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Abstract

In this study, we firstly define the Horadam hybrid quaternions and present some of their
properties. Then, we define Fibonacci and Lucas hybrid quaternions, and also we study the
relationship between the Fibonacci and the Lucas hybrid quaternions which connect the Fi-
bonacci quaternions and Lucas quaternions. Furthermore, we also give some identities such as
the Binet formulas and Cassini identities for Fibonacci and Lucas hybrid quaternions.
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1 Introduction

Quaternions were introduced by Sir William Rowan Hamilton in 1866 as an extension of the com-
plex numbers [1]. Quaternions are an important number system used in different areas such as
computer science, quantum physics, and analysis [2, 3, 4]. This type of quaternions also called real
quaternions. A real quaternion is defined as

Q = z0 + z1i+ z2j + z3k

where z0, z1, z2, z3 are real numbers. Also, i, j, and k are the units of real quaternions which satisfy
the following equalities

i2 = j2 = k2 = ijk = −1. (1.1)

Note that the set of real quaternions form non-commutative but associative algebra. The conjugate
of the quaternion Q is defined by Q = z0−z1i−z2j−z3k. Moreover, the norm of any quaternion Q

is denoted by ‖Q‖ and defined by ‖Q‖ =
√
QQ =

√
z2

0 + z2
1 + z2

2 + z2
3 ∈ R. For further information

about real quaternions see [5].
Hybrid numbers have been defined by Özdemir [6]. In this work, a number system of such

numbers consisting of all three number systems(complex, dual, and hyperbolic) has been given.
The set of hybrid numbers, K, is defined as following:

K =

{
z = a+ bi + cε + dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0,h2 = 1

ih = −hi = ε + i

}
. (1.2)

Multiplication rules of i, ε, and h can be given as following table:
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. i ε h

i −1 1− h ε + i
ε 1 + h 0 −ε
h −ε− i ε 1

Table 1. Multiplication table of hybrid units

The conjugate of the hybrid number is defined by zc = a− bi− cε− dh. Furthermore, the norm of
any hybrid number z is

‖z‖ =
√
zzc =

√
a2 + (b− c)2 − c2 − d2.

For further information about hybrid number system, see [6].
The hybrid quaternions have recently been defined as a new quaternion system by Daǧdeviren

in [7]. This system has a strong algebraic structure and it is a generalization of complex, dual, and
hyperbolic quaternions. That is, complex quaternions, dual quaternions and hyperbolic quaternions
can be obtained from hybrid quaternions in special cases. Moreover, hybrid quaternions are also
generalised the features of the other three quaternion systems such as inner product, vector product,
and norm. The set of hybrid quaternions denoted by HK and defined as

HK = {Q = z0 + z1i+ z2j + z3k | z0, z1, z2, z3 ∈ K} (1.3)

where quaternionic units i, j, k satisfies the equation (1.1). The quaternionic units i, j, k commutes
with the hybrid units i, ε,h. Thus, any hybrid quaternion can be written as

Q = q0 + q1i + q2ε + q3h

where q0, q1, q2, q3 are quaternions and i, ε,h are hybrid units obeying the multiplication rules in
the Table 1, [7].

Two hybrid quaternions are equal if all their components are equal, one by one. Let Q =
q0 + q1i + q2ε + q3h and P = p0 + p1i + p2ε + p3h and be any two hybrid quaternions. Addition
and subtraction of these two hybrid quaternions are defined as

Q∓ P = (q0 ∓ p0) + (q1 ∓ p1)i + (q2 ∓ p2)ε + (q3 ∓ p3)h.

Multiplication of the hybrid quaternions is defined as

QP = (q0p0 − q1p1 + q3p3 + q1p2 + q2p1)

+ (q0p1 + q1p0 + q1p3 − q3p1) i

+ (q0p2 + q2p0 + q1p3 − q3p1 + q3p2 − q2p3) ε

+ (q0p3 + q3p0 + q2p1 − q1p2) h .

