple form of polynomials are
considered.
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This work explores the potential to extend the current status of state-of-the-art studies, in or-
der to provide a fast,accurate and efficient way. A distinctive feature of this work is its lightweight
mechanism for satisfying the complexity requirements, where high complex solutions cannot be
implemented practically in real-world problems. To achieve the entire goal, we introduce Hermite
polynomials with operational matrix strategy to be an effective solution in the relevant field. The
main motivation of this paper is to compute Hermite OM of Caputo fractional derivative in associa-
tion with spectral tau method for solving linear FDEs, subject to initial equations. The underlying
property of the proposed idea is to convert the FDEs system into algebraic forms which is even-
tually given in matrix sense. Therefore, the complete problem actually requires the solution of
algebraic equations. The performance of the proposed strategy is tested through illustrative exam-
ples achieving high accurate outputs. The other parts of the paper are organised in following way.
Section 2 presents the required preliminaries and notations about Caputo derivatives and a brief
introduction to the properties of Hermite polynomials. The Hermite OM for fractional derivative
is computed in Section 3. This matrix is then applied together with the method of spectral tau for
the solution of linear FDEs in Section 4. Section 5 presents a number of representative examples
with the implementation of the proposed solution. The paper is concluded in Section 6.

2 Preliminaries and notation

We start with reviewing a number of the required definitions of fractional derivatives and Hermite
polynomials.

Definition 2.1. The Rieman-Liouville fractional integral for order v is given by

Jvf(x) =
1

Γ(v)

∫ x

0

(x− t)v−1f(t)dt, J0f(x) = f(x). (2.1)

J0f(x) = f(x). (2.2)

Definition 2.2. The Caputo derivative operator with order v satisfying the condition of v > 0 is
defined as

Dvf(x) = Jm−vDm =
1

Γ(m− v)

∫ x

0

(x− t)(m−v−1) d
m

dtm
f(t)dt,m− 1 < v < m, x > 0. (2.3)

and for the exponential function this equation also holds true:

Dvxβ =
Γ(β + 1)

Γ(β + 1− v)
xβ−v (2.4)

Dvxβ ==

{
0, for β ∈ Nandβ < ⌈v⌉
Γ(β+1)
Γβ+1−vx

β−v, for β ∈ N and β ≥ ⌊v⌋

where ⌊v⌋ and ⌈v⌉ represents the functions of floor and ceiling in turn, assuming N is the sequential
numbers starting from 1, N = 1, 2, 3, ....

The Caputo derivation operator is linear such as

Dv(λf(x) + µg(x)) = λDvf(x) + µDvg(x), (2.5)

where λ and µ take constant numbers.
We note that when v ∈ N the definition of the Caputo derivative and usual differential operator

definition coincides.
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2.1 Properties of Hermite Polynomials

The Hermite polynomials are defined on (−∞,∞) with this analytic formula [20]:

Hi(x) =

⌊ i
2 ⌋∑

k=0

(−1)ki!(2x)i−2k

k!(i− 2k)!
(2.6)

or it is defined as

Hi(x) = (−1)ie−x2 die−x2

dxi
(2.7)

Hermite polynomials are orthogonal polynomials so they satisfy this equation:∫ ∞

−∞
Hi(x)Hj(x) =

{
0, i ̸= j
2ii!

√
π, i = j

(2.8)

where e−x2

is the weight function of Hermite polynomials. Hermite polynomials satisfy this recur-
rence relation:

Hi+1(x) = 2xHi(x)− 2iHi+1(x) (2.9)

2.2 The Caputo fractional derivatives of Hi(x)

A function u(x) which is square integrable in (−∞,∞) can be defined by Hermite polynomials like

u(x) =

∞∑
j=0

cjHj(x) (2.10)

then the coefficients cj is defined as

cj =
1

2jj!
√
π

∫ ∞

−∞
u(x)Hj(x)w(x)dx, j = 0, 1, 2, ... (2.11)

If we consider the truncated N + 1 Hermite polynomials, it can be written

u(x) =

N∑
j=0

cjHj(x) = CTφ(x) (2.12)

where the C is the unknown coefficient vector and φ(x) is the Hermite vector as illustrated below

CT = [c0, c1, ..., cN ] (2.13)

φ(x) = [H0(x), H1(x), ...,HN (x)] (2.14)

The first derivation of vector φ(x) is given as

dφ(x)

dx
= D1φ(x) (2.15)

where D(1) indicates an OM with the size of (N + 1)× (N + 1). Then the powers of D1 for n ∈ N
is given as

D1(n)φ(x) = (D(1))(n)φ(x) (2.16)



50 H.Y. Kosunalp, M.Gulsu

Theorem 2.1 Let φi(x) is the Hermite polynomial and if v ≥ 0; then

Dvφ(x) = D(v)φ(x) (2.17)

where D(v) represents OM of Hermite polynomials of (N + 1)× (N + 1) length which is defined as

Dv =



0 0 0 . . . 0
...

...
... . . .

...
0 0 0 0 0

Ωv(i, 0) Ωv(i, 1) Ωv(i, 2) . . . Ωv(i,N)
...

...
... . . .

...
0 0 0 . . . 0
...

...
... . . .

...
Ωv(N, 0) Ωv(N, 1) Ωv(N, 2) . . . Ωv(N,N)


where

Ωv(i, j) =

⌊ i−⌊v⌋
2 ⌋∑

k=0

1

2jj!
√
π

⌊j/2⌋∑
r=0

(−1)(k + r)2(i−2k+j−2r)i!j! Γ(i−2k+j−2r+1)
2

(j − 2r)!k!r!Γ(i− 2k + 1− v)
, j = 0, 1, ..., N (2.18)

Proof. We will start proof with the analytic formula of Hermite Polynomials such as

Hi(x) =

⌊ i
2 ⌋∑

k=0

(−1)k(2x)i−2k

k!(i− 2k)!
(2.19)

it is equal to:

Hi(x) =

⌊ i
2 ⌋∑

k=0

(−1)k2i−2kxi−2k

k!(i− 2k)!
(2.20)

By approximating xi−2k function with Hermite polynomials, we obtain

xi−2k =

N∑
j=0

cjHj(x) (2.21)

then cj can be found like this:

cj =
1

2jj!
√
π

∫ ∞

−∞
Hj(x)x

i−2ke−x2

dx (2.22)

If we obtain Caputo derivative of xi−2k from the analytic formula, it is:

DvHi(x) =

⌊ i
2 ⌋∑

k=0

(−1)k2i−2kDv(xi−2k)

k!(i− 2k)!
(2.23)
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From the definiton of the Caputo derivative of exponential function we get the derivative of
xi−2k

Dvxi−2k =
Γ(i− 2k + 1)

Γ(i− 2k − v + 1)
xi−2k−v, i = ⌈v⌉, ⌈v⌉+ 1, ..., N. (2.24)

If we substitute this definition into the Eq.(2.22) it will be

DvHi(x) =

⌊ i−⌈v⌉
2 ⌋∑

k=0

(−1)k2i−2k Γ(i−2k−v)
Γ(i−2k−v+1)x

i−2k−v

k!(i− 2k)!
, i = ⌈v⌉, ⌈v⌉+ 1, ..., N. (2.25)

If we employ Eqs.(2.23) -(2.25) we obtain

DvHi(x) =

N∑
j=0

Ωv(i, j)Hj(x) (2.26)

When extracting Ωv(i, j) from Eq.(2.25), it is:

Ωv(i, j) =

⌊ i−⌊v⌋
2 ⌋∑

k=0

1

2jj!
√
π

⌊j/2⌋∑
r=0

(−1)(k + r)2(i−2k+j−2r)i!j! Γ(i−2k+j−2r+1)
2

2(j − 2r)!k!r!Γ(i− 2k + 1− v)
, j = 0, 1, ..., N (2.27)

3 Applications of operational matrix for linear FDEs

In this part of the paper, we use Tau method after composing OM of Hermite polynomials for the
solution of FDEs. Here, linear FDEs are only considered, that is given as

Dvu(x) =

k∑
i=1

γiD
βju(x) + γk+1u(x) + g(x) (3.1)

which is combined with the initial conditions given below

u(i)(0) = di, i = 0, 1, ...,m− 1. (3.2)

where i takes real consecutive constants ranging from 0 to 1 , ... , k, m − 1 < v < m and
0 < β1 < β2 < ... < βk < v and g(x) is the source function given. Also, Dvu(x) = u(v)(x) is the
fractional derivative with order v for u(x) in Caputo sense and the di values di, i = (0, 1, ...,m− 1)
is the initial conditions.