The multiplication of any two hybrid numbers with the help of hybrid units is expressed as above.
Furthermore, the hybrid quaternions Q and P above can be written as Q = z0 +z1i+z2j+z3k and
P = t0 + t1i+ t2j+ t3k in terms of quaternion units. Multiplication of these two hybrid quaternions
can be given as

QP = (z0t0 − z1t1 − z2t2 − z3t3)

+ (z1t0 + z0t1 − z3t2 + z2t3) i

+ (z2t0 + z3t1 + z0t2 − z1t3) j

+ (z3t0 − z2t1 + z1t2 + z0t3) k .
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Further information about hybrid quaternions can be found in [7].
Generalized Fibonacci numbers were defined by Horadam [8, 9]. Moreover Horadam gave the

formula for negative index terms of Horadam numbers [9]. Horadam numbers are defined as follow:

wn = pwn−1 − qwn−2 , n ≥ 2 (1.4)

where p, q, n are integers and w0, w1 are initial conditions. The Binet’s formula of the Horadam
numbers is

wn = Aαn +Bβn (1.5)

where α and β are the roots of the equation x2 − px+ q = 0. Also A and B are

A =
w1 − w0β

α− β
, B =

w0α− w1

α− β
. (1.6)

In addition, Horadam numbers can be represent as wn(w0, w1; p, q). For special w0, w1, p and q the
equation (1.4) defines the well known numbers named as the Fibonacci type numbers. These types
of numbers can be listed as follows:

i) wn(0, 1; p, q) = Un− Generalized Fibonacci numbers,

ii) wn(2, 1; p, q) = Vn− Generalized Lucas numbers,

iii) wn(0, 1; 1,−1) = Fn− Fibonacci numbers,

iv) wn(2, 1; 1,−1) = Ln− Lucas numbers,

v) wn(0, 1; 2,−1) = Pn− Pell numbers,

vi) wn(2, 2; 2,−1) = PLn− Pell-Lucas numbers,

vii) wn(0, 1; 1,−2) = Jn − Jacobsthal numbers,

viii) wn(2, 1; 1,−2) = JLn− Jacobsthal-Lucas numbers,

ix) wn(0, 1; 3, 2) = Mn− Mersenne Numbers,

x) wn(1, 3; 3,−2) = FEn− Fermat numbers.

These numbers have been studied from different perspectives [10, 11, 12, 13, 14, 9, 15, 16].
Horadam hybrid numbers, a special type of hybrid numbers, were introduced and studied by Szynal-
Liana [11]. In this study, the author gave the Binet formulas, generating functions and characters
for Horadam hybrid numbers. nth Horadam hybrid number is defined as

HHn = wn + i wn+1 + ε wn+2 + h wn+3 (1.7)

where wn is nth Horadam number. The Binet formula of the Horadam hybrid numbers is

wn = Aα∗αn +Bβ∗βn (1.8)
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where A,B are defined by (1.6) and α∗ = 1 + iα+ εα2 + hα3, β∗ = 1 + iβ + εβ2 + hβ3. Moreover,
in the same article, the author defined Fibonacci and Lucas hybrid numbers as follows:

FHn = Fn + iFn+1 + εFn+2 + hFn+3,

LHn = Ln + iLn+1 + εLn+2 + hLn+3.

The other studies about Horadam hybrid numbers can be found in [17, 18, 19, 20, 21, 22].
In the literature, there are also studies on Fibonacci quaternions. In [8], nth Fibonacci and

Lucas quaternions were defined by Horadam as follows:

FQn = Fn + iFn+1 + jFn+2 + kFn+3,

LQn = Ln + iLn+1 + jLn+2 + kLn+3

where i, j and k are quaternion units which satisfy equations (1.1). Moreover, Fn and Ln are the
nth Fibonacci and Lucas numbers, respectively. In [14], Halc have studied on Fibonacci quaternions
and present the generating functions and Binet formulas for Fibonacci and Lucas quaternions. For
the other studies about Fibonacci and Lucas quaternions see [23, 14].

In this study, using the hybrid quaternions firstly we will introduce the Horadam Hybrid quater-
nions to the literature by defining a more general structure of Horadam hybrid numbers and Ho-
radam quaternions. Then, we will give Binet formulas for these numbers. Furthermore, we will
examine the Fibonacci and Lucas hybrid quaternions in detail and consequently, we will give some
properties and identities of these numbers.

In what follows, to avoid confusion we use notation as properly as we can. We will give the
following table to make the symbols used in this study easier to understand.

Notations Numbers

FHQn Fibonacci hybrid quaternions
LHQn Lucas hybrid quaternions

FQn Fibonacci quaternions
LQn Lucas quaternions

FHn Fibonacci hybrid numbers
LHn Lucas hybrid numbers

Fn Fibonacci numbers
Ln Lucas numbers

Table 2. Notation table of Numbers

2 Horadam hybrid quaternions

In this section, we define Horadam hybrid quaternions by using Horadam numbers. Therefore, we
define the Horadam hybrid quaternion HHQn as

HHQn = HHn + iHHn+1 + jHHn+2 + kHHn+3 (2.1)
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where i, j, k are quaternion units which satisfy equations (1.1) and HHn is the nth Horadam hybrid
number as in (1.7). Moreover, every Horadam hybrid quaternion HHQn can be written as

HHQn = (wn + iwn+1 + εwn+2 + hwn+3) + (wn+1 + iwn+2 + εwn+3 + hwn+4) i

+ (wn+2 + iwn+3 + εwn+4 + hwn+5) j + (wn+3 + iwn+4 + εwn+5 + hwn+6) k

= HQn + iHQn+1 + εHQn+2 + hHQn+3

where i, ε,h are hybrid units and HQn = wn + iwn+1 + jwn+2 +kwn+3 is the nth Horadam quater-
nion. The Fibonacci, Lucas, Pell, Jacobsthal, Pell-Lucas, and Jacobsthal-Lucas hybrid quater-
nions can be defined both by using Fibonacci(FHn), Lucas(LHn), Pell(PHn), Jacobsthal(JHn),
Pell-Lucas(PLHn), and Jacobsthal-Lucas(JLHn) hybrid number coefficients and by using Fi-
bonacci (FQn), Lucas(LQn), Pell(PQn), Jacobsthal(JQn), Pell-Lucas(PLQn), and Jacobsthal-
Lucas(JLQn) quaternion coefficients respectively. We will define these hybrid quaternions as fol-
lows:

i) nth Fibonacci hybrid quaternion FHQn is

FHQn = FHn + iFHn+1 + jFHn+2 + kFHn+3

= FQn + iFQn+1 + εFQn+2 + hFQn+3,

ii) nth Lucas hybrid quaternion LHQn is

LHQn = LHn + iLHn+1 + jLHn+2 + kLHn+3

= LQn + iLQn+1 + εLQn+2 + hLQn+3,

iii) nth Pell hybrid quaternion PHQn is

PHQn = PHn + iPHn+1 + jPHn+2 + kPHn+3

= PQn + iPQn+1 + εPQn+2 + hPQn+3,

iv) nth Jacobsthal hybrid quaternion JHQn is

JHQn = JHn + iJHn+1 + jJHn+2 + kJHn+3

= JQn + iJQn+1 + εJQn+2 + hJQn+3,

v) nth Pell-Lucas hybrid quaternion PLHQn is

PLHQn = PLHn + iPLHn+1 + jPLHn+2 + kPLHn+3

= PLQn + iPLQn+1 + εPLQn+2 + hPLQn+3,

vi) nth Jacobsthal-Lucas hybrid quaternion JLHQn is

JLHQn = JLHn + iJLHn+1 + jJLHn+2 + kJLHn+3

= JLQn + iJLQn+1 + εJLQn+2 + hJLQn+3.
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Theorem 2.1. Let n ∈ N, then the Binet formula for the Horadam hybrid quaternions is

HHQn = Aα∗ααn +Bβ∗ββn

where A,B are defined by (1.6) and

α∗ = 1 + iα+ εα2 + hα3 , β∗ = 1 + iβ + εβ2 + hβ3,

α = 1 + iα+ jα2 + kα3 , β = 1 + iβ + jβ2 + kβ3.