For solving the initial value problem (3.1)-(3.2) approximating u(x) and g(x) by Hermite poly-
nomials as

u(x) =

N∑
i=0

ciHi(x) = CTφ(x) (3.3)

and

g(x) =

N∑
i=0

giHi(x) = GTφ(x) (3.4)
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vector G = [g0, g1, ..., gN ] is known but C = [c0, c1, ..., cN ] is unknown, that is what we aim to
find. By using Theorem 2.1 and the relation (16) and (29) we obtain

Dvu(x) ≃ CTDvφ(x) ≃ CTD(v)φ(x) (3.5)

Dβju(x) ≃ CTDβjφ(x) ≃ CTD(βj)φ(x). (3.6)

Applying (30)-(33) the residual is

RN (x) =

CTD(v) − CT
k∑

j=1

γjD
βj − γk+1C

T −GT

φ(x) (3.7)

Applying Tau method we get

⟨RN (x), Hj(x)⟩ =
∫ ∞

−∞
RN (x)Hj(x)dx = 0 (3.8)

and by substituting (11) and (30) into (29) for the conditions we obtain

u(i)(0) = CTD(i)(0) = di, i = 0, 1, ...,m− 1. (3.9)

With Eq. (3.8) we get N −m+ 1 and with Eq. (3.9) we get m equations. By combining these
two sets of algebraic equations we have N + 1 linear equtions and then we solve this linear FDE.
The extra details can be found in [14].

4 Convergence analysis

Let u(x) ∈ L2(Ω) be a function in a Hilbert space, un(x) =
∑n

i=0 ciHi(x) be the best approximation
polynomials of u(x), then un(x) converges to u(x).

Let un(x) be the approximate solution with a series of Hermite polynomials like

u(x) ≃ un(x) =

n∑
i=0

ciHi(x). (4.1)

u(x) is the exact solution and ci is obtained as

ci =
1

2ii!
√
π

∫
Ω

u(x)Hi(x)w(x)dx (4.2)

where w(x) is the weight function of Hermite polynomials which is w(x) = e−x2

.
Now let

αi =< u(x), Hi(x) >

Now we define partial sums of αiHi(x) as Sm. For m ≥ n, Sm and Sn are an arbitrary sequence.
If we prove that Sm is convergent in the Hilbert space, then un(x) is proved to be convergent. Sm

is defined as

Sm =

m∑
i=1

αiHi(x)



Hermite operational matrix 53

Then in order to prove Sm as a Cauchy sequence in the Hilbert space, we consider the L2-norm
as:

∥ Sm − Sn ∥2L=∥
m∑

i=n+1

αiHi ∥2L (4.3)

Then it is

∥ Sm − Sn ∥2L = <
m∑

i=n+1

αiHi,

n∑
j=n+1

αjHj > (4.4)

=

∫
Ω

w(x)

(
m∑

i=n+1

αiHi(x)

) m∑
j=n+1

αjHj(x)

 dx (4.5)

=

m∑
i=n+1

m∑
j=n+1

αiαj

∫
Ω

w(x)Hi(x)Hj(x)dx (4.6)

Then since ∫
Ω

w(x)Hi(x)Hj(x)dx = δij

From orthogonality we have

δij =
0 i ̸= j
1 i = j

Then Eq.(4.6) will be

<

m∑
i=n+1

αiHi,

n∑
j=n+1

αjHj >=

m∑
i=n+1

αi
2 (4.7)

From Bessel inequality in Eq.4.7 the series

m∑
i=n+1

αi
2

is convergent series and hence ∥ Sm − Sn ∥2→ 0 as m,n → ∞

Then the proof is complete that is Sm is the Cauchy sequence.
Theorem 4.1 (Bessel’s Inequality)

Φ0(x),Φ1(x),Φ2(x), ...Φn(x)