Proof. By using the definition of Horadam hybrid quaternions (2.1) and the Binet formula for the
Horadam hybrid numbers (1.8), we obtain

HHQn = (Aαnα∗ +Bβnβ∗) + i(Aαn+1α∗ +Bβn+1β∗)

+ j(Aαn+2α∗ +Bβn+2β∗) + k(Aαn+3α∗ +Bβn+3β∗)

= (Aαnα∗)(1 + iα+ jα2 + kα3) + (Bβnβ∗)(1 + iβ + jβ2 + kβ3)

= Aα∗ααn +Bβ∗ββn.

q.e.d.

3 Fibonacci and Lucas hybrid quaternions

In this section, we examine the Fibonacci and Lucas Hybrid quaternions in detail and give some
properties.

Definition 3.1. We denote the set of Fibonacci hybrid quaternios by FHQ and define as follows:

FHQ = {FHQn = FHn + iFHn+1 + jFHn+2 + kFHn+3 | FHn, nth Fibonacci hybrid number}

where i, j, k are quaternionic units. Moreover, here nth, (n+1)th, (n+2)th and (n+3)th Fibonacci
hybrid numbers are

FHn = Fn + iFn+1 + εFn+2 + hFn+3, (3.1)

FHn+1 = Fn+1 + iFn+2 + εFn+3 + hFn+4, (3.2)

FHn+2 = Fn+2 + iFn+3 + εFn+4 + hFn+5, (3.3)

FHn+3 = Fn+3 + iFn+4 + εFn+5 + hFn+6 (3.4)

where i, ε, and h are the hybrid units. We will restate FHQn by using the equations (3.1), (3.2),
(3.3) and (3.4) as below.

FHQn = (Fn + iFn+1 + εFn+2 + hFn+3) + i(Fn+1 + iFn+2 + εFn+3 + hFn+4)

+ j(Fn+2 + iFn+3 + εFn+4 + hFn+5) + k(Fn+3 + iFn+4 + εFn+5 + hFn+6)

FHQn = FQn + iFQn+1 + εFQn+2 + hFQn+3

where FQn = Fn + iFn+1 + jFn+2 + kFn+3 is a Fibonacci quaternion. Therefore, the set of
Fibonacci hybrid quaternios FHQ can be redefined as

FHQ =

{
FHQn = FQn + iFQn+1 + εFQn+2 + hFQn+3 |

FQn, nth Fibonacci
quaternion

}
. (3.5)
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Remark 3.2. Every Fibonacci hybrid quaternion

FHQn = FHn + iFHn+1 + jFHn+2 + kFHn+3

can be written as
FHQn = FQn + iFQn+1 + εFQn+2 + hFQn+3.

Definition 3.3. We denote the set of Lucas hybrid quaternios by LHQ and define as

LHQ =

{
LHQn = LHn + iLHn+1 + jLHn+2 + kLHn+3 |

LHn, nth Lucas
hybrid number

}
(3.6)

where i, j, k are quaternionic units. Moreover, here LHn is nth Lucas hybrid number

LHn = Ln + iLn+1 + εLn+2 + hLn+3

As with Fibonacci hybrid quaternions above, Lucas hybrid quaternions can be redefined in terms
of Lucas quaternions by

LHQ =

{
LHQn = LQn + iLQn+1 + εLQn+2 + hLQn+3|

LQn, nth Lucas
quaternion

}
(3.7)

where i, ε,h are hybrid units. Moreover, here LQn is nth Lucas quaternion

LQn = Ln + iLn+1 + jLn+2 + kLn+3.

Remark 3.4. Every Lucas hybrid quaternion

LHQn = LHn + iLHn+1 + jLHn+2 + kLHn+3

can be written as
LHQn = LQn + iLQn+1 + εLQn+2 + hLQn+3.

Definition 3.5. Let FHQn and FHQm be nth and mth terms of the Fibonacci hybrid quaternion
sequences such that

FHQn = FHn + iFHn+1 + jFHn+2 + kFHn+3

= FQn + iFQn+1 + εFQn+2 + hFQn+3

and

FHQm = FHm + iFHm+1 + jFHm+2 + kFHm+3

= FQm + iFQm+1 + εFQm+2 + hFQm+3.

Then, the addition and subtraction of the Fibonacci hybrid quaternions are defined by

FHQn ∓FHQm = (FHn + iFHn+1 + jFHn+2 + kFHn+3)∓ (FHm + iFHm+1 + jFHm+2 + kFHm+3)

= (FHn ∓FHm) + i(FHn+1 ∓FHm+1) + j(FHn+2 ∓FHm+2) + k(FHn+3 ∓FHm+3),

FHQn ∓FHQm = (FQn + iFQn+1 + εFQn+2 + hFQn+3)∓ (FQm + iFQm+1 + εFQm+2 + hFQm+3)

= (FQn ∓FQm) + i(FQn+1 ∓FQm+1) + ε(FQn+2 ∓FQm+2) + h(FQn+3 ∓FQm+3).



300 A. Daǧdeviren, F. Kürüz

Definition 3.6. Multiplication of the Fibonacci hybrid quaternions is defined in terms of Fibonacci
hybrid numbers (FHn,FHm) as follows:

FHQnFHQm = (FHn + iFHn+1 + jFHn+2 + kFHn+3)(FHm + iFHm+1 + jFHm+2 + kFHm+3)

= (FHnFHm −FHn+1FHm+1 −FHn+2FHm+2 −FHn+3FHm+3)

+ i(FHnFHm+1 + FHn+1FHm + FHn+2FHm+3 −FHn+3FHm+2)

+ j(FHnFHm+2 −FHn+1FHm+3 + FHn+2FHm + FHn+3FHm+1)

+ k(FHnFHm+3 + FHn+1FHm+2 −FHn+2FHm+1 + FHn+3FHm)

or in terms of Fibonacci quaternions (FQn,FQm) it can be defined as follows:

FHQnFHQm = (FQn + iFQn+1 + εFQn+2 + hFQn+3)(FQm + iFQm+1 + εFQm+2 + hFQm+3)

= (FQnFQm −FQn+1FQm+1 + FQn+3FQm+3 + FQn+1FQm+2 + FQn+2FQm+1)

+ i(FQnFQm+1 + FQn+1FQm + FQn+1FQm+3 −FQn+3FQm+1)

+ ε(FQnFQm+2 + FQn+1FQm+3 + FQn+2FQm −FQn+2FQm+3

−FQn+3FQm+1 + FQn+3FQm+2)

+ h(FQnFQm+3 −FQn+1FQm+2 + FQn+2FQm+1 + FQn+3FQm).

The scalar and vector parts of FHQn which is the nth term of the Fibonacci hybrid quaternion
sequence (FHQn) are denoted by

SFHQn
= FHn and VFHQn

= iFHn+1 + jFHn+2 + kFHn+3

So, any Fibonacci hybrid quaternion FHQn can be written as FHQn = SFHQn
+ VFHQn

. Now
we can redefine addition and subtraction as

FHQn ∓FHQm = (SFHQn
+ VFHQn

)∓ (SFHQm
+ VFHQm

)

= (SFHQn
∓ SFHQm

) + (VFHQn
∓ VFHQm

),

and multiplication

FHQnFHQn = (SFHQn
+ VFHQn

)(SFHQn
+ VFHQn

)

= SFHQn
SFHQn

− 〈VFHQn
, VFHQn

〉
+ SFHQn

VFHQn
+ SFHQn

VFHQn
+ VFHQn

× VFHQn
.