Let L2
w be orthogonal polynomials in a Hilbert space and let u(x) ∈ L2

w then
∑

i αiΦ(x) with
weighing function w(x) it must be true that∫ [

u(x)−
∑
i

αiΦ(x)

]2
w(x)dx ≥ 0
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Proof. ∫ [
u(x)−

∑
i

αiΦ(x)

]2
w(x)dx =

∫
u2(x)w(x)dx− 2αi

∑
i

∫
u(x)Φ(x)w(x)dx−

+
∑
i

(αi)
2

∫
Φ2(x)w(x)dx ≥ 0 (4.8)

The coefficients αi can be found as

αi =

∫
u(x)Φ(x)w(x)dx

q.e.d.

then by considering
2αi

∑
i

∫
u(x)Φ(x)w(x)dx = 2α2

i and since
∫
Φ2(x)w(x)dx = 1 then∑

i

(αi)
2

∫
Φ2(x)w(x)dx =

∑
i

(αi)
2

Then (4.8) will be∫ [
u(x)−

∑
i

αiΦ(x)

]2
w(x)dx =

∫
u2(x)w(x)dx− 2

∑
i

α2
i +

∑
i

α2
i ≥ 0 (4.9)

Then it is obvious that ∫
u2(x)w(x)dx ≥

∑
i

α2
i (4.10)

It means that
∑

i αi series is convergent. It is the direct result of Bessel’s Inequality.

5 Numerical examples

Example 1. Our first example is non-homogeneous Bagley-Torvik equation initial value problem
[17]

D2u(x) +D3/2u(x) + u(x) = 1 + x, u(0) = 0, u′(0) = 1 (5.1)

This problem is solved exactly with

u(x) = 1 + x.

If we solve the problem for N = 2 by applying the technique we describe u(x) and g(x) will be

u(x) =

2∑
i=0

ciHi(x)

g(x) =

2∑
i=0

giHi(x)
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and we have

D(2) =

 0 0 0
0 0 0
8 0 0

 D(3/2) =

 0 0 0
0 0 0

3.1205 2.3081 0.3901


and

G =

 1
1/2
0


By using Eq.(3.8) we obtain

c0 + 11.1205c2 − 1 = 0 (5.2)

and by appyling (Eq.3.9) we obtain

c0 + 2c2 − 1 = 0

2c1 − 1 = 0 (5.3)

If we solve this linear system we get c0 = 1, c1 = 1
2 , c2 = 0

and from here the solution we propose is

u(x) = CTφ(x) = 1 + x.

that is the expected exact solution.

Example 2. Our next example is [21]

D2u(x) +D3/2u(x) + u(x) = x2 + 2 +
Γ(3)

Γ(3/2)
x0.5, u(0) = 0, u′(0) = 0 (5.4)

Here, the solution is an exact one
u(x) = x2

Here for N = 2 we have

D(2) =

 0 0 0
0 0 0
8 0 0

 D(3/2) =

 0 0 0
0 0 0

3.1205 2.3081 0.3901


and

G =

 3.2801
0.5770
4.0225


By applying technique described in (3.8)-(3.9) we get a c0 value of 0.5, c1 value of 0, c2 value of

0.25
and from here the solution is

u(x) = x2
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the exact solution is achieved.
Example 3. Our third example is [22]

D2u(x)− 2Du(x) +D1/2u(x) + u(x) = x3 − 6x2 + 6x+
16

5Γ(1/2)
x2.5

,
u(0) = 0, u′(0) = 0 (5.5)

This problem has an exact solution of

u(x) = x3

In this example for N = 3 we have the system like

c0 − 3.2219c1 + 9.5338c2 − 0.9361c3 −−2.5319 = 0

c0 + 11.1205c2 − 1 = 0 (5.6)

From the conditions we have
c0 − 2c2 = 0

2c1 − 12c3 = 0

So we obtain CT as

CT =


0

0.75
0

0.125


The solution is extracted as

u(x) = CT .φ(x) = x3.