Definition 3.7. The conjugate of Fibonacci hybrid quaternion can be define three different types
for FHQn = FQn + iFQn+1 + εFQn+2 + hFQn+3

i) Quaternion conjugate, FHQn: FHQn = FQn + iFQn+1 + εFQn+2 + hFQn+3,

ii) Hybrid conjugate, (FHQn)C : (FHQn)C = FQn − iFQn+1 − εFQn+2 − hFQn+3,

iii) Total conjugate, (FHQn)†: (FHQn)† = (FHQn)C = FQn− iFQn+1−εFQn+2−hFQn+3.

Theorem 3.8. Let FHQn be nth term of the Fibonacci sequence. Then, for n ≥ 1 we can give
the following relations:

i) FHQn + FHQn+1 = FHQn+2,
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ii) FHQn − iFHQn+1 − jFHQn+2 − kFHQn+3 = FHn + FHn+2 + FHn+4 + FHn+6

= LHn+1 + LHn+5,

iii) FHQn − iFHQn+1 − εFHQn+2 − hFHQn+3 = FQn −FQn+2 − 2FQn+3 + FQn+6.

Proof. Let FHn, LHn and FQn be nth Fibonacci hybrid number, nth Lucas hybrid number and
nth Fibonacci quaternion, respectively.
i) We can show this equality in two ways; first one is using Fibonacci hybrid numbers:

FHQn + FHQn+1 = (FHn + iFHn+1 + jFHn+2 + kFHn+3)

+ (FHn+1 + iFHn+2 + jFHn+3 + kFHn+4)

= (FHn + FHn+1) + i(FHn+1 + FHn+2)

+ j(FHn+2 + FHn+3) + k(FHn+3 + FHn+4)

= FHn+2 + iFHn+3 + jFHn+4 + kFHn+5 = FHQn+2.

The second one is using Fibonacci quaternions:

FHQn + FHQn+1 = (FQn + iFQn+1 + εFQn+2 + hFQn+3)

+ (FQn+1 + iFQn+2 + εFQn+3 + hFQn+4)

= (FQn + FQn+1) + i(FQn+1 + FQn+2

+ ε(FQn+2 + FQn+3) + h(FQn+3 + FQn+4)

= FQn+2 + iFQn+3 + εFQn+4 + hFQn+5 = FHQn+2.

ii) If we use FHn−1 + FHn+1 = LHn [11], we have

FHQn − iFHQn+1 − jFHQn+2 − kFHQn+3 = (FHn + iFHn+1 + jFHn+2 + kFHn+3)

− i(FHn+1 + iFHn+2 + jFHn+3 + kFHn+4)

− j(FHn+2 + iFHn+3 + jFHn+4 + kFHn+5)

− k(FHn+3 + iFHn+4 + jFHn+5 + kFHn+6)

= FHn + FHn+2 + FHn+4 + FHn+6

= LHn+1 + LHn+5.

iii) FHQn − iFHQn+1 − εFHQn+2 − hFHQn+3

= (FHQn + iFHQn+1 + εFHQn+2 + hFHQn+3)

−i(FHQn+1 + iFHQn+2 + εFHQn+3 + hFHQn+4)

−ε(FHQn+2 + iFHQn+3 + εFHQn+4 + hFHQn+5)

−h(FHQn+3 + iFHQn+4 + εFHQn+5 + hFHQn+6)

= FHQn − FHQn+2 − 2 FHQn+3 + FHQn+6.

q.e.d.