Example 4. Our next example is inhomogeneous linear equation [23]

Dλu(x) + u(x) =
2x2−λ

Γ(3− λ)
− x1−λ

Γ(2− λ)
+ x2 − x

u(0) = 0, 0 < λ ≤ 1. (5.7)

The solution is given in exact form as u(x) = x2 − x.
We selected a λ value of 0.3

D(0.3) =

 0, 5533 0, 2418 −0, 0415
0, 6908 0, 5533 0, 1209
0, 1953 0, 8980 0, 6363


By applying our technique to obtain a set of algebraic equations

c0 + 0, 78c1 + 1, 5388c2 = 0, 4946

1, 577c1 + 1, 56c2 = −0, 3985
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c0 − 2c2 = 0

Upon solution of the algebraic equations system with N = 2 we generate a c0 value of 0.5, c1
value of -0.5, c2 value of 0.25.

Then, the solution is exactly found

u(x) = CT .φ(x) = x2 − x.

Example 5. The next example is given below [24]

D2u(x)− 2Du(x) +D1/2u(x) + u(x) = β1/2eβx + x2.5 + 3eβx

u(0) = 1, u′(0) = β (5.8)

The exact solution is given as u(x) = eβx.
We solve this equation for different N and β. The range of β was chosen between 0.05 and

0.2 in its original paper. We extend this range from 0.2 to 0.5 to obtain more results. Also, the
range of N is started by 2 until 4 as the error does not change significantly beyond this value.
The results indicate a highly-accurate approximation towards the exact solution, which are given
in table below. The results indicate that the error increases with varying the β and X values. This
is because the exact solution is dependent on the values of β and X in which any increment on one
of these values will increase the value of the exact solution. Therefore, the error between the exact
and obtained approximated solution rises up accordingly. It is clear to see that the table exhibits
a slight increase on the error when increasing the N which reduces the complexity. As an overall
trend, the approximated solution performs well with small N values.

Example 6. The final example is presented as follow [25]

Dau(x)−Dbu(x) = −1− ex−1, 0 < x < 1, 1 < a ≤ 2, 0 < b ≤ 1, (5.9)

u(0) = u(1) = 0 (5.10)

The exact solution of this problem corresponding to a=2 and b=1 is given by

u(x) = x(1− ex−1)

In order to solve this problem, we change the value of a (1.5, 1.7 and 2 respectively) while
keeping a constant value of b, as implemented in [25]. The main goal of this process is to obtain the
approximated solution very close to the exact solution with the value of a approaching 2. Figure-1
presents the comparative results of exact and approximated solutions. The results clearly shows
that the approximated solution with a value of 2 achieves a very close solution to the exact one
with an average absolute error of 2 ∗ 10−3 which is a significant performance improvement when
compared with the results presented in [25].

6 Discussion

In order to assess the performance of the proposed method, a number of representative examples
were solved. We selected a well-known equation, Bagley-Torvik, as the first example which has a
polynomial type of exact solution. The following three examples have also different exact solutions
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Table 1. Absolute Error for Example 5.

 
Figure 1. Comparison of exact and approximated results for N=4.
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in a polynomial form. The proposed method achieved the exact solutions of these examples with
respect to the order of the equations. The exact solutions of the first three examples hold a variable
with only one degree representing the degree of polynomial. The fourth example has the variable
with two degrees. In order to prove the accuracy of the proposed method, the final example has
an exponential exact solution in which the proposed method achieved an approximated solution
with significantly lower error. It is highly-believed that our method can be applied to solve various
equations with the consideration of initial conditions.

7 Conclusion

This work presented a new direction to the field of the solutions of the FDEs which can be easily
implemented in practical problems ranging from engineering to economics and natural sciences. The
Hermite polynomials are utilized to ensure a non-complex, rapid and accurate solution through the
derivation of the operational matrix. Hence, this paper presented a general formulation to derive a
new operational matrix of fractional derivatives with Hermite polynomials. The matrix was then
integrated with tau method, in order to solve and approximate the linear-type class of FDEs in
Caputo sense. A number of illustrative examples has been solved to indicate the advantage of
the proposed idea. The results reveal a good accuracy with the exact and approximated solutions.
Future work will focus on the adaptation of the proposed strategy to solve the non-linear equations.
Also, we will try to solve the systems of FDEs, instead of solving only one FDE. An significant
effort will be placed on the solution of some particular FDE, such as Riccati differential equation.
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