Theorem 3.9. Let FHQn and LHQn be nth Fibonacci hybrid quaternion and the Lucas hybrid
quaternion sequences respectively. The following relations are satisfied:
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i) FHQn−1 + FHQn+1 = LHQn

ii) FHQn+2 −FHQn−2 = LHQn

Proof.

i) We know that LHn = FHn−1 + FHn+1. Then we have

FHQn−1 + FHQn+1 = (FHn−1 + iFHn + jFHn+1 + kFHn+2)

+ (FHn+1 + iFHn+2 + jFHn+3 + kFHn+4)

= (FHn−1 + FHn+1) + i(FHn + Fn+2)

+ j(FHn+1 + FHn+3) + k(FHn+2 + FHn+4)

= LHn + iLHn+1 + jLHn+2 + kLHn+3

= LHQn

ii) We know that FHn = FHn+2 −FHn−2.

FHQn+2 −FHQn−2 = (FHn+2 + iFHn+3 + jFHn+4 + kFHn+5)

− (FHn−2 + iFHn−1 + jFHn + kFHn+1)

= (FHn+2 −FHn−2) + i(FHn+3 −FHn−1)

+ j(FHn+4 −FHn) + k(FHn+5 −FHn+1)

= LHn + iLHn+1 + jLHn+2 + kLHn+3

= LHQn

q.e.d.

Theorem 3.10. Let FHQn be nth Fibonacci hybrid quaternion sequence (FHQn) and FHQn,
FHQC

n , FHQ†n be the quaternion conjugate, hybrid conjugate and total conjugate of nth Fibonacci
hybrid quaternion respectively. The following relations are satisfies:

i) FHQn + FHQn = 2FHn

ii) FHQn + FHQC
n = 2FQn

iii) FHQn + FHQ†n = −2Fn − 8Fn+1 + 2(FHQn+1 + FHQn+2 + FHQn+3)

Proof.

i) FHQn + FHQn = (FHn + iFHn+1 + jFHn+2 + kFHn+3)

+ (FHn − iFHn+1 − jFHn+2 − kFHn+3)

= 2FHn

ii) FHQn + FHQC
n = (FHn + iFHn+1 + jFHn+2 + kFHn+3)

+ (FHC
n + iFHC

n+1 + jFHC
n+2 + kFHC

n+3)

= (FHn + FHC
n ) + i(FHn+1 + FHC

n+1)

+ j(FHn+2 + FHC
n+2) + k(FHn+3 + FHC

n+3)

= 2(Fn + iFn+1 + jFn+2kFn+3) = 2FQn
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iii) FHQn + FHQ†n = (FHn + iFHn+1 + jFHn+2 + kFHn+3)

+ (FHC
n − iFH

C
n+1 − jFH

C
n+2 − kFH

C
n+3)

= (FHn + FHC
n ) + i(FHn+1 −FHC

n+1)

+ j(FHn+2 −FHC
n+2) + k(FHn+3 −FHC

n+3)

= −2Fn − 8Fn+1 + 2(FHn+1 + FHn+2 + FHn+3)

q.e.d.

Theorem 3.11 (Binet’s Formulas). Let FHQn and LHQn be Fibonacci hybrid quaternion and
Lucas hybrid quaternion respectively. The Binet formulas for these hybrid quaternions are given
as follows:

i) FHQn =
α∗ααn − β∗ββn

α− β

ii) LHQn = α∗ααn + β∗ββn

where α∗ = 1 + iα + εα2 + hα3, β∗ = 1 + iβ + εβ2 + hβ3, α = 1 + iα + jα2 + kα3 and β =

1 + iβ + jβ2 + kβ3.

Proof. In [14], Halici gave the Binet’s formula for Fibonacci and Lucas quaternions by

FQn =
ααn − ββn

α− β
(3.8)

and
LQn = ααn + ββn. (3.9)

i) By using (3.8), we have

FHQn = FQn + iFQn+1 + εFQn+2 + hFQn+3

=
ααn − ββn

α− β
+ i

ααn+1 − ββn+1

α− β
+ ε

ααn+2 − ββn+2

α− β
+ h

ααn+3 − ββn+3

α− β

=
(ααn − ββn) + i(ααn+1 − ββn+1) + ε(ααn+2 − ββn+2) + h(ααn+3 − ββn+3)

α− β

=
(ααn + iααn+1 + εααn+2 + hααn+3)− (ββn + iββn+1 + εββn+2 + hββn+3)

α− β

=
ααn(1 + iα+ εα2 + hα3)− ββn(1 + iβ + εβ2 + hβ3)

α− β

=
α∗ααn − β∗αβn

α− β
.
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ii) By using (3.9), we have

LHQn = LQn + iLQn+1 + εLQn+2 + hLQn+3

= ααn + ββn + iααn+1 + ββn+1 + εααn+2 + ββn+2 + hααn+3 + ββn+3

= (ααn + ββn) + i(ααn+1 + ββn+1) + ε(ααn+2 + ββn+2) + h(ααn+3 + ββn+3)

= (ααn + iααn+1 + εααn+2 + hααn+3) + (ββn + iββn+1 + εββn+2 + hββn+3)

= ααn(1 + iα+ εα2 + hα3) + ββn(1 + iβ + εβ2 + hβ3)

= α∗ααn + β∗ββn.

q.e.d.

Theorem 3.12 (Cassini’s Identities). The following equations are hold:

C1 = FHQn+1FHQn−1 −FHQ2
n = (−1)n

αα∗β∗αβ − ββ∗α∗βα
α− β

,

C2 = LHQn+1LHQn−1 − LHQ2
n = (−1)n

√
5(αα∗β∗αβ − ββ∗α∗βα)

where α and β be the roots of equation x2−2x−1 = 0, α = 1+αi+α2j+α3L, β = 1+βi+β2j+β3k,

α∗ = 1 + αi + α2ε + α3h and β∗ = 1 + βi + β2ε + β3h.

Proof. For the first Cassini identity C1, we get

C1 =

(
αn+1α∗α− βn+1β∗β

α− β

)(
αn−1α∗α− βn−1β∗β

α− β

)
−
(
αnα∗α− βnβ∗β

α− β

)2

=
α2n(α∗)2α2 − αn+1βn−1α∗β∗αβ − βn+1αn−1β∗α∗βα+ β2n(β∗)2β2

(α− β)2

−
α2n(α∗)2α2 − αnβnα∗β∗αβ − βnαnβ∗α∗βα+ β2n(β∗)2β2

(α− β)2

=
αn−1βnβ∗α∗(α− β)βα− αnβn−1α∗β∗(α− β)αβ

(α− β)2

= (−1)n
(αα∗β∗αβ − ββ∗α∗βα)

α− β

For the second Cassini identity C2, we get

C2 = (αn+1α∗α+ βn+1β∗β)(αn−1α∗α+ βn−1β∗β)− (αnα∗α+ βnβ∗β)2

= α2n(α∗)2α2 + αn+1βn−1α∗β∗αβ + βn+1αn−1β∗α∗βα+ β2n(β∗)2β2

− α2n(α∗)2α2 + αnβnα∗β∗αβ + βnαnβ∗α∗βα+ β2n(β∗)2β2

= αn−1βnβ∗α∗(β − α)βα+ αnβn−1α∗β∗(α− β)αβ

= αn−1βn−1(α− β)(αα∗β∗αβ − ββ∗α∗βα)

= (−1)n
√

5(αα∗β∗αβ − ββ∗α∗βα).

q.e.d.
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4 Conclusion

In this paper, we have introduced the Horadam hybrid quaternions and some special classes of
number sequences such as Fibonacci, Lucas, Pell and Jacobsthal hybrid quaternions. Especially,
we have examined the Fibonacci and Lucas hybrid quaternions comprehensively. Moreover, some
identities like Binet’s formula and Cassini’s identity for Fibonacci and Lucas hybrid quaternions
have been given. Other sequences on Hybrid quaternions can be studied as future works.
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